行波感应发射器温升分析与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁发射技术是人类能源利用史上的一次重大进步。早在19世纪就有人提出电磁发射的感念。经过一百多年的积累,电磁发射已经有了突飞猛进的发展。电磁发射的应用范围已经延伸到航空航天等很多领域。行波发射器是普通电磁发射器的一个重大改进。行波感应发射器的结构更有利于各级线圈的连接。这对避免普通电磁发射器级间过度过程带来的各种问题有很大好处。也正是因为行波发射器应用范围的扩展和功率的日益增大,它的温升问题也日益受到人们的重视。
     目前,对行波发射器温度场的研究还没有一套完整的理论,特别是抛体部分,如果用传统的热路法去分析抛体的温度场,将需要经过多次近似和大量的计算。本文利用ANSYS提供的功能强大的电磁——热耦合模块去分析抛体的温度场,并对影响它温度变化的参数进行研究分析。这为行波发射器及其它有电磁——热耦合的情况提供了一个新的分析途径。
     为了提高效率,减少成本,论文采用先理论分析,再模拟仿真的方法。采用热力学的知识,在相关理论的基础上,对行波感应发射器的工作原理以及温度升高的原因进行分析;根据热传导微分方程建立行波感应发射器温度场的数学模型并确定其边界条件;以有限元仿真和理论分析相结合的手段,对行波发射器的换热系数、热导率、比热容等参数进行公式推导和数值计算;用ANSYS分析电磁——热耦合的方法,分析了行波发射器的温度场。论文还通过改变影响温度场的参数(电压、环境温度、抛体初始位置、点火间隔等),对行波发射器在不同条件下的温度场云图进行了比较、分析,得出了有比较重要的结论。这对以后行波发射器的设计及改进提供理论参考和分析方法,有一定的理论意义和实用价值。
Electromagnetic launch technology is one important step in the human energy use history.Early in the 19th century,the conception of electromagnetic launch was proposed.After accumulation of 100 years,electromagnetic launch has made great development.The application of electromagnetic launch has been extended to many fields,such as aerospace and so on.Compared to the original ordinary electromagnetic transmitter , traveling wave induction transmitter has already improved significantly.The structure of traveling wave induction transmitter is more convenient for the connection of all levels coil which can avoid the troubles caused by the inner-process in ordinary electromagnetic launch.However,because of the widely use and increasingly big power of traveling wave transmitter,people increasingly begin to pay more attention to its temperature problem.
     At present,there isn’t a whole theory in researching the traveling wave transmitter temperature field,especially the projectile part.If the traditional thermal methods are used to analyze the temperature field of the projectile part,it will need lots of approximation and the large number of calculations.In this paper,powerful electromagnetism(thermal coupling module) applied by ANSYS is used to analyze the temperature field of the projectile part and then the parameters are studied which affect the projectile part temperature.So a new analyse method is applied to the traveling wave transmitter.
     To reduce the experimental costs and increase efficiency,firstly the theoretical analysis is done,then the simulation.On the basis of of the existing theories and the thermodynamic knowledge,the working principle of the traveling wave induction launcher and the reasons why the temperature rising are analyzed,the traveling wave induction launcher temperature field model is established and boundary conditions are confirmed.Lastly by the combination method of finite element simulation and theoretical analysis , this paper applys formula and numerical calculation of traveling wave induction launcher parameters such as heat transfer coefficient,thermal conductivity,heat capacity.Analyse the traveling wave induction launcher temperature field with the method of ANSYS electromagnetic analysis (thermal coupling module).By changing the parameters which affect temperature field,the temperature field nephograms in different condition are compared and analysed,the important conclusions are drew.These conclusions will apply theory references and analysis methods to the traveling wave launch design,so they have great theoretical means and pratical value.
引文
[1]王莹.电磁发射技术概论[J].电工技术,2003,(10):94-97.
    [2]王静端.电磁发射技术的发展及其军事应用[J].火力与指挥控制,2001,26(1):5-7.
    [3]杨世荣,王莹.电磁发射器的原理与应用[J].物理学和高新技术,2003,32(4):253-257.
    [4]李小鹏,李立毅,程树康.重接式电磁发射技术的现状及应用前景[J].微电机,2002,35(4):39-46.
    [5] WANG Y,MARSHAL R A.Physics of Electric Launch[J].Science Press,2004:11-19.
    [6] LI L Y,HU Y S, LI X P.Research of Novel Electromagnetic Catapults With Many Kinds of Uses. IEEE Trans.on MAG,2007,41(1):474-477.
    [7]罗承沐.脉冲电流测量线圈的研究和CAD设计[J].清华大学学报,1995,35(4):22-28.
    [8]庄国臣.电磁发射器及其应用[J].电工技术杂志,1997,(6):16-30.
    [9] BROOKS A L.Design and Fabrication of Large and Small Bore Railguns [J].IEEE Trans.on MAG,1981,18(1):68-72.
    [10] MELRIN,M. WAP-10 A Numerical Simulation Model for the Cylidrical Reconnection Launcher[J].IEEE Trans.on MAG,1991,27(1):64-78.
    [11] WANG D M.The Magnetic Levitation of the Projectiles in Coilguns.IEEE Trans on MAG,1997,33(1):195-200.
    [12] CHERENSHCHIKOV S A.Secondary Emission Magnetron Injection Gun in Long Pulse Mode[J]. Proceeding of the 1999 Particle Accelerator Conference, New York,1999:1973-1975.
    [13] DERSAD C.A Review of U.S.Patents in Electromagnetic Launch Technology[J].IEEE Trans.on MAG,2001,37(1):493-498.
    [14] LI J,ZOU J Y,WANG Y.Overview of the Electric Launch Technology Program in China[J].IEEE Trans.on MAG,2007,37(1):37-38.
    [15]李立毅,李小鹏.电磁发射的历史及发展趋势.微电机,2004,37(1):41-44.
    [16] VOLODYR T.Review of the Recent Work of Ukrainian Authors in the Field of Electromagnetic Acceleration and Related Topics[J].IEEE Trans.on MAG,2001,37(1):16-24.
    [17] HARRY D F.The Science and Technology of Electric Launch[J].IEEE Trans.on MAG,2001,37 (1):25-32.
    [18] DAVID C H , MICHAEL A F . UK Electric Gun National Overview[J]. IEEE Trans.on MAG,2001,37(1):33-35.
    [19] RONALD J K . Applications of Coilgun Electromagnetic Propulsion Technology[J].IEEE Trans.on Plasma Science,2002,703-707.
    [20]杨世荣,王莹,徐海荣等.电磁发射器的原理与应用[J].物理.2003,第04期:253-256.
    [21] LIAO M,ZABAR Z,CZAKOWSKI D.IEEE TRANSACTIONS ON MAGNETICS,VOL,35,NO.1,JANURY 1999.
    [22] WERNER G..Improved Dc linearmotor[J].Proc.ICEM,Lausanne,1991,3(3):1057-1059.
    [23] LAITHWAITE E R . Linear induction motors-a new species takes root[J]. IEEE lectron &Power,1986,1(1):335-359.
    [24] WERNER G.Improved Dc linear motor.Proc.ICEM,Lausanne,1991,3(3):865-926.
    [25]胡敏强.大型汽轮发电机进相运行时段部涡流场和温度场的研究[D].华中理工大学博士论文,1999:45-60.
    [26]梁红玉.关于2-D温度场计算的有限元分析.华北工学院学报[J],2000,21(1):34-52.
    [27]邓建国.单相串励电动机电枢瞬态温度场的分析和计算[J].湖南大学学报,1998,25(1):31-53.
    [28]叶烛,胡敏强,杨正林.直线感应电动机的性能检测[J].微特电机,1992,(3):56-58.
    [29] CHAN C C.Analysis of Electron Agnetic and Thermal Field for Induction Motors During Straring[J].IEEE Trans.on EC,1994,9(1):53-60.
    [30]高景德.电机过渡过程的基本理论及分析方法[M].科学出版社,1982:55-131.
    [31]梁红玉.关于2-D温度场计算的有限元分析.华北工学院学报[J],2000,22(1):15-29.
    [32]倪栋,段进,徐久成.通用有限元分析ANSYS7.0实例精解[M].北京:电子工业出版社,2003:56-110.
    [33]林莘,刘志刚.ICCG算法在罐式高压断路器三维电场有限元计算中的应用[J].中国电机工程学报,2001,21(1):37-53.
    [34]张稼丰.庄心复.用网络拓扑法在瞬态温度场计算中的应用[J].南京航空学院学报,2000,22(1):31-43.
    [35]邓建国.单相串励电动机电枢瞬态温度场的分析和计算[J].湖南大学学报,1998,25(6):21-53.
    [36]邓建国.用网络拓扑法计算同步发电机定子温度场[J].中小型电机.2000,25(4):56-74.
    [37] JOKINEN T,SARRI J.Model of the coolant flow with heat flow controlled temperature sources in the thermal network[J],IEE,Proc.Electr Power Appl,1999,1144(7):1231-1253.
    [38] LEE Y S,HAHN S.Thermal anslysis of induction motor with forced cooling channels[J],IEEE Trans.on MAG,2000,36(4):731-863.
    [39] SMITH A N,ELLIS R L,BERNARDES J S.Thermal Management and Resistive Rail Heating of a Large-Scale Naval Electromagnetic Launcher. IEEE TRANSACTIONS ON MAGNETICS,VOL. 41, NO.1,JANUARY 2005:235-240.
    [40]丁文,周会军,鱼振民.基于ANSYS的开关磁阻电机温度场分析.微电机,2005,38(5):13-15.
    [41] STELEN L.Wipf[J].IEEE Trans.on MAG,1982,18(1):121-145.
    [42]丁文,周会军,鱼振民.基于ANSYS的开关磁阻电机温度场分析.微电机,2005,38(5):13-15.
    [43] HARRY D F.The Science and Technology of Electric Launch[J].IEEE Trans.on MAG,2001,37(1):25-32.
    [44]张国智,胡仁喜,陈继刚等.ANSYS10.0热力学有限元分析实例指导教程[M].机械工业出版社,2007:122-178.
    [45] SEOG W K,HYUN K J,HAHN S Y.An Optimal Design of Capacitor-Driven Coilgun[J].IEEE Trans.on MAG,1994,30(2):207-211.
    [46]杨世铭.传热学[M].北京:高等教育出版社,1987:227-281.
    [47] CARSLAW H S,JAEGER J C.Conduction of Heat in Solids ,Clarendon press [J]. OXFORD,1990,30(2):27-41.
    [48]陈世坤.电机设计[M].北京:机械工业出版社,1982:122-129.
    [49] PENLNAN J.The Performance of Solid Steel Secondary Linear Induction [J].IEEE Trans.PAS, 1991,100(6): 245-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700