镉铅硫化物纳米材料的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化镉(CdS)是典型的Ⅱ-Ⅵ族化合物,是一种宽禁带直接半导体,在太阳能转换、非线性光学、光化学电池和光催化方面具有广泛用途。硫化铅(PbS)是一种重要的半导体材料,其能带间隙为0.41 eV,具有较大的激子波尔半径(18nm),在非线性光学器件、红外探测器、显示装置、发光二极管以及太阳能光伏特电池方面有很好的应用前景。因此CdS、PbS纳米材料的研究具有重要意义。
     分别采用模板法、超声化学法、表面活性剂辅助化学合成法合成了CdS、PbS、CdS/PbS纳米复合材料,利用X射线衍射(XRD)、透射电镜(TEM)、吸收光谱和荧光光谱(PL)等测试手段对纳米材料进行了分析。
     采用前驱物模板-界面反应法,分别合成了CdS纳米空心球-管状结构、PbS纳米空心球、CdS/PbS纳米复合材料。CdS纳米空心球-管状结构的XRD显示,CdS属六面晶系;TEM图片结果表明,CdS纳米结构为空心管状结构;吸收光谱显示,CdS在407 nm处有较明显的激子吸收峰;荧光光谱显示,CdS在470 nm处出现荧光发射峰。PbS纳米空心球属面心立方晶系;在1906 nm处出现激子吸收峰;在1328 nm和1516 nm处出现两个荧光发射峰。CdS/PbS纳米复合材料中的CdS和PbS分别属六面晶系和面心立方晶系;在432 nm、1682 nm、1735 nm处分别出现CdS和PbS的吸收峰;在472 nm、495 nm、1610 nm处分别出现CdS和PbS的荧光发射峰。
     采用超声化学法,分别合成了CdS纳米立方体、PbS纳米立方体和CdS/PbS复合纳米粒子。CdS纳米立方体的XRD图谱显示,CdS属六面晶系;TEM结果表明,CdS纳米结构为立方体结构,边长为10~15 nm;吸收光谱显示,CdS在409 nm处有较明显的激子吸收峰;荧光光谱显示,CdS在525 nm处出现荧光发射峰。PbS纳米立方体属面心立方晶系;边长为40~60 nm;在1728 nm处出现激子吸收峰;在1641 nm处出现荧光发射峰。CdS/PbS复合纳米粒子中的CdS和PbS分别属六面晶系和面心立方晶系;在429 nm、1411 nm、1908 nm处分别出现CdS和PbS的吸收峰;在515 nm、546 nm、1728 nm、1738 nm处分别出现CdS和PbS的荧光发射峰。
     采用阴离子表面活性剂二-(2-乙基己基)琥珀酸酯磺酸钠(AOT)、六偏磷酸钠作为稳定剂,分别合成了两种CdS纳米粒子。AOT稳定的CdS纳米粒子的XRD图谱显示,CdS属六面晶系;TEM图片结果表明,其平均粒径为5~8 nm;吸收光谱显示,在516 nm处有激子吸收峰;荧光光谱显示,CdS纳米粒子在516nm处出现荧光发射峰。六偏磷酸钠稳定的CdS纳米粒子属六面晶系;其平均粒径为2~3 nm;在303 nm处有激子吸收峰;在336 nm处出现荧光发射峰。
     采用表面活性剂聚乙烯吡咯烷酮(PVP)作为稳定剂,合成了PbS纳米棒。XRD图谱显示,PbS属面心立方晶系。TEM图片结果表明,直径约为500nm,长约为11μm的PbS纳米棒。吸收光谱显示,在1731 nm处有激子吸收峰。荧光光谱显示,在1516 nm处出现荧光发射峰。
     采用阴离子表面活性剂硫代乙醇酸作为稳定剂,分别合成了PbS量子点和CdS/PbS杂化量子点。TEM图片结果表明,PbS量子点的平均粒径只有1~2 nm;而CdS/PbS杂化量子点的平均粒径则为2~3 nm。
     将所制得的六偏磷酸钠稳定的CdS纳米粒子、硫代乙醇酸稳定的PbS量子点、硫代乙醇酸稳定的CdS/PbS杂化量子点分别与阿利新蓝(AB)在ITO导电玻璃上进行交替静电自组装,制得纳米粒子/AB薄膜,并将其制成光电池。线性伏安曲线表明,上述光电池在光照条件下,可以产生瞬时电流,分别比没有光照条件下大1.5倍、5倍和2倍左右,其中PbS量子点/AB薄膜光电池在红外区有较明显的光电效应。
Cadmium sulfide(CdS),an intrinsic semiconductor inⅡ-Ⅵgroup with a direct transition band structure,is widely used in the field of solar energy conversion, nonlinear optics,actinochemistry battery and photo catalysis.Lead sulfide(PbS)is an important semiconductor material with a small bandgap(0.41 eV)and large exciton Bohr radius(18 nm).It is promising in the applications in the fields of nonlinear optics,IR detectors,displaying devices,light emitting diode and solar cell.Thus,it is of interest to carry out studies on PbS and CdS nanomaterials.
     Template method,sonochemistry method,surfactant assisted chemical synthesis method were used to prepare CdS,PbS and CdS/PbS composite materials.Some test methods such as XRD,TEM,absorption spectra and PL were used to analyze these nanoparticles.
     CdS hollow sphere-tubular nano-structures,PbS hollow sphere nano-structures and CdS/PbS composite nano-materials were prepared via the source template-interface reaction route.The result of XRD analysis showed that the crystal structures of CdS were hexagonal;the result of TEM observation showed that the CdS samples were hollow sphere-tubular nanostructures;the result of optical absorbance measurement presented that exciton absorption peak of CdS appear at 407 nm;the result of PL measurement showed that fluorescence emission peak of CdS appeared at 470 nm.The crystal structures of PbS were face-centered cubic,the PbS samples were nano-hollow spheres,with exciton absorption peak at 1906 nm and fluorescence emission peaks at 1328 nm and 1516 nm.CdS and PbS of the CdS/PbS composite nano-materials were separately of the structures of hexagonal and face-centered cubic,with exciton absorption peaks at 432 nm,1692 nm and 1735 nm and fluorescence emission peaks at 472 nm,495 nm and 1610 nm.
     Nano-cubic CdS,PbS,and CdS/PbS composite nanoparticles were prepared via sonochemistry method.The result of XRD analysis showed that the crystal structure of CdS was hexagonal;the result of TEM observation showed that cubic structure; the result of optical absorbance measurement presented that exciton absorption peak of CdS appeared at 409 nm;the result of PL measurement showed that fluorescence emission peak of CdS appeared at 525 nm.The crystal structure of PbS was face-centered cubic,with exciton absorption peak at 1728 nm,fluorescence emission peak of PbS appeared at 1641 nm.CdS and PbS of the CdS/PbS composite nano-materials were separately of the structures of hexagonal and face-centered cubic, with exciton absorption peaks at 429 nm,1411 nm and 1908 nm and fluorescence emission peaks at 515 nm,546 nm,1728 nm and 1738 nm.
     CdS nanoparticles were prepared adding anionic surfactant AOT,Na(PO_3)_6 as stabilizer respectively.The result of XRD analysis showed that the crystal structure of CdS was hexagonal.The result of TEM observation showed that the average particle size of CdS nanoparticles was 5~8 nm;the result of optical absorbance measurement presents that exciton absorption peak of CdS nanoparticles appeared at 401 nm;the result of PL measurement showed that fluorescence emission peak of CdS nanoparticles appear at 516 nm.The average particle size of CdS stabilized with Na(PO_3)_6 was 2~3 nm,with exciton absorption peak at 303 nm and fluorescence emission peak at 336 nm.
     PbS nano-rods were prepared by using surfactant PVP as stabilizer.The result of XRD analysis showed that the crystal structure of PbS was face-centered cubic.The result of TEM observation showed that the diameter and the length of the PbS nanorods was about 500 nm and up to 11μm.The result of optical absorbance measurement presented that exciton absorption peak of PbS appeared at 1731 nm. The result of PL measurement showed that fluorescence emission peak of PbS appeared at 1516 nm.
     PbS quantum dots,CdS/PbS hybrid quantum dots were prepared by using anionic surfactant thioglycollate as stabilizer.The result of TEM observation showed that the average particle size of PbS quantum dots was only 1~2 nm;the average particle size of CdS/PbS hybrid quantum dots was only 2~3 nm.
     Through alternate static electric self-assembly method,nanoparticle/Alician Blue 8GX(AB)thin films were plated on ITO conductive glass,then assembled photocell. The linear voltammetry curve presented the instantaneous current efficiency of the photocell with light are about 1.5 times,5 times,2 times higher than that without light. Among them,the PbS quantum dots stabilized with thioglycollate/AB thin films photocell was more significant photoelectric effect in the infrared spectral region.
引文
[1]Henglein A.Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles.Chem.Rev.,1989.89(8):1861-1873
    [2]Coe S,Woo W K,Bawendi M,et al.Electroluminescence from single monolayers of nanocrystals in molecular organic devices.Nature,2002.420:800-803
    [3]Xiao Y,Barker P E.Semiconductor nanocrystal probes for human metaphase chromosomes.Nucleic Acids Res.,2004.32:p.E28-30
    [4]徐国财等.纳米科技导论.北京:高等教育出版社,2005.24-35
    [5]田永君,曹茂盛,曹传宝.先进材料导论.哈尔滨:哈尔滨工业大学出版社,2005.3-9
    [6]李新勇,张桂,汤国庆.纳米晶体材料研究进展.化学进展,1996.8:231-239
    [7]Wang Y,Herron N.Manometer-sized semiconductor clusters:materials synthesis,quantumsize effects,and photophysical properties.J.Phys.Chem.,1991.95:525-532
    [8]Hagfeldt A,Graetzel M.Light-induced redox reactions in nanocrystalline systems.Chem.Rev.,1995.95:49-68
    [9]Hiroyuki U,Takahiro H,Takao S,et al.Preparation and optical nonlinearity of quantized indium arsenide nanocrystals.Chem.Mater.,1993.5:716-719
    [10]Peterson J J,Krauss T D.Fluorescence spectroscopy of single lead sulfide quantum dots.Nano.Lett.,2006.6:510-514
    [11]P.Roussignol,D.Ricard,C.Flytzanis,Phonon broadening and spectral hole burning in very small semiconductor particles.Rev.Lett.,1989.62:312-315
    [12]Herr U,Jing J,Gonser U,et al.Alloy effects in consolidated binary mixtures of nanometer-sized crystals investigated by Mossbauer spectroscopy.Solid State Commun.,1990.76:197-202
    [13]Choudhury K R,Sahoo Y,Jang S J,et al.Efficient photosensitization and high optical gain in a novel quantum dot sensitized hybrid photorefractive nanocomposite at communication wavelength.Adv.Funct.Mater.,2005.15:751-756
    [14]Peng Q,Dong Y,Deng Z,et al.Low-temperature elemental-direct-reaction route to Ⅱ-Ⅵsemiconductor nanocrystalline ZnSe and CdSe.Inorg.Chem.,2001.40:3840-3841
    [15]Yu S H,Shu L,Qian Y T,et al.Hydrothermal preparation and characterization of nanocrystalline powder of β-Indium sulfide.Mater.Res.Bull.,1998.33(5):717-721
    [16]Li Y,et al.A solvothermal elemental reaction to produce nanocrystalline ZnSe.Inorg.Chem.,1998.37:2844-2845
    [17]Yu S H,Qian Y T,Shu L,et al.Solvent thermal synthesis and characterization of ultrafine powder of bismuth sulfide,Mater.Lett.,1998.35:116-119
    [18] Chen D H, He X R. Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater. Res. Bull., 2001, 36:1369-1377
    [19] Xia K Q, Zhang Y B, Tong P, et al. Interactions in mixtures of a microemulsion and a polymer. Phys. Rev. E., 1997. 55(5): 5792-5795
    [20] Bethell D, Schiffrin D. J. Nanotechnology and nucleotides, Nature, 1996. 382: 581-582
    [21] Mirkin C A, Letsinger R L, Muck R C, et al. Organization of nanocrystal molecules using DNA, Nature, 1996. 382: 609-610
    [22] 李廷盛,尹其光. 超声化学. 北京:科学出版社, 1995
    [23] Luis M, Liz-Marzan. Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir, 1996.12(15): 3585-3589
    [24] Xiao Y, Barker P E. Semiconductor nanocrystal probes for human metaphase chromosomes, Nucleic Acids Res., 2004. 32: p. E28-34
    [25] Stsiapura V, Sukhanova A, Artemyev M, et al. Quasi-nanowires from fluorescent semiconductor nanocrystals on the surface of oriented DNA molecules. Opt. Spectrosc, 2006.100: 854-861
    [26] Yu D D, Meng Z, Lu J, et al. Synthesis of closed PbS nanowires regular geometric morphologies. Mater. Chem., 2002.12: 403-405
    [27] Gao T, Li Q H, Wang T H, Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites, Chem. Mater., 2005.17: 887-892
    [28] Wang W Z, Germanenko I, Samy M. Room-temperature synthesis and characterization of nanocrystalline CdS, ZnS, and Cd_xZn_(1-x)S. Chem. Mater., 2002.14: 3028-3033
    [29] Chen C C, Lin J J. Controlled growth of cubic cadmium sulfide nanoparticles using patterned self-assembled monolayers as a template. Adv. Mater., 2001.13:136-139
    [30] Machol J L, Wise F W, Tanner D B, et al. Vibronic quantum beats in PbS microcrystallites. Phys. Rev. B., 1993. 48: 2819-2822
    [31] Bruchez M, Moronne M, Gin P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998. 281: 2013-2016
    [32] Mitchell C, Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc., 1999,. 121: 8122-8123
    [33] Lu X F, Zhao Y Y, Wang C. Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning. Adv. Mater., 2005.17(20): 2485-2488
    [34] Kane R S, Cohen R E, Silbey R. Theoretical study of the electronic structure of PbS nanoclusters. J. Phys. Chem., 1996.100: 7928-7932
    [35] Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater.,2003.15:1844-1849
    [36]Yu S H,Wu Y S.A novel solvothermal synthetic route to nanocrystalline.CdE(E=S,Se,Te)and morphological control.J.Chem.Mater.,1998.10(9):2309-2312
    [37]Li Y,Liao H,Ding Y,et al.Novel solvothermal synthesis of CdE(E=S,Se,Te)semiconductor nanorod.Inorg.Chem.,1999.38(7):1382-1387
    [38]Ge J P,Li Y D.Selective atmospheric pressure chemical vapor deposition route to CdS arrays,nanowires,and nanocombs.Adv.Funct.Mater.,2004.14(2):157-162
    [39]Peng Z A,Peng X J.Formation of high-quality CdTe,CdSe,and CdS nanocrystals using CdO as precursor.J.Am.Chem.Soc.,2001.123:183-184
    [40]曹维良,张凯华,张敬畅.表面修饰纳米CdS合成中两个重要影响因素及结构表征.无机化学学报,2005.18(10):997-1002
    [41]Cao Y C,Wang J H.One-Pot Synthesis of High-Quality Zinc-Blende CdS Nanocrystals.J.Am.Chem.Soc.,2004.126:14336-14337
    [42]Zhou S M,Zhang X H,Meng X M,et al.Sonochemical synthesis of mass single-crystal PbS nanobelts.J.Solid State Chemistry.,2005.178:399-403
    [43]Shao M W,Wu Z C,Gao F,et al.Surfactant-free route to hexagonal CdS nanotubes under ultrasonic irradiation in aqueous solution at room temperature.J.Crystal Growth,2004.260:63-66
    [44]Ma G H,Peng T J,Liu K.Assembly and study on cadmium sulfide quantum line.Journal of Chenzhou Teachers Training,2003.24(2):51-53
    [45]Dneprovsld V S,Zhukov E A.Excitons in CdS and CdSe semiconducting quantum wires with dielectric barriers.J.Experiment &:Theoretical Physics,2002.94(6):1169-1175
    [46]Wu X C,Tao Y R.J.Cry.Growth,2002.242:309
    [47]李彦,张庆敏,黄福志等.模板法合成硫化物半导体纳米材料.无机化学学报,2002.1:79-82
    [48]Lu Q Y,Gao F.The assembly of semiconductor sulfide nanocrystallites with organic reagents as templates Nanotechnology,2002.13(6):741-745
    [49]Zhang P,Gao L.The effects of body weight,temperature,salinity,pH,light intensity and feeding condition on lethal DO levels of whiteleg shrimp,Litopenaeus vannamei.J.Coll.Inter.Sci.,2004.272:99-103
    [50]Zhang P,Gao L.Synthesis and characterization of CdS nanorods via hydrothermal microemulsion.Langmuir,2003.19:208-210
    [51]Sooklal K,Hanusl H,Ploehn K J,et al.A Blue-Emitting CdS/dendrimer nanocomposite.Adv.Mater.,1998.10:1083-1087
    [52]Chen M.Highly-oriented recrystallization of PbS nanoparticles in a solvothermal process.Materials Chemistry and Physics,2002.74:109-111
    [53]Wang D B,Yu D B,Mo M S,et al.Hydrothermal preparation of one-dimensional assemblies,of PbS nanoparticles.Solid State Communications,2003.125:475-479
    [54]Mo X,Wang C Y,You M,et al.A novel ultraviolet-irradiation route to CdS nanocrystallites with different morphologies.Mater.Res.Bull.,2001.36:2277-2282
    [55]Yang J.Formation Process of CdS Nanorods via solvothermal Route.Chem.Mater.,2000.12:3259-3263
    [56]Henshaw G,Parkin I P,Shaw G.Convenient low energy synthesis of metal sulfides and selenides:PbE Ag_2E ZnE CdE(E=S Se).Chem.Commun.,1996.1095-1096
    [57]张勇,乔正平,陈小明.微波辐照元素反应合成硫化铅纳米粒子.中山大学学报(自然科学版),2003.42(2):50-51
    [58]Lee S M,Jun Y W,Cho S N,et al.Single-crystalline star-shaped nanocrystals and their evolution:programming the geometry of nano-building blocks.J.Am.Chem.Soc.,2002.124:11244-11245
    [59]Xu C Q,Zhang Z C,Wang H L,et al.A novel way to synthesize lead sulfide QDs via γ-ray irradiation.Mater.Sci.Engin.,2003.B104:5-8
    [60]Pan L J,He P S,Zou G,et al.PbS/epoxy resin nanocomposite prepared by a novel method.Mater.Lett.,2004.58:176-178
    [61]Khiew P S,Radiman S,Huang N M.Studies on the growth and characterization of CdS and PbS nanoparticles using sugar-ester nonionic water-in-oil microemulsion.J.Cyrst.Growth,2003.254:235-243
    [62]Wang H,Zhang J R,Zhu J J.Sonochemical preparation of lead sulfide nanocrystals in an oil-in-water microemulsion.J.Cyrst.Growth,2002.246:161-168
    [63]Wang C,Zhang W X,Qian X F,et al.A room temperature chemical route to nanocrystalline PbS semiconductor.Mater.Lett.,1999.40:255-258
    [64]Sugimoto T,Chen S.Synthesis of uniform particles of CdS,ZnS,PbS and CuS from concentrated solutions of the metal chelates.Colloids Surfaces A:Physicochem.Eng.Aspects.,1998.135:207-226
    [65]Qiao Z P,Xie Y,Xu J G,et al.Gamma-radiation synthesis of the nanocrystalline semiconductors PbS and CuS.J.Colloid.Inter.Sci.,1999.214(2):459-461
    [66]张华,左鸣,李公普,等.硫化铅超细纳米带和纳米线的TEM表征.电子显微学报,2005.24(2):108-113
    [67]Zhao X K,Yang J,Mccormick L D,et al.Epitaxial formation of PbS crystals under arachidic acid monolayers.J.Phys.Chem.,1992.96:9933-9939
    [68]Yang J P,Fendler J H.Morphology control of nanocrystallites,epitaxially grown under mixed monolayers.J.Phys.Chem.,1995.99:5505-5511
    [69]Schneider T,Haase M,Kornowski A,et al.Synthesis and characterization of PbS nanoparticles in block copolymer.Phys.Chem.,1997.101:1654-1656
    [70]Leontidis E,Orphanou M,Kyprianidou-Leodidou T,et al.Composite nanotubes formed by self-assembly of PbS nanoparticles.[J].Nano.Lett.,2003,3:569-572
    [71]Ni Y,Liu H,Wang F,et al.Shape controllable preparation of PbS crystals by a simple aqueous phase route.Cryst.Growth.Des.,2004.4:759-764
    [72]Ma Y,Qi L,Ma J,et al.Star-shaped PbS crystals formed by a simple solution route.Cryst.Growth Des.,2004.4:351-354
    [73]Kuang D,Xu A,Fang Y,et al.Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process.Adv.Mater.,2003,15:1747-1750
    [74]Zhuang H,Zuo M,Tan S,et al.Carbothermal reduction/sulfidation synthesis and structural characterization of PbS nanobelts and nanowires.Nanotechnology,2006.17:2931-2936
    [75]Mo M.S,Shao M W,Hu H M,et al.Growth of single-crystal PbS nanorods via a biphasic solvothermal interface reaction route.J.Cyrst.Growth,2002.244:364-368
    [76]Yu D B,Wang D B,Zhang S Y,et al.Multi-morphology PbS:frame-film structures,twin nanorods,and single-crystal films prepared by a polymer-assisted solvothermal method.J.Cyrst.Growth,2003.249:195-200
    [77]Wang D B,Yu D B,Mo M S,et al.Hydrothermal preparation of one-dimensional assemblies of PbS nanoparticles.Solid State Commun.,2003.125:475-479
    [78]陈广大,褚海斌,李雪梅等.星形树枝状硫化铅纳米晶的合成.北京大学学报(自然科学版),2006.42(4):427-430
    [79]Wang D B,Yu D B,Shao M W,et al.Dendritic growth of PbS crystals with different morphologies.J.Cyrst.Growth,2003.257:384-389
    [80]Chen J,Xue K,An J,et al.Photoelectric effect and transport properties of a single CdS nanoribbon.Ultramicroscopy,2005.105(1-4):275-280
    [81]Pan A L,Lin X,Liu R B,et al.Surface crystallization effects on the optical and electric properties of CdS nanorods.Nanotechnolgy,2005.16(10):2402-2406
    [82]Pan A L,Yang H,Liu R B,et al.Color-tunable photoluminescence of alloyed CdSxSel-x nanobelts.J.Am.Chem.Soc.,2005.127(45):15692-15693
    [83]Singh V P,Singh R S,Thompson G W,et al.Characteristics of nanocrystalline CdS films fabricated by sonochemical,microwave and solution growth methods for solar cell applications.Solar Energy Materials and Solar Cells,2003.81(3):293-303
    [84]Singh R S,Rangari V K,Sanagapalli S,et al.Nano-structured CdTe,CdS and TiO2 for thin film solar cell applications.Solar Energy Materials and Solar Cells,2004.82(1-2):315-330
    [85]Sebastian P J,Ocampo M.A photodetector based on ZnCdS nanoparticles in a CdS matrix formed by screen printing and sintering of CdS and ZnC12.Solar Energy Materials and Solar Cells,1996.44(1):1-10
    [86]Boca R.CRC Handbook of Chemistry and Physics,45th ed.Chemical Rubber co.FL 1964.p.c-243.
    [87]Xu S,Wang H,Zhu J J,et al.An in situ template route for fabricating metal chalcogenide hollow spherical assemblies sonochemically.Eur.J.Inorg.Chem.,2004.242:4653-4659
    [88]Brus L E.Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronic state[J].J.Chem.Phys.,1984.80:4403-4409
    [89]刘会洲.微乳相技术及应用.北京:科学出版社,2005.
    [90]Lee S M,Cho S M,Cheon J.Anistropic shape control colloidal inorganic of nanocrystals.Adv.Mater.,2003.1:441-444
    [91]Murphy C J,Jana N R.Controlling the aspect ratio of inorganic nanorods and nanowires.Adv.Mater.,2002.14:80-82
    [92]赵国午.表面活性剂物理化学.北京:北京大学出版社,1991.50-100
    [93]Lieber C M.Nanoscale science and technology:Building a big future from small things.MRS Bull.2003.28:486-491
    [94]Machol,J L,Wise F W,Patel,R C,et al.Vibronic quantum beats in PbS microcrystallites.Phys.Rev.B,1993.2819-2822
    [95]Kane R S,Cohen R E,Silbey R.Theoretical study of the electronic of PbS nanoclusters.J.Phys.Chem.,1996.100:7928-7932
    [96]Mcdonald S A,Konstantatos G,Zhang S,et al.Solution-processed PbS quantum dot infrared photodetectors and photovoltaics.Nature Mater.,2005.4:138-142
    [97]Trindade T,O'Brien P,Zhang X M,et al.Synthesis of PbS nanocrystallites using a novel single molecule precursors approach:X-ray single-crystal structure of Pb(S_2CNEtPri)_2.J.Mater.Chem.,1997.6:1011-1016
    [98]Wang S,Yang S.Preparation and characterization of oriented PbS crystalline nanorods in polymer films.Langmuir,2000.16:389-397
    [99]Yu D,Wang D,Meng Z,et al.Synthesis of closed PbS nanowires regular geometric morphologies.J.Mater.Chem.,2002.12:403-405
    [100]Yu D,Wang D,Zhang S,et al.A simple method to synthesize PbE(E=S,SE)nanocrystals.J.Cryst.Growth,2003.249:195-200
    [101]Lee S M,Jun W W,Cho S N,et al.Single-crystalline star-shaped nanocrystals and their evolution:programming the geometry of nano-building blocks.J.Am.Chem.Soc.,2002:124:11244-11245
    [102]Ma Y;Qi L,Ma J,et al.Hierarchical,star-shaped PbS crystals formed by a simple solution route,Cryst.Growth Des.,2004.4:351-354
    [103]Ni Y,Liu H,Wang F,et al.Shape controllable preparation of PbS crystals by a simple aqueous phase route. Cryst. Growth Des. 2004. 4: 759-764
    [104] Yan H, He R, Johnson J, et al. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc., 2003.125: 4728-4729
    [105] Lu Q, Gao F, Komarneni S, et al. Biomolecule-assisted synthesis of highly ordered snowflakelike structures of bismuth sulfide nanorods. J. Am. Chem. Soc., 2004.126: 54-55
    [106] Wang Y L, Jiang X C, Herricks T, et al. Single crystalline nanowires of lead: large-scale synthesis, mechanistic studies, and transport measurements. J. Phys. Chem. B, 2004. 108: 8631-8640
    [107] Roosen A, Carter W. Simulations of microstructural evolution: anisotropic growth and coarsening. Physica A, 1998. 261: 232-247
    [108] Zhou H S, Sasahara H, Honma I, et al. Coated semiconductor nanoparticles: the CdS/PbS system's photoluminescence properties. Chem. Mater., 1994. 6(9): 1534-1541
    [109] Choudhury K R, Sahoo Y, Jang S J, et al. Efficient photosensitization and high optical gain in a novel quantum dot sensitized hybrid photorefractive nanocomposite at communication wavelength. Adv. Funct. Mater., 2005.15: 751-756
    [110] Chang T-W F, Maria P W. High near-infrared photoluminescence quantum efficiency from PbS nanocrystals in polymer films. Cyr. Synth. Met., 2005.148: 257-261
    [111] Sun Y P, Hao E C, Zhang X, et al. Monolayer of TiO2/PbS coupled semiconductror nanoparticle. Chem. Commun., 1996. 20: 2381-2382
    [112] Kanemitsu Y, Ishizumi A. Luminescence properties of impurity-doped semiconductor nanoparticles. J. Lumin., 2006.119-120:161-166
    [113] Mcdonald S A, Cyr P W, Levina L, et al. Photoconductivity from PbS-nanocrystal/ semiconducting polymer composites for solution-processible, quantum-size tunable infrared photodetectors. Appl. Phys. Lett., 2004. 85(11): 2089-2091
    [114] Stouwdam J W, Shan J, Veggel F C, et al. Photostability of Colloidal PbSe and PbSe/PbS Core/Shell Nanocrystals in Solution and in the Solid State. J. Phys. Chem.(c), 2007. 111(3): 1086-1092
    [115] Lin Y W, Tseng W L, Chang H T.. Using a layer-by-layer assembly technique to fabricate multicolored-light-emitting films of CdSe/CdS and CdTe quantum dots. Adv. Mater., 2006. 18: 1381-1386
    [116] Wang W L, Bai F L. A simple aqueous-solution processing route to prepare quantum-confined CdS nanorods. Chem. Phys. Chem., 2003,4: 761-765
    [117] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science, 2002. 295: 2425-2427
    [118] Gao T, Li Q H, Wang T H. Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites. Chem. Mater., 2005. 17: 887-892
    [119] Wang W Z, Germanenko I, Samy M. Room-temperature synthesis and characterization of nanocrystalline CdS, ZnS, and Cd_xZn_(1-x)S. Chem. Mater., 2002.14:3028-3033
    [120] Chen C C, Lin J J. Controlled growth of cubic cadmium sulfide nanoparticles using patterned self-assembled monolayers as a template. Adv. Mater., 2001.13:136-139
    [121] Bakueva L, Musikhin S, Hines M A, et al. Size-tunable infrared (1000-1600 run) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer. Appl. Phys. Lett., 2003. 82(17): 2895-2898
    [122] Chang T-W F, Maria A, Cyr P W., et aL Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. Synth. Met., 2005,148: 257-263
    [123] Lu X F, Zhao Y Y, Wang C. Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning. Adv. Mater., 2005.17: 2485-2488
    [124] Zhuang H, Zuo M, Tan S, et al. Carbothermal reduction/sulfidation synthesis and structural characterization of PbS nanobelts and nanowires. Nanotechnology, 2006.17: 2931-2936
    [125] Kuang D, Xu A, Fang Y, et al. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv.Mater., 2003.15:1747-1750
    [126] Leontidis E, Orphanou M, Kyprianidou-Leodidou T, et al. Composite nanotubes formed by self-assembly of PbS nanoparticles. Nano. Lett., 2003. 3:569-572
    [127] Buller R, Cohen H, Minkin E, et al. (Pb_(1-x)Cd_x)S nanoparticles embedded in a conjugated organic matrix, as studied by photoluminescence and light-induced x-ray photoelectron spectroscopy. Adv. Funct. Mater., 2002.12: 713-718
    [128] Choudhury K R, Sahoo Y, Jang S J, et al. Efficient photosensitization and high optical gain in a novel quantum-dot-sensitized hybrid photorefractive nanocomposite at a telecommunications wavelength. Adv. Func. Mater., 2005.15: 751-756

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700