4K两级脉管制冷机热力学计算与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉管制冷机作为一种新型低温制冷机,由于低温端没有运动部件,因此与传统G-M制冷机和斯特林制冷机相比,具有结构简单、成本低、可靠性高、机械振动和电磁噪声低等突出优点。随着脉管制冷机性能的逐渐提高,在各种应用场合显示出了很强的竞争力,应用范围涉及航空航天、军事、低温电子学、低温医学、气体液化等诸多领域。本文在回顾脉冲管制冷机的发展历史和最新研究进展的基础上,对两级脉冲管制冷机进行了如下具体研究工作:
     首先,对两级脉管制冷机实际制冷量进行计算。参照G-M制冷机运用分离计算法对实验样机第二级理论制冷量进行了计算,并分析计算了各项不可逆损失,最后得出第二级在4.2K的实际制冷量。
     其次,运用Fluent对二级回热器进行数值模拟。建立了二级回热器的物理和计算模型,给出了多孔介质主要参数的计算方法,模拟得出两种不同填料组合下回热器的温度及比热分布。引入参数ξ表示蓄冷器中氦气和填料的比热容之比,根据ξ值沿回热器长度方向的分布情况判断填料组合的蓄冷效果,ξ值越接近1蓄冷效果越好。模拟的结果用以确定二级回热器填料的配比。
     最后,两级脉管制冷机实验台的组成介绍和制冷机性能测试。实验使用针阀调节小孔和双向进气开度,得到了制冷机降温曲线以及针阀调节的最佳阀门开度曲线,并分析了双向进气开度对冷头温度波动的影响。对实验中的现象从机理和计算两个方面进行分析,总结出目前制冷机存在的问题以及进一步提高制冷机性能的措施。
As a new type of refrigerator, pulse tube refrigerator has no moving parts in the low temperature region compared with G-M and Stirling refrigerators, which gives it a lot of advantages such as simple structure, low cost, high reliability, low mechanical vibration and electromagnetism noise, etc. Along with its gradually improvement of performance, pulse tube refrigerator shows great competitive abilities in many application fields, including space, military, cryo-electronics, cryo-medicine, gas liquefaction, etc. In this paper, research on the two-stage pulse tube refrigerator which works at 4K is carried out based on the development history of pulse tube refrigerator and latest researches Detailed work is as follows:
     Firstly, calculation of the actual refrigeration capacity of the second stage at 4K is done. Consulting the separate theoretical refrigeration capacity computational methods of G-M refrigerator, the theoretical refrigeration capacity and various types of irreversible losses of the second stage are calculated, so the actual refrigeration capacity is obtained by subtracting theoretical refrigeration capacity by all loses. Based on the calculation, the actual refrigeration capacity of the second stage at 4K is determined.
     Secondly, CFD software Fluent has been applied for the numerical simulation of the second stage regenerator. The physical and computational models of the second stage regenerator are established and the calculation methods of the parameters which are important to the porous zone are given. Through the results of the simulation, the temperature and volumetric specific heat distributions of the second stage regenerator are obtained. Parameterξis introduced to prescribe the ratio of volumetric specific heat of helium and regenerative materials. Theoretically, the value ofξshould be close to 1, which means the effect of the arrangement of the regenerative materials is good. The result of the simulation is used to determine the arrangement of the second stage regenerative materials.
     Lastly, the experimental setup of the two-stage pulse tube refrigerator is introduced and the performance test of the refrigeratorr is conducted. The opening of the orifice and double-inlet are adjusted by needle valves. During the experiment, the cooling-down curve of the refrigerator and the optimal opening curve of the valves are gained. The temperature fluctuation of the cold-head which is influenced by the double-inlet valve opening is analyzed. Theoretical and computational analyses of the phenomena which are found in the experiment are done. According to these analyses, the problems of the cooler are concluded and measures to figure out these problems are also put forward, so that the refrigerator could be improved.
引文
1 R. Radebaugh. Recent Developments in Cryocooler. 19th. Int.Con.Refrig. 1995:973~978
    2 C. K. Chan. Pulse Tube Coolers for Space Applications. Proceedings of the Nineteenth International Cryogenic Engineering Conference. 2002:361~364
    3巨永林等.一种适用于空间红外传感器的低温冷源——紧凑式微型同轴脉冲管制冷机.红外与激光工程. 1998, 24(04):54~57
    4 R. Radebaugh, Advance in Cryocooler, Proceedings of the sixteenth International Cryogenic Engineering Conference, Japan. 1996:33~37
    5 .朱建炳,潘雁频.空间制冷技术在星载红外遥感器中的应用和发展.真空与低温. 2003年3月,第9卷第1期:1~2
    6刘迎文,黄竞等.空间机械制冷机的工程化研究现状.真空与低温. 2006年2月,第27卷第1期:1~3
    7 C. S. Kirkconnell, G. R. Pruitt, et al. Low Cost, Lightweight Space Cryocoolers. Cryocoolers 12. 2003:183~190
    8 G. Thummes, et al. Pulse Tube Refrigerator for High-Tc SQUID Operation. Advances in Cryogenic Engineering. 1996, 41B:1463~1470
    9 G. Thummes, et al. Operation of a High-Tc SQUID Using a Pulse Tube Refrigerator. Cryocoolers 9,1997:211~215
    10 Y. Zhou, et al. Demonstration of HTS Microwave Sub-System with a Pulse Tube Cryocooler. JSJS-5, Osaka, Japan 1997:123~127
    11 Mon, G.R. Smedley, G.T. et al. Vibration Characteristics of Stirling-Cycle Cryocoolers for Space Application. Cryocoolers 8 Plenum Press, New York, 1995:197
    12 Ross, R. G. Jr., Johnson, D. L., Mon, G. R., and Smedley, G. Cryocooler Resonance Characterization. Cryogenics, 1994, 34:435
    13 Ross, R. G Jr., Johnson, D. L. Design and Test of a Comprehensive Facility for Life Testing Space Cryocoolers. Proc. 7th. Int. Cry. Con., Santa Fe, USA, Air Force Phillips Laboratory Report PL-CP-93-1001, 1993:748
    14 Radebaugh, R. Development of the pulse tube refrigerator as an efficient and reliable cryocooler. Proc. Institute of Refrigeration(London), 1999-2000:4~7
    15 Radebaugh, R. Pulse Tube Cryocoolers for Cooling Infrared Sensors. Proceedings of SPIE, The International Society for Optical Engineering, Infrared Technology and Applications XXVI, Vol.4130,pp. 363-379(2000)
    16梁惊涛等.空间脉冲管制冷机的最新进展.空间制冷技术. 1997:71
    17 Tward, E., Chen, C.K., Raab, J., et,al. Miniature Long-life Space Qualified Pulse Tube and Stirling Cryocoolers. Cryocoolers8, Plenum Press, New York, 1995:329
    18 Collins, S.A. Johnson, D. L. et al. Performance Characterization of the TRW 35K Pulse Tube Cooler. Adv. Cryo. Eng., 1996, 41:1471
    19 Chan, C.K., Jaco, C., and Nguyen, T. Advanced Pulse Tube Head Development. Cryocoolers9, 1997:203
    20 Gifford WE, Longworth Rc. Pulse Tube Refrigeration. Trans ASME, J Eng Ind, (SerB)1964:86:264-268
    21 Tward E., Chan, C.K. et al. High Efficiency Pulse Tube Cryocooler. Cryocoolers11, 2001:163-167
    22 Burt, W. W., and Chan, C.K. New mid-size High Efficiency Pulse Tube Coolers. Cryocoolers9, Plenum Press, New York, 1997
    23王坤,顾安忠等.用脉管制冷机作为低温泵冷元的可行性分析.低温与超导,2004年8月,第32卷第3期:2~3
    24 W. E. Gifford, R. C. Longsworth. Pulse tube refrigeration. ASME Paper. No.63-WA-290, Presented at Winter Annual Meeting of the American Society of Mechanical Engineers, Philadelphia, USA, 1963: 264~268
    25 E. I. Mikulin, A. A. Tarasov, M. P. Shrebyonock. Low-temperature expansion pulse tube. Advances in Cryogenic Engineering. 1984, 29: 629~637
    26 Mikulin EI, Tarasov AA. Shkrebyonock MP. Lo temperature expansion tube. Adv Cryog Eng, 1984:629-637
    27 Radebaugh R, Zimmerman J, et al. A comparison of three types pulse tube refrigerator: New Methods for Reaching 60K. Advancing in cryogenic Engineering.1985, 31:49-54
    28 Liang, J., Zhou, Y., and Zhu, S. Development of a Single Stage Pulse Tube Refrigerator Capable of Reaching 49K. Cryogenics, 1990, 30:49
    29 Zhu S W, Wu P Y, Chen Z Q. A Single stage Double Inlet Pulse Tube Refrigerator Capable Of Reaching 42 K. Cryogenics, 1990, 30 SeptemberSupplement, 257~260
    30朱绍伟.脉管制冷机的热力学原理及重要改进—双向进气脉管制冷机.西安交通大学博士学位论文.1991
    31 Gedeon, D. DC Gas Flows in Stirling and Pulse Tube Cryocoolers. Cryocoolers9, Plenum Press, New York, 1997:385~392
    32 de Waele, A.M., A. T. Xu, M.Y., Ju, Y.L. Nonideal-gas Effect in Regenerators. Cryogenics, 1999, 39:847~851
    33 Radebaugh, R. Development of the pulse tube refrigerators as an efficient and reliable cryocoolers, Proc. Institute of Refrigeration(London), Vol.96, (1999-2000):11~29
    34 Swift, G. W., Gardener, D.L. Acoustic Recovery of Lost Power in Pulse Tube Refrigerators. J. Acoust. Soc. Am., 1999, 105:711~724
    35 Wang, C., Numerical Analysis of 4 K Pulse Tube Cooler, Part I: Numerical simulation. Cryogenics, 1997, 37:207
    36 Wang, C., Numerical Analysis of 4 K Pulse Tube Coolers, Part II: Performance and Internal Processes, 1997, 37:215
    37 C. Wang, G. Thummes and C. Heiden. Effects of DC Gas Flow on Performance of Two-stage 4K Pulse Tube Cooler. Cryogenics, 1998, 38:689~695
    38 C. Wang, G. Thummes and C. Heiden. Effects of DC Gas Flow on Performance of Two-stage 4K Pulse Tube Cooler. Cryogenics, 1998, 38:843~847
    39蒋彦龙,陈国邦,甘智华等.回热器流阻对脉管制冷机稳定性的影响.低温物理学报, 2004年8月,第26卷第3期:2~5
    40蒋彦龙,陈国邦.脉管制冷机中的直流流动.世界科技研究与发展, 2006年10月,第28卷第5期:1~7
    41陈登科.双阀双小孔脉管制冷机.低温与超导. 1996, 24(1):1~4
    42 Matsubara, Y. et al. Four-Valve Pulse Tube Refrigerator. JSJS-4, Beijing, 1993:54
    43 Ju, Y.L., Wang, C., Zhou, Y. Dynamic Experimental Investigation of a Multi-Bypass Pulse Tube Refrigerator. Cryogenics, 1997, 37:357~361
    44 Zhu S. W., Kakimi. Y. et al. Active-buffer Pulse Tube Refrigerator. Cryogenics, 1997, 37:461~471
    45许名尧等.变截面脉管制冷机—一种新结构脉管制冷机.工程热物理学报, 1996, 17(2):153
    46 Yang, Luwei, Zhou, Yuan, Liang, Jintao. DC Flow Analysis and Second Orifice Version Pulse Tube Refrigerator. Cryogenics, 1999, 39:187~192
    47 Gardner D L, Swift G W. A Cascade Thermoacoustic Engine J. Acoust Soc Am, 2003, 114(4):1905~1909
    48 Ueda Y, Biwa T, Yazaki T. Experimental Studies of a Thermoacoustic Stirling Prime Mover and Its Applicationg to A Cooler. J. Acoust Soc Am. 2004. 115(3):1134~1141
    49邱利民,孙大明,张武.大型多功能热声发动机的研制及初步实验第一部分:热声发动机的研制.低温工程, 2003, (2):1~7
    50黄永华,蒋彦龙编译.高性能低温制冷机-脉管制冷机研究进展.低温与特气. 2003年2月,第21卷第1期:4~5
    51何永林,邱利民.多级脉管制冷机的最新研究进展.低温与特气. 2003年5月,第31卷第2期:1~3
    52金文谦,张亮等.新型磁性蓄冷材料比热的实验研究.低温与特气. 2001年4月,第19卷第2期:1~2
    53李瑞,陈国邦.用于低温制冷机的磁性蓄冷材料.低温与超导. 1992年8月,第20卷第3期:2~3
    54郑朝志,龙毅.磁性材料HoCu2的物理性质.低温工程. 1999年,第4期:1~2
    55夏中明,陈国邦等.三级脉管制冷机的热力计算.低温与超导. 1996年11月,第24卷第4期:1~5
    56边绍雄.小型低温制冷机.机械工业出版社. 1983:171~172
    57 Randall F. Barron. Cryogenic Heat Transfer. Louisiana Tech University. 1999: 324~343
    58 Bill Ward, Greg Swift. Design Environment for Low-Amplitude Thermo Acoustic Engine. Version 5.4 Tutorial and User’s Guide. Los Alamos National Laboratory. 2004:137
    59 M. A. Lewis, R. Radebaugh. Measurement of Heat Conduction though Metal Spheres. Cryocoolers 11, Plenum Press, New York, 2001: 419~425
    60 Y. L. Ju. On the Heat Conduction Losses of Pulse Tube and Refrigerator at Temperature Range of 300-4K. Advances in Cryogenic Engineering. 2001, 47:942~949
    61陈国邦,张鹏.低温绝热与传热技术.科学出版社.2004:72~78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700