多形貌银纳米粒子的化学法制备及其在荧光增强中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料所取得的进步证明了其在合成化学和材料科学领域有着巨大的发展前景,尤其是金属纳米材料所具有的特殊物理和化学性质使其在光学、光电、传感技术及生物检验等诸多领域都具有广泛的应用前景。这些性能与纳米粒子的尺寸和形貌密切相关,因此,可通过调节纳米粒子的尺寸、维度、组成及形貌实现对材料性能的控制,最终实现功能性纳米器件的设计与合成。虽然纳米材料的制备方法日益多样化,但在纳米材料的可控制备方面所取得的成就仍非常有限,因而得到科研工作者越来越多的关注。基于目前金属Ag纳米粒子的国内外研究现状,本论文利用化学液相法可控制备了多形貌金属Ag纳米粒子,并得到了一些新颖的Ag纳米结构,以图探索出一种简易的、金属纳米粒子形貌可控的合成路线,同时尝试性地将所制备的Ag纳米粒子应用于金属增强荧光(MEF)。本论文的主要研究成果包括以下几个方面:
     1、利用晶种法在溶液中和玻璃表面制备三角形Ag纳米粒子。溶液中粒子的边长为50±5nm,厚度为27±4nm,在透射电镜(TEM)和原子力显微镜(AFM)测试中粒子存在不同的优先投影面;提出晶种溶液的最佳制备温度为35℃;在玻璃表面可得到产量较高的类三角形纳米粒子;利用表面晶面淘汰机理解释了三角形纳米粒子的形成,认为是十六烷基三甲基溴化铵(CTAB)对晶面生长速率进行修饰的结果。
     2、以钛酸丁酯(TBT)和乙酰丙酮(AcAc)螯合而成的网络结构为软模板制备锯齿状Ag纳米线和皂荚形貌Ag纳米粒子。锯齿状纳米线的直径为20±5nm,长度达600 nm,角度变化范围为74~151°;锯齿状纳米线是由首尾相连的纳米棒发育而成,纳米棒连接处的晶界优先吸附Ag原子而逐渐发育完整;将反应温度提高为150℃,反应时间减少为6h,产物为规则皂荚形貌的Ag纳米粒子,其尺寸为60~70 nm。
     3、利用溶剂热法,在聚乙烯吡咯烷酮(PVP)存在下,以N,N二甲基甲酰胺(DMF)为溶剂和还原剂,通过工艺参数的调控,可实现单分散三角形/六边形纳米片、链状纳米片聚集体和纳米带多形貌Ag纳米粒子的可控制备。PVP与Ag~+之间的键合作用,可降低DMF还原AgNO_3的反应速率,有利于形成具有高比表面能的纳米片,AgNO_3与PVP的比例是决定纳米片外形的关键;新颖链状Ag纳米片聚集体的生长可利用晶体二次生长来解释;在链状纳米片聚集体形成后继续处理7h,产物形貌将转变为长径比均匀的一维Ag纳米带,其直径为40~100nm,长度可达几微米,甚至十几微米。
     4、以溶剂热法制备的多形貌Ag纳米粒子为研究对象,研究Ag纳米粒子和Ag纳米薄膜对染料罗丹明B荧光性能的影响。在Ag纳米粒子存在下,罗丹明B的荧光强度得到显著增强,可部分消除荧光自猝灭效应;随着Ag纳米粒子浓度的增加,染料的荧光强度先增加,当达到最大值后,逐渐降低;相对于三角形Ag纳米片、六边形Ag纳米片和链状Ag纳米片聚集体,Ag纳米带可实现对罗丹明B荧光的相对最大增强;Ag纳米薄膜的存在也可实现对罗丹明B荧光信号的放大,且发射强度较Ag纳米粒子存在时要大。
The progress of nanomaterials suggests its great potential foreground in the fields of synthetic chemistry and materials science,especially for metal nanoparticles with unique chemical and physical properties,which have extensive applications in optics,optoelectronics,sensor and bioassays.Their properties are strongly depended on the size and shape of metal nanoparticles.Therefore,it is believed that property-controllable metal nanoparticles will be conveniently produced by tuning their sizes,dimensionalities,compositions and morphologies,and expected to be fabricated into functional nanodevices.Although there have been a lot of reports on the synthesis of nanomaterials,the shape-controllable synthesis is still a challenge for materials and chemistry researchers.Based on the development of metallic silver nanoparticles in the world,this dissertation presents a facile chemical solution-method to prepare silver nanoparticles with various morphologies and obtain novel silver nanostructures.This dissertation also investigates application of silver nanoparticles in metal-enhanced fluorescence(MEF).The main results and conclusions of this dissertation are outlined as follows:
     Chapter 2 presents a seed-mediated method to synthesize triangular silver nanoparticles in solution and on the glass.The nanoparticles synthesized in solution showed size of 50±5 nm and thickness of 27±4 nm.They exhibited different morphologies in transmission electron microscopy(TEM)and atomic force microscopy(AFM),respectively.The most suitable temperature for preparation of seed solution was 35℃.Triangle-like silver nanoparticles could also be obtained on the glass by the seed-mediated method.The formation of the triangular nanoparticles was due to the modification in growth rates of crystalline planes by CTAB.
     Chapter 3 demonstrates a soft template method to prepare zigzag silver nanowires and gleditschia horrida-like silver nanoparticles.Zigzag nanowires showed uniform diameter of 20±5 nm,length of 600 nm and angles range of 74~151°.These nanowires with interesting shape were developed from end-to-end nanorods,and the interface could be observed between two nanorods.With the reaction time extended, the interface gradually disappeared,and zigzag nanowires finally formed.If the reaction temperature was elevated to 150℃and time was reduced to 6 h,the gleditschia horrida-like nanoparticles with size of 60~70 nm could be obtained.
     In Chapter 4,we demonstrate a solvothermal route to the shape-controllable synthesis of mono-dispersed triangular/hexagonal silver nanoplates,chain-like silver nanoplate assemblies and silver nanobelts in the presence of PVP,using DMF as solvent and reducing reagent.The strong interaction between PVP and Ag~+ ions could be favorable for slowing down the reaction of DMF and AgNO_3.A slow and moderate reduction rate was advantageous for the formation of the nanoplates at higher yields,and the outline of silver nanoplates was determined by the ratio between AgNO_3 and PVP.The formation of novel chain-like nanoplate assemblies could be explained according to the secondary growth of the nanocrystals.If the reaction was continuously lasted for 7 h after the chain-like assemblies shaped, belt-like nanostructures with uniform aspect ratio could be obtained,showing diameter of 40~100 nm and length of several,even tens of micrometers.
     In Chapter 5,we investigate the effects of silver nanoparticles and silver nanoparticles coated-films on the fluorescent properties of dye Rhodamine B.Silver nanoparticles could largely enhance the fluorescence intensity of Rhodamine B and partially release its self-quenching effect.With the increase in the concentration of silver nanoparticles,the fluorescence intensity of Rhodamine B firstly enhanced up to a maximum,and then decreased.Among triangular nanoplates,hexagonal nanoplates, chain-like nanoplate assemblies and nanobelts,the maximal fluorescence enhancement of Rhodamine B solution could be obtained in the presence of silver nanobelts.The fluorescence intensity of Rhodamine B could also be enhanced in the presence of silver nanoparticles coated-films,and dye could exhibit higher emission intensity than that in the presence of silver nanoparticles.
引文
[1]张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001.
    [2]白春礼,纳米科学与技术,云南:云南科技出版社,1999.
    [3]朱静,纳米材料与器件,北京:清华大学出版社,2003.
    [4]Y.Wang,W.Mahler,Degenerate four-wave mixing of CdS/polymer composite[J].Opt.Commun.,1987,61(3):233-236.
    [5]E.Hilinski,P.Lucas,Y.Wang,A picosecond bleaching study of quantum-confined cadmium sulfide microcrystallites in polymer film[J].J.Chem.Phys.,1988,89(6):3435-3441.
    [6]S.Auer,D.Frenkel,Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy[J].Nature,2001,413:711-713.
    [7]W.P.Halperin,Quantum size effects in metalparticles[J].Rev.Modern Phys.,1986,58(3):533-606.
    [8]A.Henglein,Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles[J].Chem.Rev.,1989,89:1861-1873.
    [9]T.Matsumoto,J.Suzuki,M.Ohnuma,et al.Direct evidence of quantum size effect in nanocrystalline silicon[J].Phys.Rev.B,2001,63:195322(1)-195322(5).
    [10]L.E.Brus,Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronic state[J].J.Chem.Phys.,1984,80(9):4403-4409.
    [11]B.Barbara,W.Wernsdorfer,TI quantum tunneling effect in magnetic particles SO[J].Curr.Opin.Solid State Mater.Sci.,1997,2:220-225.
    [12]刘恒权,银、金纳米材料的光化学、化学和电化学制备与表征:[博士学位论文].天津:天津大学,2003.
    [13]董文钧,低维纳米材料的化学控制合成及组装:[博士学位论文].长春:吉林大学,2004.
    [14]周民,贵金属纳米粒子的可控合成与表征:[博士学位论文].济南:山东大学,2006.
    [15]C.Burda,X.Chen,R.Narayanan,et al.Chemistry and properties of nanocrystals of different shapes[J].Chem.Rev.,2005,105:1025-1102.
    [16]N.R.Jana,L.Gearheart.C.J.Murphy,Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J].Chem.Commun.,2001:617-618.
    [17]F.K.Liu,P.W.Huang,Y.C.Chang,Formation of silver nanorods by microwave heating in the presence of gold seeds[J].J.Cryst.Growth,2005,273:439-445.
    [18] M. Tsuji, K. Matsumoto, N. Miyamae, et al. Rapid preparation of silver nanorods and nanowires by a microwave-polyol method in the presence of Pt catalyst and polyvinylpyrrolidone [J]. Cryst. Growth Des., 2007, 7(2): 311-320.
    
    [19] S. H. Chen, Z. Y. Fan, D. L. Carroll, Silver nanodisks: synthesis, characterization and self-assembly [J]. J. Phys. Chem. B, 2002, 106(42): 10777-10781.
    
    [20] M. Maillard, P. Huang, L. Brus, Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+] [J]. Nano. Lett., 2003, 3:1611-1615.
    
    [21] Y. G. Sun, Y. N. Xia, Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold [J]. Adv. Mater., 2003, 15(9): 695-699.
    
    [22] V. M. Cepak, C. R. Martin, Preparation and Stability of Template-Synthesized Metal Nanorod Sols in Organic Solvents [J]. J. Phys. Chem. B, 1998, 102: 9985-9990.
    
    [23] J. K. N. Mbindyo, T. E. Mallouk, J. B. Mattzela, et al. Template synthesis of metal Nanowires containing monolayer molecular junctions [J]. J. Am. Chem. Soc., 2002, 124(15): 4020-4026.
    
    [24] R. J. Tonucci, B. L. Justus, A. J. Campillo, et al. Nanochannel array glass [J]. Science, 1992, 258: 783-785.
    
    [25] Y. Wang, N. Herron, Photoluminescence and relaxation dynamics of cadmium sulfide superclusters in zeolites [J]. J. Phys. Chem., 1988, 92: 4988-4994.
    
    [26] O. Jessensky, F. Muller, U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina [J]. Appl. Phys. Lett., 1998, 72(10): 1173-1175.
    
    [27] X. Y. Zhang, L. D. Zhang, W. Chen, et al. Electrochemical fabrication of highly ordered semiconductor and metallic arrays [J]. Chem. Mater., 2001. 13: 2511-2515.
    
    [28] R. L. Zong, J. Zhou, Q. Li, et al. Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina Membrane [J]. J. Phys. Chem. B, 2004, 108: 16713-16716.
    
    [29] M. S. Sander, R. Gronsky, T. Sands, et al. Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates [J]. Chem. Mater., 2003, 15: 335-339.
    
    [30] Y. Zhang, H. Dai, Formation of metal nanowires on suspended single-walled carbon nanotubes [J]. Appl. Phys. Lett, 2000, 77(19): 3015-3017.
    
    [31] M. Wu, J. Long, A. Huang, et al. Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles [J]. Langmuir, 1999, 15(26): 8822-8825.
    
    [32] V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt [J]. Science, 2001, 291: 2115-2117.
    [33]H.C.Lee,H.J.Kim,S.H.Chung,et al.Synthesis of unidirectional alumina nanostructures without added organic solvents[J].J.Am.Chem.Soc.,2003,125:2882-2883.
    [34]H.T.Shi,L.M.Qi,J.M.Ma,et al.Polymer-directed synthesis of penniform BaWO_4nanostructures in reverse micelles[J].J.Am.Chem.Soc.,2003,125:3450-3451.
    [35]G.Wei,H.Zhou,Z.Liu,et al.One-step synthesis of silver nanoparticles,nanorods,and nanowires on the surface of DNA network[J].J.Phy.Chem.B,2005,109:8738-8743.
    [36]S.Bhattacharyya,S.K.Saha,D.Chakravoyty,Silver nanowires grown in the pores of a silica gel[J].Appl.Phys.Lett.,2000,77(23):3770-3772.
    [37]Y.J.Han,J.M.Kim,G.D.Stucky,Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15[J].Chem.Mater.,2000,12:2068-2069.
    [38]E.Hosono,S.Fujihara,K.Kakiuchi,et al.Growth of submicrometer-scale rectangular parallelepiped rutile TiO_2 films in aqueous TiCl_3 solutions under hydrothermal conditions[J].J.Am.Chem.Soc.,2004,126:7790-7791.
    [39]韦志仁,葛世艳,董国义,等,水热法合成氧化锌晶体形貌特征.功能材料(增刊),2004,35:315-318.
    [40]Y.S.Fu,X.W.Du,J.Sun,et al.Single-crystal ZnO cup based on hydrothermal decomposition route[J].J.Phys.Chem.C,2007,111:3863-3867.
    [41]M.A.Cortes-Jacome,J.A.Toledo,C.Angeles-Chavez,Influence of synthesis methods on tungsten dispersion,structural deformation,and surface acidity in binary WO_3-ZrO_2 System [J].J.Phys.Chem.B,2005,109:22730-22739.
    [42]P.K.Dutta,J.R.Gregg,Hydrothermal synthesis of tetragonal barium titanate[J].Chem.Mater.,1992,4:843-846.
    [43]Y.Wang,H.Xu,X.Wang,et al.A general approach to porous crystalline TiO_2,SrTiO_3,and BaTiO_3 spheres[J].J.Phys.Chem.B,2006,110:13835-13840.
    [44]G.Y.Chen,B.Deng,G.B.Cai,et al.The fractal splitting growth of Sb_2S_3 and Sb_2Se_3hierarchical nanostructures[J].J.Phys.Chem.C,2008,112:672-679.
    [45]Y.Luo,G.Duan,M.Ye,et al.Poly(ethylene glycol)-mediated synthesis of hollow ZnS microspheres[J].J.Phys.Chem.C,2008,112:2349-2352.
    [46]F.Zuo,S.Yan,B.Zhang,et al.L-cysteine-assisted synthesis of PbS nanocube-based pagoda-like hierarchical architectures[J].J.Phys.Chem.C,2008,112:2831-2835.
    [47]G.Xie,Z.P.Qiao,M.H.Zeng,et al.A single-source approach to Bi_2S_3 and Sb_2S_3 nanorods via a hydrothermal treatment[J].Cryst.Growth Des.,2004,4(3):513-516.
    [48]G.T.Zhou,X.Wang,J.C.Yu,A low-temperature and mild solvothermal Route to the synthesis of wurtzite-type ZnS with single-crystalline nanoplate-like morphology[J].Cryst.Growth Des.,2005,5(5):1761-1765.
    [49]S.Biswas,S.Kar,S.Chaudhuri,et al.Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process[J].J.Phys.Chem.B,2005,109(37):17526-17530.
    [50]裴立宅,唐元洪,郭池,等,水热法及溶剂热合成法制备Ⅳ族一维无机纳米材料.稀有金属,2005,29(2):194-199.
    [51]L.Grocholl,J.Wang,E.G.Gillan,Solvothermal azide decomposition route to GaN nanoparticles,nanorods,and faceted Crystallites[J].Chem.Mater.,2001,13(11):4290-4296.
    [52]Y.Zheng,Y.Cheng,Y.Wang,et al.Metastable γ-MnS hierarchical architectures:synthesis,characterization,and growth mechanism[J].J.Phys.Chem.B,2006,110(16):8284-8288.
    [53]A.Datta,S.Gorai,S.K.Panda,et al.A simple route to the synthesis of crystalline InS nanowires from Indium foil[J].Cryst.Growth Des.,2006,6(4):1010-1013.
    [54]G.Demazeau,Solvothermal processes:a route to the stabilization of new materials[J].J.Mater.Chem.,1999,9(1):15-18.
    [55]E.Stathatos,P.Lianos,Photocatalytically deposited silver nanoparticles on mesoporous TiO_2films[J].Langmuir,2000,16:2398-2400.
    [56]A.Dawson,P.V.Kamat,Semiconductor metal nanocomposites:photoinduced fusion and photocatalysis of Gold-aapped TiO_2(TiO_2/Gold)nanoparticles[J].J.Phys.Chem.B,2001,105:960-966.
    [57]K.Kawano,M.Komatsu,Y.Yajima,et al.Photoreduction of Ag ion on ZnO single crystal[J].Appl.Surf.Science,2002,189:265-270.
    [58]C.Pacholski,A.Kornowski,H.Weller,Site-specific photodeposition of silver on ZnO nanorods[J].Angew.Chem.2004,116:4878-4881.
    [59]Y.Tak,K.Yong,A novel heterostructure of Co_3O_4/ZnO nanowire array fabricated by photochemical coating method[J].J.Phys.Chem.C,2008,112:74-79.
    [60]黄华,吴世法,纳米银胶的光化学制备及其特性研究.光子学报,2005,34(11):1643-1646.
    [61]J.Zhu,Y.Shen,A.Xie,et al.Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid[J].J.Phys.Chem.C,2007,111:7629-7633.
    [62]M.Maillard,P.Huang,L.Brus,Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed[Ag~+][J].Nano.Lett.,2003,3(11):1611-1615.
    [63]F.Kim,J.H.Song,P.D.Yang,Photochemical synthesis of gold nanorods[J].J.Am.Chem.Soc.,2002,124:14316-14317.
    [64]R.Jin,Y.Cao,C.A.Mirkin,et al.Photoinduced conversion of silver nanospheres to nanoprisms[J].Science,2001,294(30):1901-1903.
    [65]K.Sollner,Ultrasonic waves in colloid chemistry[J].J.Phys.Chem.,1938,42(8):1071-1078.
    [66]侯烨,超声辅助制备纳米级Cu_2(OH)PO_4:[硕士学位论文].长春:东北师范大学,2005.
    [67]郑懿熠,超声化学法合成纳米Bi_2Te_3基热电化合物:[硕士学位论文].杭州:浙江大学,2006.
    [68]K.S.Susilck,Seok-Burm Choe,A.A.Cichowlas,et al.Sonochemical sythesis of amorphous iron[J].Nature,1991,353:414-420.
    [69]Y.T.Didenko,W.B.McNamara,K.S.Susilck,Hot spot conditions during cavitation in water [J].J.Am.Chem.Soc.,1999,121:5817-5818.
    [70]K.S.Susilck,G.J.Price,Applications of ultrasound to materials chemistry[J].Annu.Rev.Mater.Sci.,1999,29:295-326.
    [71]V.G.Pol,A.Gedanken,J.Calderon-Moreno,Deposition of gold nanoparticles on silica spheres:a sonochemical approach[J].Chem.Mater.,2003,15:1111-1118.
    [72]L.P.Jiang,S.Xu,J.M.Zhu,et al.Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings[J].Inorg.Chem.,2004,43:5877-5883.
    [73]F.Tao,Z.Wang,D.Chen,et al.Synthesis of silver dendritic hierarchical structures and transformation into silver nanobelts through an ultrasonic process[J].Nanotechnology,2007,18:295602(6pp).
    [74]J.Zhang,B.Han,M,Liu,et al.Ultrasonication-induced formation of silver nanofibers in reverse micelles and small-angle X-ray scattering studies[J].J.Phys.Chem.B,2003,107:3679-3683.
    [75]邵丽,王西奎,国伟林,等,超声化学法制备树枝状纳米银的研究.无机化学学报,2007,23(10):1824-1828.
    [76]N.A.Dhas,C.P.Raj,A.Gadanken,Syntheis,characterization,and properties of metallic copper nanoparticles[J].Chem.Mater.,1998,10:1446-1452.
    [77]邱晓峰,朱俊杰,超声化学制备单分散金属纳米钯.无机化学学报,2003,19(7):766-770.
    [78]R.D.Rutledge,W.H.Morris,M.S.Wellons,et al.Formation of FePt nanoparticles having high coercivity[J].J.Am.Chem.Soc.,2006,128:14210-14211.
    [79]王成佐,李辉,陈诵英,等,超声辅助化学还原法制备高活性Co-B非晶态合金催化剂.分子催化,2007,21(3):205-208.
    [80]刘东亮,邓建国,金永中,超声化学法合成纳米γ-氧化铝粉末.陶瓷,2006,7:22-25.
    [81]C.Wang,H.Zhang,J.Zhang,et al.Application of ultrasonic irradiation in aqueous synthesis of highly fluorescent CdTe/CdS core shell nanocrystals[J].J.Phys.Chem.C,2007,111:2465-2469.
    [82]S.E.Skrabalak,K.S.Sulick,Porous MoS_2 synthesized by ultrasonic spray pyrolysis[J].J.Am.Chem.Soc.,2005,127:9990-9991.
    [83]B.Li,Y.Xie,J.Huang,et al.Sonochemical sythesis of nanocrystalline copper tellurides Cu7Te_4and Cu_4Te_3 at room temperature[J].Chem.Mater.,2000,12:2614-2616.
    [84]李红生,雷天民,冯谦,等,超声辅助液相合成多晶SnS纳米粉.人工晶体学报,2005.34(2):319-322.
    [85]陈志强,朱健民,黄石松,等,超声化学水热法制备CdSe亚微米球的TEM观察.电子显微学报,2002,21(5):619-620.
    [86]邹凯,张晓宏,吴世康,等,光化学法合成银纳米线及其形成机理的研究.化学学报,2004.62(18):1771-1774.
    [87]W.P.Halperin,Quantum size effects in metal particles[J].Rev.Mod.Phys.,1986,58:533-606.
    [88]A.C.Templeton,W.P.Wuelfing,R.W.Murray,Monolayer-protected cluster molecules[J].Acc.Chem.Res.,2000,33(1):27-36.
    [89]M.A.El-Sayed,Some interesting properties of metal confined in time and nanometer space of different shapes[J].Acc.Chem.Res.,2001,34(4):257-264.
    [90]J.P.Xie,J.Y.Lee,D.I.C.Wang,et al.Silver nanoplates:from biological to biomimetic synthesis[J].ACS Nano.,2007,1(5):429-439.
    [91]L.N.Lewis,Chemical catalysis by colloids and clusters[J].Chem.Rev.,1993,93(8):2693-2730.
    [92]J.Zhang,I.Gryczynski,Z.Gryczynski,et al.Dye-labeled silver nanoshell-bright particles[J].J.Phys.Chem.B,2006,110:8986-8991.
    [93]S.A.Maier,M.L.Brongersma,P.G.Kilk,et al.Plasmonics-a route to nanoscale optical devices[J].Adv.Mater.,2001,13:1501-1505.
    [94]P.V.Kamat,Photophysical,photochemical and photocatalytic aspects of metal nanoparticles [J].J.Phys.Chem.B,2002,106:7729-7744.
    [95]C.B.Murray,S.Sun,H.Doyle,et al.Monodisperse 3d Transition-metal(Co,Ni,Fe)nanoparticles and their assembly into nanoparticle superlattices[J].Mater.Res.Soc.Bull.,2001,26:985-991.
    [96]Y.Yang,S.Matsubara,L.M.Xiong et al.,Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties[J].J.Phys.Chem.C,2007,111:9095-9104.
    [97]K.Aslan,Z.Leonenko,J.R.Lakowicz et al.Annealed silver-island films for applications in metal-enhanced fluorescence:interpretation in terms of radiating plasmons[J].J.Fluores.,2005,15:643-654.
    [98]G.J.Lee,Seung-Il Shin,Young-Chai Kim,et al.Preparation of silver nanorods through the control of temperature and pH of reaction medium[J].Mater.Sci.Phys.,2004,84:197-204.
    [99] S. S. Chang, C. W. Shih, C. D. Chen, et al. The shape transition of gold nanorods [J]. Langmuir, 1999, 15:701-709.
    [100] I. Pastoriza-Santos, L. M. Liz-Marzan, Synthesis of silver nanoprisms in DMF [J]. Nano. Lett., 2002, 2(8): 903-905.
    
    [101] I. Balint, A. Miyazaki, Ken-ichi. Aika, NO reduction by CH_4 over well-structured Pt nanocrystals supported on y-Al_2O_3 [J]. Appl. Catal. B, 2002, 37: 217-229.
    
    [102] S. Green1, A. Cortes, G. Riveros, et al. Optical properties of copper and silver nanowires grown in a nanoporous alumina template [J]. Phys. Stat. Sol., 2007, 4: 340-343.
    
    [103] S. W. Liu, R. J. Wehmschulte, G. D. Lian, et al. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin [J]. J. Solid State Chem., 2006, 179:696-701.
    
    [104] P. V. Adhyapaka, P. Karandikarb, K. Vijayamohananb, et al. Synthesis of silver nanowires inside mesoporous MCM-41 host [J]. Mater. Lett., 2004)58: 1168-1171.
    
    [105] C. J. Murphy, N. R. Jana, Controlling the aspect ratio of inorganic nanorods and nanowires [J]. Adv. Mater., 2002, 14(1): 80-82.
    
    [106] N. R. Jana, L. Gearheart, C. J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. J. Phys. Chem. B, 2001, 105: 4065-4067.
    
    [107] N. R. Jana, L. Gearheart, C. J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template [J]. Adv. Mater., 2001, 13(18): 1389-1393.
    
    [108] F. Liu, P. Huang, Y. Chang, et al. Formation of silver nanorods by microwave heating in the presence of gold seeds [J]. J. Cryst. Growth, 2005, 273: 439-445.
    
    [109] Y. G. Sun, B. Gates, B. T. Mayers, et al. Crystalline silver nanowires by soft solution processing [J]. Nano. Lett., 2002, 2: 165-168.
    
    [110] Y. G. Sun, Y. D. Yin, B. T. Mayers, et al. Uniform silver nanowires synthesis by reducing AgNO_3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone) [J]. Chem. Mater., 2002, 14: 4736-4745.
    
    [111] Y. Gao, P. Jiang, D. F. Liu, Synthesis, characterization and self-assembly of silver nanowires [J]. Chem. Phys. Lett., 2003, 380: 146-149.
    
    [112] Y. G. Sun, B. Mayers, T. Herricks, et al. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence [J]. Nano Lett., 2003, 3: 955-960.
    
    [113] Z. H. Wang, X. Y. Chen, J. W. Liu, et al. Glucose reduction route synthesis of uniform silver nanowires in large-scale [J]. Chem Lett., 2004, 33: 1160-1161.
    
    [114] X. W. Zheng, L. Y. Zhu, A. H. Yan, et al. Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions [J]. J. Colloid Interf. Sci., 2003, 268: 357-361.
    [115] K. K. Caswell, C. M. Bender, C. J. Murphy, Seedless, surfactantless wet chemical synthesis of silver Nanowires [J]. Nano. Lett., 2003, 3(5): 667-669.
    [116] Q. T. Zhao, J. R. Qiu, C. J. Zhao, et al. Synthesis and formation mechanism of silver nanowires by a templateless and seedless method [J]. Chem. Lett., 2005, 34: 30-31.
    [117] X. M. Sun, Y. D. Li, Cylinderical silver nanowires: preparation, structure, and optical properties [J]. Adv. Mater., 2005, 17: 2626-2630.
    [118] M. Tsuji, K. Matsumoto, N. Miyamae, et al. Rapid preparation of silver nanorods and nanowires by a microwave-polyol method in the presence of Pt catalyst and polyvinylpyrrolidone [J]. Cryst. Growth Des., 2007, 7: 311-320.
    [119] J. J. Zhu, X. H. Liao, X. N. Zhao, et al. Preparation of silver nanorods by electrochemical methods [J]. Mater. Lett., 2001, 49: 91-95.
    [120] J. J. Zhu, S. W. Liu, O. Palchik, et al. Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods [J]. Langmuir, 2000, 16: 6396-6399.
    [121] Y. G. Sun, Y. N. Xia, Multiple-walled nanotubes made of metals [J]. Adv. Mater., 2004, 16: 265-268.
    
    [122] G. D. Wei, C. W. Nan, D. P. Yu, Large-scale self-assembled Ag nanotubes [J]. Tsinghua Science and Technology, 2005, 10(6): 736-740.
    [123] Y. G. Sun, B. Mayers, Y. N. Xia, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process [J]. Nano Lett., 2003, 3: 675-679.
    
    [124] J. W. Bai, Y. Qin, C. Y. Jiang, et al. Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns [J]. Chem. Mater., 2007, 19: 3367-3369.
    
    [125] H. Y. Jia, W. Q. Xu, J. An, et al. A simple method to synthesize triangular silver nanoparticles by light irradiation [J]. Spectrochim. Acta A, 2006, 64: 956-960.
    [126] G. S. Metraux, Y. C. Cao, R. C. Jin, et al. Triangular nanoframes made of gold and silver [J]. Nano Lett., 2003, 3: 519-522.
    
    [127] T. C. R. Rocha, H. Winnischofer, E. Westphal, et al. Formation kinetics of silver triangular nanoplates [J]. J. Phys. Chem. C, 2007, 111: 2885-2891.
    
    [128] A. Sarkar, S. Kapoor, T. Mukherjee, Synthesis of silver nanoprisms in formamide [J]. J. Colloid Interf. Sci., 2005, 287: 496-500.
    
    [129] T.C. Deivaraj, N. L. Lala, J. Y. Lee, et al. Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods [J]. J. Colloid Interf. Sci., 2005, 289: 402-409.
    
    [130] S. H. Chen, D. L. Carroll, Synthesis and characterization of truncated triangular silver nanoplates [J]. Nano. Lett., 2002, 2: 1003-1007.
    [131] L. P. Jiang, S. Xu, J. M. Zhu, et al. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings [J]. Inorg. Chem., 2004, 43: 5877-5883.
    
    [132] N. N. Mallikarjuna, R. S. Varma, Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties [J]. Cryst. Growth Des., 2007, 7: 686-690.
    
    [133] J. H. Yang, L. H. Lu, H. S. Wang, et al. Glycyl glycine templating synthesis of single-crystal silver nanoplates [J]. Cryst. Growth Des., 2006, 6: 2155-2158.
    
    [134] A. J. Haes, J. Zhao, S. L. Zou, et al. Solution-phase, triangular Ag nanotriangles fabricated by nanosphere lithography [J]. J. Phys. Chem. B, 2005, 109: 11158-11162.
    
    [135] Y. B. Chen, L. Chen, L. M. Wu, Structure-controlled solventless thermolytic synthesis of uniform silver nanodisks [J]. Inorg. Chem., 2005, 44: 9817-9822.
    
    [136] V. Germain, J. Li, D. Ingert, et al. Stacking faults in formation of silver nanodisks [J]. J. Phys. Chem. B, 2003, 107: 8717-8720.
    
    [137] Y. G. Sun, Y. N. Xia, Shape-controlled synthesis of gold and silver nanoparticles [J]. Science, 2002,298:2176-2179.
    
    [138] D. B. Yu, V. W. W. Yam, Controlled synthesis of monodisperse silver nanocubes in water [J]. J. Am. Chem. Soc., 2004, 126: 13200-13201.
    
    [139] Y. Gao, P. Jiang, L. Song, et al. Studies on silver nanodecahedrons synthesized by PVP-assisted N, N-dimethylformamide (DMF) reduction [J]. J. Cryst. Growth, 2006, 289: 376-380.
    
    [140] B. J. Wiley, Y. J. Xiong, Z. Y. Li, et al. Right bipyramids of silver: a new shape derived from single twinned seeds [J]. Nano. Lett., 2006, 6: 765-768.
    
    [141] K. L. Kelly, E. Coronado, L. L. Zhao, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment [J]. J. Phys. Chem. B, 2003, 107: 668-677.
    
    [142] C. Burda, X. B. Chen, R. Narayanan, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chem. Rev., 2005, 105: 1025-1102.
    
    [143] J. J. Mock, S. J. Oldenburg, D. R. Smith, et al. Composite plasmon resonant Nanowires [J]. Nano. Lett., 2002, 2(5): 465-469.
    
    [144] B. J. Wiley, S. H. Im, Z. Y. Li, et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis [J]. J. Phys. Chem. B, 2006, 110: 15666-15675.
    
    [145] J. J. Mock, M. Barbic, D. R. Smith, et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles [J]. J. Chem. Phys. 2002, 116: 6755-6759.
    [146] M. Fleischmann, P. J. Hendra, A. J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode [J]. Chem. Phys. Lett., 1974, 26(2): 163-166.
    
    [147] C. Y. Chen, E. Burstein, Giant Raman scattering by molecules at metal-island films [J]. Phys. Rev. Lett., 1980,45(15): 1287-1291.
    
    [148] T. Vo-Dinh, Surface-enhanced Raman spectroscopy using metallic nanostructures [J]. Trends Anal. Chem., 1998, 17(8-9): 557-582.
    
    [149] K. Kneipp, H. Kneipp, I. Itzkan, et al. Surface-enhanced Raman scattering: a new tool for biomedical spectroscopy [J]. Curr. Sci., 1999, 77(7): 915-924.
    
    [150] J. R. Lakowicz, J. Malicka, S. D'Auria, et al. Release of the self-quenching of fluorescence near silver metallic surface [J]. Anal. Biochem., 2003, 320: 13-20.
    
    [151] J. Malicka, I. Gryczynski, J. R. Lakowicz, DNA hybridization assays using metal-enhanced fluorescence [J]. Biochem. Biophys. Res. Commun., 2003, 306: 213-218.
    
    [152] J. R. Lakowicz, I. Gryczynski, J. Malicka, et al. Enhanced and localized multiphoton excited fluorescence near metallic silver islands: metaliic islands can increase probe photostability [J]. J. Fluores., 2002, 12: 299-302.
    
    [153] J. Malicka, I. Gryczynski, J. R. Lakowicz, Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces [J]. Anal. Chem., 2003, 75: 4408-4414.
    
    [154] J. Malicka, I. Gryczynski, J. R. Lakowicz, DNA hybridization assays using metal-enhanced fluorescence [J]. Biochem. Biophys. Res. Commun., 2003, 306: 213-218.
    
    [155] I. Gryczynski, J. Malicka, Y. Shen, et al. Multiphoton excitation of fluorescence near metallic particles: enhanced and localized excitation [J]. J. Phys. Chem. B, 2002, 106: 2191-2195.
    
    [156] I. Gryczynski, J. Malicka, E. Holder, et al. Effects of metallic silver particles on the emission properties of [Ru(bpy))3]~(2+) [J]. Chem. Phys. Lett., 2003, 372: 409-414.
    
    [157] K. Asian, J. R. Lakowicz, H. Szmacinski, et al. Metal-enhanced fluorescence solution-based sensing platform [J]. J. Fluores., 2004, 14: 677-679.
    
    [158] J. R. Lakowicz, Radiative decay engineeing: biophysical and biomedical applications [J]. Anal. Biochem., 2001,298: 1-24.
    
    [159] J. R. Lakowicz, Y. Shen, S. D'Auria, et al. Radiative decay engineering 2: effect of silver island films on fluorescence intensity, lifetime, and resonance energy transfer [J]. Anal. Biochem., 2002, 301: 261-277.
    
    [160] J. R. Lakowicz, Y. Shen, Z. Gryczynski, et al. Intrinsic fluorescence from DNA can be enhanced by metallic particles [J]. Biochem. Biophys. Res. Commun., 2001, 286: 875-879.
    
    [161] K. Sokolov, G. Chamanov, T. M. Cotton, Enhancement of molecular fluorescence near the surface of colloidal metal films [J]. Anal. Chem., 1998, 70: 3898-3905.
    [162]J.Kummerlen,A.Leitner,H.Brunner,et al.Enhanced dye fluorescence over silver island films:analysis of the distance dependence[J].Mol.Phys.,1993,80(5):1031-1046.
    [163]C.D.Geddes,J.R.Lakowicz.Metal-enhanced fluorescence[J].J.Fluoresc.,2002,12(2):121-129.
    [164]J.Malicka,I.Gryczynski,Z.Gryczynski,et al.Effects of fluorophore-to-silver distance on the emission of cyanine dye-labeled oligonuleotides[J].Anal.Biochem.,2003,317:57-66.
    [165]J.R.Lakowicz,C.D.Geddes,I.Gryczynski,et al.Advances in surface-enhanced fluorescence[J].J.Fluoresc.,2004,14:425-441.
    [166]D.A.Weitz,S.Garoff,C.D.Hansen,et al.Fluorescent lifetimes of molecules on silver-island films[J].Opt.Lett.,1982,7(2):89-91.
    [167]陈国珍,黄贤智,许金钩,等,荧光分析法(第二版),北京:科学出版社,1990.
    [168]K.H.Drexhage,Interaction of light with monomolecular dye lasers.North-Holland (Amsterdam):In Progress in Optics(Edited by E.Wolfe).1974,161-232.
    [169]L.Shang,H.J.Chen,S.J.Dong,Electrochemical preparation of silver nanostructure on the planar surface for application in metal-enhanced fluorescence[J].J.Phys.Chem.C,2007,111:10780-10784.
    [170]K.Aslan,C.D.Geddes.Microwave-accelerated metal-enhanced fluorescence(MAMEF):A new platform technology for ultra-fast and ultra-bright assays[J].Anal.Chem.,2005,77:8057-8067.
    [171]K.Aslan,R.Badugu,J.R.Lakowicz,et al.Metal-enhanced fluorescence from plastic substrates[J].J.Fluoresc.,2005,15:99-104.
    [172]K.Aslan,P.Holley,C.D.Geddes.Metal-enhanced fluorescence from silver nanoparticles-deposited polycarbonate substrates[J].J.Mater.Chem.,2006,16:2846-2857.
    [173]C.D.Geddes,A.Parfenov,J.R.Lakowicz,Photodeposition of silver can result in metal-enhanced fluorescence[J].Appl.Spectrosc.,2003,57:526-531.
    [174]J.Zhang,E.Matveeva,I.Gryczynski,et al.Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition[J].J.Phys.Chem.B,2005,109:7969-7975.
    [175]C.D.Geddes,A.Parfenov,D.Roll,et al.Electrochemical and laser deposition of silver for use in metal-enhanced fluorescence[J].Langmuir,2003,19:6236-6241.
    [176]I.Gryczynski,J.Malicka,C.D.Geddes,J.R.Lakowicz.The CFS engineers the intrinsic radiative decay rate of low quantum yield fluorophores[J].J.Fluoresc.,2003,12(1):11-13.
    [177]C.D.Geddes,H.Cao,I.Gryczynski,et al.Metal-enhanced fluorescence(MEF)due to silver colloids on a planar surface:potential applications of indocyanine green to in vivo imaging [J].J.Phy.Chem.A,2003,107:3443-3449.
    [178]J.Lukomska,J.Malicka,I.Gryczynski,et al.Fluorescence enhancements on silver colloid coated surfaces[J].J.Fluoresc.,2004,14:417-423.
    [179]A.Parfenov,I.Gryczynski,J.Malicka,et al.Enhanced fluorescence from fluorophores on fractal silver surfaces[J].J.Phys.Chem.B,2003,107:8829-8833.
    [180]C.D.Geddes,A.Parfenov,D.Roll,et al.Silver fractal-like structures for metal-enhanced fluorescence:Enhanced fluorescence intensities and increased probe photostabilities[J].J.Fluoresc.,2003,13:267-276.
    [181]K.Aslan,Z.Leonenko,J.R.Lakowicz,et al.Fast and slow deposition of silver nanorods on planar surface:application to metal-enhanced fluorescence[J].J.Phys.Chem.B,2005,109,3157-3162.
    [182]K.Aslan,J.R.Lakowicz,C.D.Geddes,Rapid deposition of triangular silver nanoplates on planar surfaces:application to metal-enhanced fluorescence[J].J.Phys.Chem.B,2005,109:6247-6251.
    [183]K.Aslan,M.Wu,J.R.Lakowicz,et al.Metal-enhanced fluorescence solution-based sensing platform 2:fluorescent core-shell Ag@SiO_2 nanoballs[J].J.Fluoresc.,2007,17:127-131.
    [184]庄严,金、银纳米粒子的表面增强光谱研究:[硕士毕业论文],苏州:苏州大学,2005,50-58.
    [185]庄严,周群,李晓伟,董文明,郑军伟,银粒子的表面修饰及荧光表面增强效应,光谱实验室,2005,22:881-884.
    [186]吕凤婷,郑海荣,房喻,表面增强荧光研究进展,化学进展,2007,19:256-266.
    [187]司民真,苗润才,纳米银粒子表面吸附染料分子的荧光增强及荧光猝灭现象,光子学报,1998,27:635-637.
    [188]司民真,武荣国,张鹏翔,染料分子吸附在正、负电性纳米银上的荧光增强及荧光猝灭现象,化学物理学报,2002,15:346-350.
    [189]王悦辉,周济,石士考,纳米银对表面吸附荧光素的荧光增强和荧光猝灭效应及KCl 的荧光猝灭释放效应,无机化学学报,2006,22:1579-1584.
    [190]王悦辉,周济,王婷,纳米银与表面吸附荧光素的荧光性能的影响,光谱学与光谱分析,2007.27:1555-1559.
    [191]T.K.Sau,C.J.Murphy,Seeded high yield synthesis of short Au nanorods in aqueous solution [J].Langmuire,2004,20:414-6420.
    [192]李玲,表面活性剂与纳米技术,北京:化学工业出版社,2004.
    [193]钱逸泰,结晶化学导论,北京:中国科学技术大学出版社,1999.
    [194]Y.Y.Wu,P.D.Yang,Direct Observation of Vapor-Liquid-Solid Nanowire Growth[J].J.Am.Chem.Soc.,2001,123:3165-3166.
    [195]S.W.Chung,J.Y.Yu,J.R.Heath,Silicon nanowire devices[J].Appl.Phys.Lett.,2000,76:2068-2069.
    [196]S.H.Sun,C.B.Murray,D.Weller,et al.Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J].Science,2000,287:1989-1992.
    [197]J.J.Storhoff,R.Elghanian,R.C.Mucic,et al.One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticles probes[J].J.Am.Chem.Soc.,1998,120:1959-1964.
    [198]韩德刚,高盘良,化学动力学基础,北京:北京大学出版社,2001.
    [199]姚连增,晶体生长基础,合肥:中国科学技术大学出版社,1995.
    [200]D.L.Chert,L.Gao,Large-scale growth and end-to-end assembly of silver nanorods by PVP-directed polyol process[J].J.Cryst.Growth,2004,264:216-222.
    [201]P.Jiang,S.Y.Li,S.S.Xie,et al.Machinable long PVP-stabilized silver Nanowires[J].Chem.Eur.J.,2004,10:4817-4821.
    [202]郭可信,叶恒强,吴玉琨,电子衍射图在晶体学中的应用,北京:科学出版社,1983.
    [203]郭可信,叶恒强,高分子辨电子显微学在固体科学中的应用,北京:科学出版社,1985.
    [204]Q.Zhao,J.Qiu,C.Zhao,et al.Synthesis and formation mechanism of silver nanowires by a templateless and seedless method[J].Chem.Lett.,2005,34:30-31.
    [205]H.M.Cheng,J.M.Ma,Z.G.Zhao,et al.Hydrothermal preparation of uniform nanosize rutile and anatase particles[J].Chem.Mater.,1995,7:663-671.
    [206]J.H.Yang,L.H.Lu,H.S.Wang,et al.Glycyl glycine templating synthesis of single-crystal silver nanoplates[J].Cryst.Growth Des.,2006,6:2155-2158.
    [207]S.C.Lyu,Y.Zhang,C.J.Lee,et al.Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method[J].Chem.Mater.,2003,15:3294-3299.
    [208]X.Y.Kong,Y.Ding,Z.L.Wang,Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes[J].J.Phys.Chem.B,2004,108:570-574.
    [209]C.J.Murphy,A.M.Gole,S.E.Hunyadi,et al.One-dimensional colloidal gold and silver nanostructures[J].Inorg.Chem.,2006,45:7544-7554.
    [210]I.Washio,Y.Xiong,Y.Yin,et al.Reduction by the end groups of poly(vinyl pyrrolidone):a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates[J].Adv.Mater.,2006,18:1745-1749.
    [211]X.C.Jiang,Q.H.Zeng,A.B.Yu,Thiol-frozen shape evolution of triangular silver nanoplates [J].Langmuir,2007,23:2218-2223.
    [212]Y.J.Xiong,Y.N.Xia,Shape-controlled synthesis of metal nanostructures:the case of palladium[J].Adv.Mater.,2007,19:3385-3391.
    [213]K.Zou,X.H.Zhang,X.F.Duan,et al.Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation[J].J.Cryst.Growth,2004,273:285-291.
    [214]Z.W.Pan,Z.R.Dai,Z.L.Wang,Nanobelts of semiconducting oxides[J].Science,2001,291:1947-1949.
    [215]J.Q.Hu,Q.Chen,Z.X.Xie,et al.A Simple and effective route for the synthesis of crystalline silver nanorods and Nanowires[J].Adv.Funct.Mater.,2004,14:183-189.
    [216]S.J.Strickler,R.A.Berg,Relationship between absorption and fluorescence lifetime of molecules[J].J.Chem.Phys.,1962,37:814-822.
    [217]P.C.Das,A.Puri,Energy flow and fluorescence near a small metal particle[J].Phys.Rev.B,2002,65:155416(1-8).
    [218]潘多海,苗润才,李秀英,等,SERS活性表面分子荧光增强或猝灭的机制研究,物理学报,1989,38:965-972.
    [219]H.Nabika,S.Deki,Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase[J].J.Phys.Chem.B,2003,107:9161-9164.
    [220]Y.Chen,K.Munechika,D.S.Ginger,Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant singer silver nanoparticles[J].Nano.Lett.,2007,7:690-696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700