以聚乙烯亚胺为模板合成银纳米簇及其性能与相关应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仅有几个原子组成的金属纳米簇被认为是连接金属原子与纳米颗粒的桥梁。这些金属纳米簇具有与众不同的光、电以及化学性质,在近年来备受瞩目,其较小的尺寸、无毒性以及光稳定性等,都使其作为一种新型的荧光探针在化学检测及生物标记等领域具有广泛的应用前景。然而,这些尺寸微小的纳米簇极易团聚,使其在水相中合成十分困难。发展简便与环境友好的合成方法以获得具有特定组成及尺寸的金属纳米簇,对其实用化具有重要意义。与此同时,对于这一新型纳米材料的生长机制及其尺寸依赖的物理化学性质仍需进一步探索。本文对以聚乙烯亚胺(PEI)为模板的银纳米簇的合成、性能以及相关应用进行了研究与初步探索。
     1.以PEI为模板合成银纳米簇
     以PEI为模板、甲醛为还原剂,发展了一种简便的银纳米簇的水相合成方法,得到了稳定的、具有较高荧光强度的银纳米簇,其平均粒径约为1.8nm。实验中考察了Ag-配基的摩尔比、还原剂的种类及用量对合成银纳米簇的影响,以期得到更加稳定的银纳米簇。此外,实验还进一步利用荧光光谱、紫外可见吸收光谱、高分辨率透射电镜、X-射线粉末衍射以及热重分析等方法对所合成的银纳米簇的光学性能、尺寸以及形貌进行表征。以硫酸奎宁作为参照,PEI修饰的银纳米簇在乙醇中的量子产率约为3.8%。由于模板为高枝状聚合物,其三维网状结构可以对纳米簇起到有效的保护作用,因而以PEI为模板的银纳米簇的稳定性十分优异。
     2.以PEI为模板的银纳米粒子在粒径转化过程中物理化学性质的研究
     金属纳米簇具有明显的尺寸依赖的物理化学性质。实验中发现,当合成温度较高时,将首先形成粒径较大的银纳米颗粒,导致荧光猝灭;然而,随着放置时间的延长,PEI修饰的银纳米粒子出现了由纳米颗粒向纳米簇转变的现象,且伴随有明显的溶液颜色变化及荧光的恢复。实验中使用荧光光谱、紫外可见吸收光谱对这一过程进行详细的记录,并同时利用透射电镜、X-射线粉末衍射等方法证实了这一过程中银纳米粒子粒径的转化。当合成温度为90℃、加热时间为10min时,在室温放置过程中,银纳米粒子的平均粒径将由24h的5.3nm减小至168h的3.9nm,且粒径为1.0-2.0nm粒子所占比例大幅增加。与此同时,溶液颜色也由加热后的深红棕色逐渐变化至明亮的黄色,且其荧光显著增强。作为配基,PEI在这一转化过程中发挥了不可或缺的作用。同时,这一过程也清楚地显示了当由金属性的纳米颗粒向非金属性的纳米簇转化过程中,银纳米簇独特的尺寸依赖的物理化学性质的再现。
     3.以PEI为模板的银纳米簇的溶剂化荧光现象及浓度依赖的荧光特性
     目前,研究者对金属纳米簇的溶剂化效应仍然知之甚少。在本章工作中,首先在水溶液中合成了以PEI为模板的银纳米簇,然后将其分散到10种不同的有机溶剂中,包括甲醇、乙醇、乙二醇、正丙醇、异丙醇、N,N-二甲基甲酰胺、乙腈、四氢呋喃、二甲亚砜以及乙二醇甲醚,实验发现PEI修饰的银纳米簇的荧光颜色与强度存在明显的溶剂效应,而其溶液颜色并没有发生明显变化。例如,当PEI修饰的银纳米簇分散至四氢呋喃溶剂中时,其荧光颜色将由强烈的蓝色变化至明亮的黄色;而在乙二醇甲醚溶剂中,银纳米簇的荧光颜色将随放置时间的延长,从蓝色变化至绿色;然而,在这两种溶剂中,银纳米簇的紫外特征吸收峰仅表现出了吸光度的增强,而吸收峰位置并没有发生变化,即溶液颜色没有改变。这意味着溶剂诱导的由配体向金属核的电子转移的变化仅影响了银纳米簇的激发态而不是基态。因此,PEI修饰的银纳米簇仅表现出了明显的溶剂化荧光现象,却并不具有溶剂显色效应。此外,PEI修饰的银纳米簇还表现出了浓度依赖的荧光特性,其最大激发波长以及最大发射波长均随银纳米簇浓度的增大而发生明显的红移,因此,通过调节银纳米簇的浓度即可获得不同颜色的荧光。
     4.以PEI为模板的银纳米簇:一种新型的高灵敏pH值传感器
     金属纳米簇的荧光强度及发射波长对周围环境介质高度敏感,这就使其有希望发展成为一种多功能的传感器。而具有pH敏感的光学响应的纳米材料在环境、医药以及生物等领域的应用日益重要。在本章中,以PEI为模板的银纳米簇被用来作为一种高灵敏的pH值传感器,随着酸度的增加,其荧光逐渐猝灭,且溶液颜色也将由无色变至黄色,这就使得PEI修饰的银纳米簇还可以作为pH值显色剂进行应用。PEI修饰的银纳米簇的pH值的线性响应范围为5.02至7.96,在这一范围内,随着pH值的增加,其荧光可增强近10倍。此外,PEI修饰的银纳米簇在不同的缓冲溶液中也表现出了良好的pH响应特性。pH值诱导的PEI的构象变化及随后的银纳米簇的聚集导致了其荧光猝灭及溶液颜色的变化。以上这些均表明PEI修饰的银纳米簇作为pH值传感器将在生物、医学以及制药等领域具有广泛的应用前景。
     5.以PEI为模板的银纳米簇:一种新型的荧光及比色传感器高灵敏测定卤素离子
     卤素离子是日常生活中常见的阴离子,其在工业、医疗及自然环境中均发挥着重要的作用。在本章中,PEI修饰的银纳米簇被用来作为一种新型的荧光及比色传感器高灵敏、高选择性地测定卤素离子(C1-、Br-以及I-)。由于卤素离子与银原子间的特征反应以及卤化银较低的溶度积常数,卤素离子诱导的银纳米簇的氧化腐蚀与聚集,导致了其荧光猝灭与溶液颜色的变化。与其他纳米尺度的卤化物传感器相比,PEI修饰的银纳米簇作为卤素离子传感器显示出更宽的线性范围与更低的检.出限,荧光法测定Cl-、Br-及Γ的线性范围依次为0.5-80μM、0.1-14μM及0.05-6μM;Cl-、Br-及r的最低检出限分别为200、65及40nM。特别是在较高离子强度的介质中,Br-或是Γ可以在与Cl-共存的情况下被选择性地识别,这在测定Br-与I-的实际样品中具有明显优势。同时,PEI修饰的银纳米簇还可用于比色法测定卤素离子,比色法具有简便、快速、测定成本低廉等优点。此外,PEI修饰的银纳米簇作为荧光探针也被成功用于自来水及矿泉水中Cl-含量的测定。
Noble metal nanoclusters, consisting of a small number of atoms with the size comparable to the Fermi wavelength of electrons, are considered to provide a valuable link between metal atoms and nanoparticles. Such nanoclusters have received considerable interests in recent years because their remarkable optical, electrical, and chemical properties are significantly different from the large noble metal nanoparticles. Because of the nanometer-size, nontoxicity, and photostability, silver nanoclusters are promising candidates as fluorescent probes for labeling and sensing applications. The synthesis of well-defined silver nanoclusters in aqueous solutions, however, is difficult due to the tendency of Ag nanoclusters to aggregate, so it is essential to develop simple and environmentally friendly synthetic methods to obtain silver nanoclusters with particular compositions and sizes. Meanwhile, some fundamental issues of these new emitters still remain unclear, such as the growth mechanism as well as the size-dependent physicochemical properties. In this dissertation, valuable explorations have been carried out on the synthetic method, property, and application of silver nanoclusters capped by hyperbranched polyethyleneimine (PEI).
     1. Synthesis of Highly Stable Fluorescent Ag Nanoclusters Capped by Hyperbranched Polyethyleneimine in Aqueous Solution
     Highly fluorescent, stable, and water-soluble Ag nanoclusters have been successfully prepared by using PEI as a capping agent. The optical and fluorescent properties of Ag nanoclusters can be primarily controlled by varying the Ag-to-ligand molar ratios, the different types of reducing agents, and the volumes of formaldehyde used. The fluorescence spectra, UV-vis spectra, high resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRD), and thermogravimetry analysis (TGA) were carried out to characterize the optical properties and morphologies of PEI-capped Ag nanoclusters. The as-prepared PEI-capped Ag nanoclusters exhibit a quantum yield of3.8%in ethanol calculated by using quinine sulfate as a reference. Because of the protective structure of three-dimensional network of the polymer template, the PEI-capped Ag nanoclusters also show high stability.
     2. Transition from Nanoparticles to Nanoclusters:Microscopic and Spectroscopic Investigation of Size-Dependent Physicochemical Properties of Polyamine-Functionalized Silver Nanoclusters
     In this paper, an interesting process is described in the synthesis of silver nanoclusters capped by PEI:a transition from nanoparticles to nanoclusters takes place spontaneously over time accompanied with the reappearance of size-dependent physicochemical properties of silver nanoclusters. The TEM images, XRD patterns, fluorescence spectra, and UV-vis spectra accurately record this process. As PEI-capped Ag particles were prepared by a heating process at90℃for10min and then a cooling process to ambient temperature, the average diameter changed from5.3nm after24h to3.9nm168h later and the percentage of the particles of1.0-2.0nm increased significantly over168h. Meanwhile, the color of Ag colloid solutions changed from deep reddish brown to bright yellow with an obvious enhancement of fluorescence intensity. The "smart" ligand shell of PEI plays a key role in the size transition. It could tailor the nanoparticles to just the right size of nanoclusters, resulting in the color change and fluorescence recovery. Therefore, this work clearly exhibits the reappearance of size-dependent physicochemical properties of silver nanoclusters with size reduction in the range where the transition from metallic to molecular behavior takes place.
     3. Solvatofluorochromism of Polyethyleneimine-Encapsulated Ag Nanoclusters and Their Concentration-Dependent Fluorescence
     The solvatochromism of metal nanoclusters is still an argument topic. In this work, on the basis of PEI-encapsulated Ag nanoclusters. we present some interesting results on the chemical-environment-responsive fluorescence of Ag nanoclusters in11different solvents, which may shed some light on this issue. In water and alcohols, the nanoclusters emit intense blue fluorescence; as they are dispersed in water-tetrahydrofuran (THF) mixtures, the fluorescent color changes from intense blue (in pure water) to intense yellow (in pure THF); while they are dispersed in ethylene glycol monomethyl ether (EGME), the fluorescence changes from blue to green color with time. However. accompanying with the changes of fluorescence spectra, there is no obvious shift of the absorption features of Ag nanoclusters in the solvents mentioned above. It means that the solvent-induced the changes of electron transfer from ligands to metal core actually influence the excited state rather than the ground state of Ag nanoclusters. Therefore, the PEI-capped Ag nanoclusters show obvious solvatofluorochromic but not solvatochromic properties. Furthermore, the concentration-dependent fluorescence of PEI-capped Ag nanoclusters has also been studied in this work. It is found that the emission could be tuned from blue to yellow by changing the concentration of Ag nanoclusters.
     4. Highly Sensitive Fluorescent and Colorimetric pH Sensor Based on Polyethyleneimine-Capped Silver Nanoclusters
     Silver nanoclusters capped by PEI have been developed as a highly sensitive fluorescent and colorimetric pH sensor. The probe responds rapidly to pH fluctuations and has such absorption characteristics that the color changes from the colorless or a nearly colorless state to a colored state with increasing acidity, so PEI-capped Ag nanoclusters could also be used as a color indicator for colorimetric pH detection. Quantitatively, the fluorescence intensity of PEI-capped Ag nanoclusters exhibits a linear fashion over the pH range of5.02to7.96, and increases by around ten-fold approximately with greater fluorescence at higher pH values. The repulsion development and conformational change of PEI with decreasing pH induce the aggregation of Ag nanoclusters, which is considered to produce an obvious color change and fluorescence quenching of Ag nanoclusters at low pH values. As expected, this pH probe is also sensitive to different buffer solutions, except for those containing some anions that could react with Ag nanoclusters. Besides, the ionic strength of the buffers has a little influence on the pH responsive behavior. Our pH sensor with nanoscaled physical dimensions would be a promising candidate in the applications in biological, medical, and pharmaceutical fields.
     5. Polyethyleneimine-Templated Ag Nanoclusters:A New Fluorescent and Colorimetric Platform for Sensitive and Selective Sensing Halide Ions and High Disturbance-Tolerant Recognitions of Iodide and Bromide in Coexistence with Chloride under Condition of High Ionic Strength
     Ag nanoclusters functioned by PEI have been developed as a new fluorescent and colorimetric platform for sensitive and selective recognition of halide ions (e.g.. Cl-. Br-and Γ). The recognition mechanism is based on the unique reactions between halide ions and the silver atoms. In particular, halide-induced oxidative etching and aggregation can produce a strong fluorescence quenching of Ag nanoclusters. This sensing system exhibits a remarkably high selectivity toward halide ions over most of anions and cations, and shows good linear ranges and lower detection limits:the linear ranges are0.5to80μM for Cl-,0.1to14μM for Br-, and0.05to6μM for I-, respectively; the limits of detection for Cl-, Br-, and Γ, at a signal-to-noise ratio of3, are estimated to be200,65, and40nM, respectively. Specifically, Br-and Γ could be recognized selectively in the coexistence with Cl-under the condition of higher ionic strength, which is a significant advantage in the detection of Br-and Γ in real samples. In addition, the recognition of halide could be performed by colorimetric method, which is also attractive and promising because of its simplicity, rapidity, and low cost. Furthermore, this sensing system has been applied successfully to the detection of Cl-in real water samples.
引文
[1]Ozin, G. A.; Hugues, F.; Mattar, S. M.; McIntosh, D. F. Low nuclearity silver clusters in faujasite-type zeolites:optical spectroscopy, photochemistry and relationship to the photodimerization of alkanes. J. Phys. Chem.1983,87,3445-3450.
    [2]Baker, M. D.; Ozin, G. A.; Godber, J. Far-infrared studies of silver atoms, silver ions, and silver clusters in zeolites A and Y. J. Phys. Chem.,1985,89,305-311.
    [3]Sun, T.; Seff, K. Silver clusters and chemistry in Zeolites. Chem. Rev.1994,94,857-870.
    [4]Konig, L.; Rabin, I.; Schulze, W.; Ertl, G Chemiluminescence in the agglomeration of metal clusters. Science 1996,274,1353-1355.
    [5]Rabin, I.; Schulze, W.; Ertl, G. Light emission during the agglomeration of silver clusters in noble gas matrices. J. Chem. Phys.1998,108,5137.
    [6]Rabin, I.; Schulze, W.; Ertl, G. Absorption spectra of small silver clusters Agn. Chem. Phys. Lett.1999,312,394-398.
    [7]Bilan, O. N.; Tyul'nin, V. A.; Cherenda, N. G.; Shendrik, A. V.; Yudin, D. M. Radiation paramagnetic centers and luminescence centers in silver-doped quartz glasses. JAppl. Spectrosc.1980,33,717-720.
    [8]Borsellaa, E.; Cattaruzzaa, E.; Marchia, G. D.; Gonellaa, F.; Matteia, G.; Mazzoldia, P.; Quarantab, A.; Battaglinc, G.; Pollonic, R. Synthesis of silver clusters in silica-based glasses for optoelectronics applications. J Non-Crystalline Solids 1999,245,122-128.
    [9]Linnert, T.; Mulvaney, P.; Henglein, A.; Weller, H. Long-Lived Nonmetallic Silver Clusters in Aqueous Solution:Preparation and Photolysis. J. Am. Chem. Soc.1990,112, 4657-4664.
    [10]Henglein, A.; Mulvaney, P.; Linnert, T. Chemistry of Agn Aggregates in Aqueous Solution:Non-Metallic Oligomeric Clusters and Metallic Particles. Faraday Discuss. 1991,92,31-44.
    [11]Mulvaney, P.; Linnert, T.; Henglein, A. Surface chemistry of colloidal silver in aqueous solution:observations on chemisorption and reactivity. J. Phys. Chem.1991, 95,7843-7846.
    [12]Ershov, B. G.; Janata, E.; Henglein, A. Growth of silver particles in aqueous solution: long-lived "magic" clusters and ionic strength effects. J. Phys. Chem.1993,97,339-343.
    [13]Ershov, B. G.; Janata, E.; Henglein, A.; Fojtik, A. Silver Atoms and Clusters in Aqueous Solution:Absorption Spectra and the Particle Growth in the Absence of Stabilizing Ag+ Ions. J. Phys. Chem.1993,97,4589-4594.
    [14]Henglein, A. Physicochemical Properties of Small Metal Particles in Solution: "Microelectrode" Reactions, Chemisorption, Composite Metal Particles, and the Atom-to-Metal Transition. J. Phys. Chem.1993,97,5457-5471.
    [15]Ershov, B. G.; Henglein, A. Reduction of Ag+ on Polyacrylate Chains in Aqueous Solution.J. Phys. Chem. B 1998,102,10663-10666.
    [16]Zheng, J.; Dickson, R. M. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence.J. Am. Chem. Soc.2002,124,13982-13983.
    [17]Diez, I.; Ras. R. H. A. Fluorescent silver nanoclusters. Nanoscale 2011,3,1963-1970.
    [18]Ashcroft, N. W.; Mermin, N. D. Solid state physics. Saunders College Publishing, Philadelphia,1976.
    [19]Hodes, G. When small is different:some recent advances in concepts and applications of nanoscale phenomena. Adv. Mater.2007,19,639-655.
    [20]Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed.2007,46,4630-4660.
    [21]Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater.2008,7,442-453.
    [22]Wilcoxon, J. P.; Abrams, B. L. Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev.2006,35,1162-194.
    [23]Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble metal quantum dots. Annu. Rev. Phys. Chem.2007,58,409-431.
    [24]Xu, H. X.; Suslick, K. S. Water-soluble fluorescent silver nanoclusters. Adv. Mater. 2010,22,1078-1082.
    [25]Ren, X. L..; Chen, Z. Z.; Meng, X. W.; Chen, D.; Tang, F. Q. Synthesis of fluorescent Ag nanoclusters and their application in α-L-fucosidase detection. Chem. Commun. 2012,48,9504-9506.
    [26]Shen, Z.; Duan, H.; Frey, H. Water-soluble fluorescent Ag nanoclusters obtained from multiarm star poly(acrylic acid) as molecular hydrogel templates. Adv. Mater.2007, 19,349-352.
    [27]Zhou, Z. X.; Du, Y.; Dong, S. J. DNA-Ag nanoclusters as fluorescence probe for turn-on aptamer sensor of small molecules. Biosens. Bioelectron.2011,28,33-37.
    [28]Chen, W. Y.; Lan, G. Y; Chang, H. T. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal. Chem.2011,83,9450-9455.
    [29]Shah, P.; Rorvig-Lund, A.; Chaabane, S. B.; Thulstrup, P. W.; Kjaergaard, H. G.; Fron, E.; Hofkens, J.; Yang, S. W.; Vosch T. Design aspects of bright red emissive silver nanoclusters/DNA probes for microRNA detection. ACS Nano 2012,6,8803-8814.
    [30]Qu, F.; Li, N. B.; Luo, H. Q. Polyethyleneimine-templated Ag nanoclusters:a new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high ionic strength. Anal. Chem.2012,84,10373-10379.
    [31]Qu, F.; Li, N. B.; Luo, H. Q. Highly sensitive fluorescent and colorimetric pH sensor based on polyethylenimine-capped silver nanoclusters. Langmuir 2013,29,1199-1205.
    [32]Wu, Z. K.; Jin, R. C. On the Ligand's Role in the Fluorescence of Gold Nanoclusters. Nano Lett.2010,10,2568-2573.
    [33]Myers, V. S.; Weir, M. G.; Carino, E. V.; Yancey, D. F.; Pande, S.; Crooks, R. M. Dendrimer-encapsulated nanoparticles:New synthetic and characterization methods and catalytic applications. Chem. Sci.2011,2,1632-1646.
    [34]Kim, Y. G.; Oh, S. K.; Crooks, R. M. Preparation and characterization of 1-2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions. Chem. Mater.,2004,16,167-172.
    [35]Wilson, O. M.; Scott, R. W. J.; Garcia-Martinez, J. C.; Crooks, R. M. Separation of dendrimer-encapsulated Au and Ag nanoparticles by selective extraction. Chem. Mater. 2004,16,4202-4204.
    [36]Borodko, Y.; Ercius, P.; Pushkarev, V.; Thompson, C.; Somorjai, G From single Pt atoms to Pt nanocrystals:photoreduction of Pt2+ inside of a PAMAM dendrimer. J. Phys. Chem. Lett.,2012,3,236-241.
    [37]Jiang, Y. J.; Gao, Q. M. Heterogeneous hydrogenation catalyses over recyclable Pd nanoparticle catalysts stabilized by PAMAM-SBA-15 organic-inorganic hybrid composites. J. Am. Chem. Soc.,2006,128,716-717.
    [38]Zheng, J.; Petty, J. T.; Dickson, R. M. High quantum yield blue emission from water-soluble Au8 nanodots J. Am. Chem. Soc.2003,125,7780-7781.
    [39]Lesniak, W.; Bielinska, A. U.; Sun, K.; Janczak, K. W.; Shi, X.; Baker, J. R.; Balogh, L. P. Silver/dendrimer nanocomposites as biomarkers:fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett.2005,5,2123-2130.
    [40]Scott, R. W. J.; Wilson, O. M.; Crooks, R. M. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem. B 2005,109, 692-704.
    [41]Zhang, J.; Xu, S.; Kumacheva, E. Photogeneration of fluorescent silver nanoclusters in polymer microgels. Adv. Mater.2005,17,2336-2340.
    [42]Shen, Z.; Duan, H. W.; Frey, H. Water-soluble fluorescent Ag nanoclusters obtained from multiarm star poly(acrylic acid) as molecular hydrogel templates. Adv. Mater. 2007,19,349-352.
    [43]Shang, L.; Dong, S. J. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Commun.2008,1088-1090.
    [44]Shang, L.; Dong, S. J. Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(Ⅱ). J. Mater. Chem.2008,18,4636-4640.
    [45]Diez, I.; Pusa, M.; Kulmala, S.; Jiang, H.; Walther, A.; Goldmann, A. S.; Muller, A. H. E.; Ikkala, O.; Ras. R. H. A. Color tunability and electrochemiluminescence of Silver nanoclusters. Angew. Chem. Int. Ed.2009,48,2122-2125.
    [46]Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater.2008,7,442-453.
    [47]Liz-Marzan, L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006,22,32-41.
    [48]Xu, H. X.; Suslick, K. S. Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 2010,4,3209-3214.
    [49]Liu, S. H.; Lu, F.; Zhu, J. J. Highly fluorescent Ag nanoclusters:microwave-assisted green synthesis and Cr3+ sensing. Chem. Commun.2011,47,2661-2663.
    [50]Wang, X. M.; Xu, S. P.; Xu, W. Q. Synthesis of highly stable fluorescent Ag nanocluster@polymer nanoparticles in aqueous solution. Nanoscale,2011,3,4670-4675.
    [51]Muhammed, M. A. H.; Aldeek, F.; Palui, G.; Trapiella-Alfonso, L.; Mattoussi, H. Growth of in Situ Functionalized Luminescent Silver Nanoclusters by Direct Reduction and Size Focusing. ACS Nano 2012,6,8950-8961.
    [52]Wu, Z. k.; Lanni, E.; Chen, W. Q.; Bier, M. E.; Ly, D.; Jin, R. C. High yield, large scale synthesis of thiolate-protected Ag7 clusters. J. Am. Chem. Soc.2009,131, 16672-16674.
    [53]Adhikari, B.; Banerjee, A. Facile synthesis of water-soluble fluorescent silver nanoclusters and HgⅡ sensing. Chem. Mater.2010,22,4364-4371.
    [54]Rao, T. U. B.; Pradeep, T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem., Int. Ed.2010,49,3925-3929.
    [55]Rao, T. U. B.; Nataraju, B.; Pradeep, T. Agg quantum cluster through a solid-state route. J. Am. Chem. Soc.2010,132,16304-16307.
    [56]Bootharaju, M. S.; Pradeep, T. Investigation into the reactivity of unsupported and supported Ag7 and Ag8 clusters with toxic metal ions. Langmuir 2011,27,8134 8143.
    [57]Cathcart, N.; Kitaev, V. Silver nanoclusters:single-stage scaleable synthesis of monodisperse species and their chirooptical properties. J. Phys. Chem. C 2010,114, 16010-16017.
    [58]Yuan, X.; Luo, Z. T.; Zhang, Q. B.; Zhang, X. H.; Zheng, Y. G; Lee, J. Y.; Xie, J. P. Synthesis of Highly Fluorescent Metal (Ag, Au, Pt, and Cu) Nanoclusters by Electrostatically Induced Reversible Phase Transfer. ACS Nano 2011,5,8800-8808.
    [59]Yuan, X.; Yeow, T. J.; Zhang, Q. B.; Lee, J. Y; Xie, J. P. Highly luminescent Ag+ nanoclusters for Hg2+ ion detection. Nanoscale 2012,4,1968-1971.
    [60]Xavier, L. G.; Spies, C.; Daum, N.; Jung, G.; Schneider, M. Highly Fluorescent Silver Nanoclusters Stabilized by Glutathione:a Promising Fluorescent Label for Bioimaging. Nano Res.2012,5,379-387.
    [61]Wang, C. X.; Xu, L.; Wang, Y.; Zhang, D.; Shi, X. D.; Dong, F. X.; Yu, K.; Lin, Q.; Yang, B. Fluorescent silver nanoclusters as effective probes for highly selective detection of mercury (II) at parts-per-billion levels. Chem. Asian J.2012,7,1652-1656.
    [62]Zhou, T. Y.; Rong, M. C.; Cai, Z. M.; Yang, C. J.; Chen, X. Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2- sensing. Nanoscale 2012,4,4103-4106.
    [63]Remya, K. P.; Udayabhaskararao, T.; Pradeep, T. Low-temperature thermal dissociation of Ag quantum clusters in solution and formation of monodisperse Ag2S nanoparticles. J. Phys. Chem. C2012,116,26019-26026.
    [64]Roy, S.; Banerjee, A. Amino acid based smart hydrogel:formation, characterization and fluorescence properties of silver nanoclusters within the hydrogel matrix. Soft Matter 2011,7,5300-5308.
    [65]Adhikari, B.; Banerjee, A. Short-peptide-based hydrogel:a template for the in situ synthesis of fluorescent silver nanoclusters by using sunlight. Chem. Eur. J.2010,16, 13698-13705.
    [66]Izatt, R. M.; Christensen, J. J.; Rytting, J. H. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides and nucleotides. Chem. Rev.1971,71,439-481.
    [67]Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc.2004,126,5207-5212.
    [68]Ritchie, C. M.; Johnsen, K. R.; Kiser, J. R.; Antoku, Y.; Dickson, R. M.; Petty, J. T. Ag nanocluster formation using a cytosine oligonucleotide template. J. Phys. Chem. C 2007,111,175-181.
    [69]Vosch, T.; Antoku, Y.; Hsiang, J. C.; Richards, C. I.; Gonzalez, J. I.; Dickson, R. M. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc. Natl. Acad. Sci.2007,104,12616-12621.
    [70]Sengupta, B.; Ritchie, C. M.; Buckman, J. G.; Johnsen, K. R.; Goodwin, P. M.; Petty, J. T. Base-directed formation of fluorescent silver clusters. J. Phys. Chem. C 2008,112, 18776-18782.
    [71]Richards, C. I.; Choi, S.; Hsiang, J. C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y. L.; Dickson, R. M. Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc.2008,130,5038-5039.
    [72]Zhou, J.; Yuan, G.; Liu, J. J.; Zhan, C. G. Formation and stability of G-quadruplexes self-assembled from guanine-rich strands. Chem. Eur. J.2007,13,945-949.
    [73]Patel, S. A.; Richards, C. I.; Hsiang, J. C.; Dickson, R. M. Water-soluble Ag nanoclusters exhibit strong two-photon-induced fluorescence. J. Am. Chem. Soc.2008, 130,11602-11603.
    [74]Gwinn, E. G.; O'Neill, P.; Guerrero, A. J.; Bouwmeester, D.; Fygenson, D. K. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv. Mater. 2008,20,279-283.
    [75]O'Neill, P. R.; Velazquez, L. R.; Dunn, D. G.; Gwinn, E. G.; Fygenson, D. K. Hairpins with poly-C loops stabilize four types of fluorescent Agn:DNA. J. Phys. Chem. C 2009,113,4229-4233.
    [76]Guo, W. W.; Yuan, J. P.; Dong, Q. Z.; Wang, E. K. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J. Am. Chem. Soc.,2010,132,932-934.
    [77]Yu, J.; Patel, S. A.; Dickson, R. M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew. Chem. Int. Ed.2007,46,2028-2030.
    [78]Xie, J. P.; Zheng, Y G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc.2009,131,888—889.
    [79]Xie, J. P.; Lee, J. Y.; Wang, D. I. C.; Ting, Y. P. Silver manoplates:from biological to biomimetic synthesis. ACSNano 2007,1,429-439.
    [80]Mathew, A.; Sajanlal, P. R.; Pradeep, T. A fifteen atom silver cluster confined in bovine serum albumin. J. Mater. Chem.2011,21,11205-11212.
    [81]Guo, C. L.; Irudayaraj, J. Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal. Chem.2011,83,2883-2889.
    [82]Shang, L.; Dorlich, R. M.; Trouillet, V.; Bruns, M.; Nienhaus, G U. Ultrasmall fluorescent silver nanoclusters:protein adsorption and its effects on cellular responses. Nano Res.2012,5,531-542.
    [83]Anand, U.; Ghosh, S.; Mukherjee, S. Toggling between blue- and red-emitting fluorescent silver nanoclusters. J. Phys. Chem. Lett.2012,3,3605-3609.
    [84]Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem.2011,83,1193-1196.
    [85]Narayanan, S. S.; Pal, S. K. Structural and functional characterization of luminescent silver-protein nanobioconjugates. J. Phys. Chem. C 2008,112,4874-4879.
    [86]Zhou, T. Y.; Huang, Y. H.; Li, W. B.; Cai, Z. M.; Luo, F.; Yang, J. C.; Chen, X. Facile synthesis of red-emitting lysozyme-stabilized Ag nanoclusters. Nanoscale 2012,4, 5312-5315.
    [87]Knight, W. D.; Clemenger, K.; Heer, W. A. D.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Electronic shell structure and abundances of sodium clusters. Physical Review Letters 1984,52,2141-2143.
    [88]Clemenger, K. Ellipsoidal shell structure in free-electron metal clusters. Physical Review B 1985,32,1359-1362.
    [89]Tao, Y; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G Poly(acrylic acid)-templated silver nanoclusters as a platform for dual fluorometric turn-on and colorimetric detection of mercury (II) ions. Talanta 2012,88,290-294.
    [90]Guo, W. W.; Yuan, J. P.; Dong, Q. Z.; Wang, E. K. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem. Commun.2009,3395-3397.
    [91]Deng, L.; Zhou, Z. X.; Li, J.; Li, T.; Dong, S. J. Fluorescent silver nanoclusters in hybridized DNA duplexes for the turn-on detection of Hg2+ ions. Chem. Commun. 2011,47,11065-11067.
    [92]Lan, G. Y.; Huang, C. C.; Chang, H. T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem. Commun.2010,46,1257-1259.
    [93]Zhang, M.; Ye, B. C. Label-free fluorescent detection of copper (Ⅱ) using DNA-templated highly luminescent silver nanoclusters. Analyst 2011,136,5139-5142.
    [94]Shahrokhian, S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal. Chem.2001,73,5972-5978.
    [95]Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D'Agostino, R. B.; Wilson, P. W.; Wolf, P. A. Plasma homocysteine as a risk Factor for dementia and alzheimer's disease. N. Engl. J. Med.2002,346,476-483.
    [96]Hong, R.; Han, G.; Fernandez, J. M.; Kim, B. J.; Forbes, N. S.; Rotello, V. M. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc.2006,128,1078-1079.
    [97]Shang, L.; Dong, S. J. Sensitive detection of cysteine based on fluorescent silver clusters. Biosens. Bioelectron.2009,24,1569-1573.
    [98]Han, B. Y.; Wang, E. K. Oligonucleotide-stabilized fluorescent silver nanoclusters for sensitive detection of biothiols in biological fluids. Biosens. Bioelectron.2011,26, 2585-2589.
    [99]Huang, Z. Z.; Pu, F.; Lin, Y. H.; Ren, J. S.; Qu, X. G Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds. Chem. Commun.2011,47,3487-3489.
    [100]Sun, S. K.; Wang, H. F.; Yan, X. P. A sensitive and selective resonance light scattering bioassay for homocysteine in biological fluids based on target-involved assembly of polyethyleneimine-capped Ag-nanoclusters. Chem. Commun.2011,47, 3817-3819.
    [101]Zhang, N.; Qu, F.; Luo, H. Q.; Li, N. B. Sensitive and selective detection of biothiols based on target-induced agglomeration of silver nanoclusters. Biosens. Bioelectron. 2013, 42,214-218.
    [102]Shiang, Y. C.; Huang, C. C.; Chang, H. T. Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chem. Commun.2009,3437-3439.
    [103]Jin, L. H.; Shang, L.; Guo, S. J.; Fang, Y. X.; Wen, D.; Wang, L.; Yin, J. Y.; Dong, S. J. Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens. Bioelectron.2011,26,1965-1969.
    [104]Wen, T.; Qu, F.; Luo, H. Q.; Li, N. B. Polyethyleneimine-capped silver nanoclusters as a fluorescence probe for sensitive detection of hydrogen peroxide and glucose. Anal. Chim. Acta 2012,749,56-62.
    [105]Lan, G. Y.; Chen, W. Y.; Chang, H. T. One-pot synthesis of fluorescent oligonucleotide Ag nanoclusters for specific and sensitive detection of DNA. Biosens. Bioelectron.2011,26,2431-2435.
    [106]Yeh, H. C.; Sharma, J.; Han, J. J.; Martinez, J. S.; Werner, J. H. A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett.2010,10,3106-3110.
    [107]Fernandez-Suarez, M.; Ting, A. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol 2008,9,929-943.
    [108]Wang, F.; Tan, W. B.; Zhang, Y; Fan, X.; Wang, M. Luminescent nanomaterials for biological labeling. Nanotechnology 2006,17, R1-R13.
    [109]Yu, J. H.; Choi, S.; Richards, C.I.; Antoku, Y.; Dickson, R.M. Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem. Photobiol. 2008, 84,1435-1439.
    [110]Antoku, Y.; Hotta, J.; Mizuno, H.; Dickson, R.M.; Hofkens, J.; Vosch, T. Transfection of living HeLa cells with fluorescent poly-cytosine encapsulated Ag nanoclusters. Photochem. Photobiol. Sci.2010,9,716-721.
    [1]Guo, W. W.; Yuan, J. P.; Wang, E. K. Oligonucleotide-stabilized Ag nanoclusters as novel Fluorescence Probes for the Highly Selective and Sensitive Detection of the Hg2+ ion. Chem. Commun.2009,3395-3397.
    [2]Lee, T. H.; Gonzalez, J. I.; Zheng, J.; Dickson, R. M. Single-molecule optoelectronics. Acc. Chem. Res.2005,38,534-541.
    [3]Vosch, T.; Antoku, Y.; Hsiang, J. C.; Richards, C. I.; Gonzalez, J. I.; Dickson, R. M. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc. Natl. Acad. Sci. U.S.A.2007,104,12616-12621.
    [4]Yu, J. H.; Choi, S. M.; Richards, C. I.; Antoku, Y.; Dickson, R. M. Live Cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem. Photobiol.2008,84, 1435-1439.
    [5]Zhang, N.; Qu, F.; Luo, H. Q.; Li, N. B. Sensitive and selective detection of biothiols based on target-induced agglomeration of silver nanoclusters. Biosens. Bioelectron. 2013,42,214-218.
    [6]Richards, C. I.; Choi, S.; Hsiang, J. C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y. L.; Dickson, R. M. Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc.2008,130,5038-5039.
    [7]Yu, J. H.; Choi, S.; Dickson, R. M. Shuttle-based fluorogenic silver-cluster biolabels. Angew. Chem., Int. Ed.2009,48,318-320.
    [8]Xu, H. X.; Suslick, K. S. Water-soluble fluorescent silver nanoclusters. Adv. Mater. 2010,22,1078-1082.
    [9]Zheng, J.; Dickson, R. M. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J. Am. Chem. Soc.2002,124,13982-13983.
    [10]Shang, L.; Dong, S. J. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Commun.2008,1088-1090.
    [11]Diez, I.; Pusa, M.; Kulmala, S.; Jiang, H.; Walther, A.; Goldmann, A. S.; Muller, A. H. E.; Ikkala, O.; Ras. R. H. A. Color tunability and electrochemiluminescence of Silver nanoclusters. Angew. Chem. Int. Ed.2009,48,2122-2125.
    [12]Liz-Marzan, L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006,22,32-41.
    [13]Xu, H. X.; Suslick, K. S. Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 2010,4,3209-3214.
    [14]Liu, S. H.; Lu, F.; Zhu, J. J. Highly fluorescent Ag nanoclusters:microwave-assisted green synthesis and Cr3+ sensing. Chem. Commun.2011,47,2661-2663.
    [15]Zhang, J. G.; Xu, S. Q.; Kumacheva, E. Photogeneration of fluorescent silver nanoclusters in polymer microgels. Adv. Mater.2005,17,2336-2340.
    [16]Shen, Z.; Duan, H. W.; Frey, H. Water-soluble fluorescent Ag nanoclusters obtained from multiarm atar poly(acrylic acid) as "molecular hydrogel" templates. Adv. Mater. 2007,19,349-352.
    [17]Rao, T. U. B.; Pradeep, T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem., Int. Ed.2010,49,3925-3929.
    [18]Rao, T. U. B.; Nataraju, B.; Pradeep, T. Ag9 quantum cluster through a solid-state route. J. Am. Chem. Soc.2010,132,16304-16307.
    [19]Yuan, X.; Luo, Z. T.; Zhang, Q. B.; Zhang, X. H.; Zheng, Y. G; Lee, J. Y.; Xie, J. P. Synthesis of Highly Fluorescent Metal (Ag, Au, Pt, and Cu) Nanoclusters by Electrostatically Induced Reversible Phase Transfer. ACS Nano 2011,5,8800-8808.
    [20]Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc.2004,126,5207-5212.
    [21]Ritchie, C. M.; Johnsen, K. R.; Kiser, J. R.; Antoku, Y.; Dickson, R. M.; Petty, J. T. Ag nanocluster formation using a cytosine oligonucleotide template. J. Phys. Chem. C 2007,111,175-181.
    [22]Sengupta, B.; Ritchie, C. M.; Buckman, J. G.; Johnsen, K. R.; Goodwin, P. M.; Petty, J. T. Base-directed formation of fluorescent silver clusters. J. Phys. Chem. C 2008,112, 18776-18782.
    [23]Richards, C. I.; Choi, S.; Hsiang, J. C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y. L.; Dickson, R. M. Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc.2008,130,5038-5039.
    [24]Guo, C. L.; Irudayaraj, J. Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal. Chem.2011,83,2883-2889.
    [25]Shang, L.; Dorlich, R. M.; Trouillet, V.; Bruns, M.; Nienhaus, G U. Ultrasmall fluorescent silver nanoclusters:protein adsorption and its effects on cellular responses. Nano Res.2012,5,531-542.
    [26]Anand, U.; Ghosh, S.; Mukherjee, S. Toggling between blue- and red-emitting fluorescent silver nanoclusters. J. Phys. Chem. Lett.2012,3,3605-3609.
    [27]Ershov, B. G.; Janata, E.; Henglein, A.; Fojtik, A. Silver atoms and clusters in aqueous solution:absorption spectra and the particle growth in the absence of stabilizing Ag+ ions. J. Phys. Chem.1993,97,4589-4594.
    [28]Henglein, A.; Mulvaney, P.; Linnert, T. Chemistry of Agn aggregates in aqueous solution:non-metallic oligomeric clusters and metallic particles. Faraday Discuss. 1991,92,31-44.
    [29]Ershov, B. G.; Henglein, A. Reduction of Ag+ on polyacrylate chains in aqueous solution. J. Phys. Chem. B 1998,102,10663-10666.
    [30]Linnert, T.; Mulvaney, P.; Henglein, A.; Weller, H. Long-lived nonmetallic silver clusters in aqueous solution:preparation and photolysis. J. Am. Chem. Soc.1990,112, 4657-4664.
    [31]Henglein, A. Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem.1993,97,5457-5471.
    [32]Chen, W. Y.; Lan, G Y.; Chang, H. T. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal. Chem.2011,83,9450-9455.
    [33]Zhang, M.; Ye, B. Label-free fluorescent detection of copper (Ⅱ) using DNA-templated highly luminescent silver nanoclusters. Analyst 2011,136,5139-5142.
    [34]Wen, T.; Qu, F.; Luo, H. Q.; Li, N. B. Polyethyleneimine-capped silver nanoclusters as a fluorescence probe for sensitive detection of hydrogen peroxide and glucose. Anal. Chim. Acta 2012,749,56-62.
    [35]Godbey, W. T.; Wu, K. K.; Hirasaki, G. J.; Mikos, A.G. Improved packing of poly (ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther. 1996,6, 1380-1388.
    [36]Hu, C.; Peng, Q.; Chen, F. J.; Zhong, A. L.; Zhuo, R. X. Low molecular weight polyethylenimine conjugated gold nanoparticles as efficient gene vectors. Bioconjugate Chem.2010,21,836-843.
    [37]Liu, Z. Z.; Zheng, M.; Meng, F. H.; Zhong, Z. Y. Non-viral gene transfection in vitro using endosomal pH-sensitive reversibly hydrophobilized polyethyleneimine. Biomaterials 2011,32,9109-9119.
    [38]Roesler, S.; Koch, F. P. V.; Schmeh, T.; Weissmann, N.; Seeger, W.; Gessler, T.; Kissel, T. Amphiphilic, low molecular weight poly(ethyleneimine) derivatives with enhanced stability for efficient pulmonary gene delivery. J Gene Med 2011,13,123-133.
    [39]Kim, H.; Namgung, R.; Singha, K.; Oh, I. K.; Kim, W. J. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjugate Chem.2011,22,2558-2567.
    [40]Habib, A.; Tabata, M.; Wu, Y. G. Formation of gold nanoparticles by Good's buffers. Bull. Chem. Soc. Jpn.2005,78,262-269.
    [41]Xie, J. P.; Lee, J. Y.; Wang, D. I. C. Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution. Chem. Mater.2007,19,2823-2830.
    [42]Sun, X. P.; Luo, Y. L. Preparation and size control of silver nanoparticles by a thermal method. Mater. Lett.2005,59,3847-3850.
    [43]Sun, R. W. Y.; Chen, R.; Chung, N. P. Y.; Ho, C. M.; Lin, C. L. S.; Che, C. M. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem. Commun.2005,40,5059-5061
    [44]Tan, S.; Erol, M.; Attygalle, A.; Du, H.; Sukhishvili, S. Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions. Langmuir 2007,23,9836-9843.
    [45]Zhang, J. X.; Xu, Q.; Ye, F.; Lin, Q. L.; Jiang, D. L.; Iwasa, M. Effect of citric acid on the adsorption behavior of polyethyleneimine (PEI) and the relevant stability of SiC slurries. Colloids and Surfaces A:Physicochem. Eng. Aspects 2006,276,168-175.
    [46]Rao, T. U. B; Pradeep, T. Luminescent Ag7 and Agg clusters by interfacial synthesis. Angew. Chem. Int. Ed. 2010,49,3925-3929.
    [47]Rao, T. U. B.; Nataraju, B.; Pradeep, T. Ag9 quantum cluster through a solid-state route. J. Am. Chem. Soc.2010,132,16304-16307.
    [48]Bootharaju, M. S.; Pradeep, T. Investigation into the reactivity of unsupported and supported Ag7 and Ag8 clusters with toxic metal ions. Langmuir 2011,27,8134-8143.
    [49]Fletcher, A. N. Quinine sulfate as a flurescence quantum yield standard. Photochem. Photobiol.9,439-444 (1969).
    [50]A Guide to Recording Fluorescence Quantum Yields, HORIBA Jobin Yvon Inc. http://www.jobinyyon.com/SiteResources/Data/MediaArchive/files/Fluorescence/appl ications/quantumyieldstrad.pdf (accessed December 28,2012).
    [51]Pastor-Perez, L.; Chen, Y.; Shen, Z.; Lahoz, A.; Stiriba, S. Unprecedented blue intrinsic photoluminescence from hyperbranched and linear polyethylenimines: polymer architectures and pH-effects. Macromol. Rapid Commun.2007,28, 1404-1409.
    [52]Guo, C. L.; Irudayaraj, J. Fluorescent Ag clusters via a protein-directed approach as a Hg (II) ion sensor. Anal. Chem.2011,83,2883-2889.
    [53]Huang, S.; Pfeiffer, C.; Hollmann, J.; Friede, S.; Chen, J. J. C.; Beyer, A.; Haas, B.; Volz, K.; Heimbrodt, W.; Martos, J. M. M.; Chang, W.; Parak, W. J. Synthesis and characterization of colloidal fluorescent silver nanoclusters. Langmuir 2012,28, 8915-8919.
    [54]Feng, L. Y.; Huang, Z. Z.; Ren, J. S.; Qu, X. G Toward site-specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds. Nucl. Acids Res.2012,40, e122.
    [55]Knight, W. D.; Clemenger, K.; Heer, W. A. D.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Electronic shell structure and abundances of sodium clusters. Physical Review Letters 1984,52,2141-2143.
    [56]Clemenger, K. Ellipsoidal shell structure in free-electron metal clusters. Physical Review B 1985,32,1359-1362.
    [57]Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble metal quantum dots. Annu Rev Phys Chem.2007,58,409-431.
    [58]Wu, Z. K.; Jin, R. C. On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett 2010,10,2568-2573.
    [1]Empedocles, S.; Bawendi M. Spectroscopy of single CdSe nanocrystallites. Acc. Chem. Res.1999,32,389-396.
    [2]Lee, T. H.; Gonzalez, J. I.; Zheng, J.; Dickson, R. M. Single-molecule optoelectronics. Acc. Chem. Res.2005,38,534-541.
    [3]Schaaff, T. G.; Knight, G.; Shafigullinet, M. N.; Borkman, R. F.; Whetten, R. L. Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J. Phys. Chem. B 1998,102,10643-10646.
    [4]Schaaff, T. G.; Whetten, R. L. Giant gold-glutathione cluster compounds:intense optical activity in metal-based transitions. J. Phys. Chem. B 2000,104,2630-2641.
    [5]Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble metal quantum dots. Annu Rev Phys Chem.2007,58,409-431.
    [6]Chaudhari, K.; Xavier, P. L.; Pradeep, T. Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS Nano 2011,5,8816-8827.
    [7]Lai, S. F.; Chen, W. C.; Wang, C. L.; Chen, H. H.; Chen, S. T.; Chien, C. C.; Chen, Y. Y.; Hung, W. T.; Cai, X. Q.; Li, E. R.; Kempson, I. M.; Hwu, Y.; Yang, C. S.; Tok, E. S.; Tan, H. R.; Lin, M.; Margaritondo, G One-pot tuning of Au nucleation and growth: from nanoclusters to nanoparticles. Langmuir 2011,27,8424-8429.
    [8]Biswas, K.; Varghese, N.; Rao, C. N. R. Growth kinetics of gold nanocrystals:a combined small-Angle X-Ray scattering and calorimetric study. Small 2008,4,649-655.
    [9]Richards, V. N.; Rath, N. P.; Buhro, W. E. Pathway from a molecular precursor to silver nanoparticles:the prominent role of aggregative growth. Chem. Mater.2010,22,3212-3225.
    [10]Polte, J.; Erler, R.; Thunemann, A. F.; Sokolov, S.; Ahner, T. T.; Rademann, K.; Emmerling, F.; Kraehnert, R. Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano 2010,4, 1076-1082.
    [11]Stamplecoskie, K. G.; Scaiano, J. C. Kinetics of the formation of silver dimers:early stages in the formation of silver nanoparticles. J. Am. Chem. Soc.2011,133,3913-3920.
    [12]Takesue, M.; Tomura, T.; Yamada, M.; Hata, K.; Kuwamoto, S.; Yonezawa, T. Size of elementary clusters and process period in silver nanoparticle formation. J. Am. Chem. Soc.2011,133,14164-14167.
    [13]Ryu, J. H.; Han, S. S.; Kim, D. H.; Henkelman, G.; Lee, H. M. Ligand-induced structural evolution of Pt55 nanoparticles:amine versus thiol. ACS Nano 2011,5, 8515-8522.
    [14]Ingham, B.; Lim, T. H.; Dotzler, C. J.; Henning, A.; Toney, M. F.; Tilley, R. D. How nanoparticles coalesce:an in situ study of Au nanoparticle aggregation and grain growth. Chem. Mater.2011,23,3312-3317.
    [15]Tan, S.; Erol, M.; Attygalle, A.; Du, H.; Sukhishvili, S. Tan, S.; Erol, M.; Attygalle, A.; Du, H.; Sukhishvili, S. Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions. Langmuir 2007,23,9836-9843.
    [16]Manoth, M.; Manzoor, K.; Patra, M. K.; Pandey, P.; Vadera, S. R.; Kumaret, N. Dendrigraft polymer-based synthesis of silver nanoparticles showing bright blue fluorescence. Mater. Res. Bull.2009,44,714-717.
    [17]Wu, S. M.; Han, L. H.; Chen, S. C. Three-dimensional selective growth of nanoparticles on a polymer microstructure. Nanotechnology 2009,20,285312-285316.
    [18]Wang, S. T.; Yan, J. C.; Chen, L. Formation of gold nanoparticles and self-assembly into dimer and trimer aggregates. Materials Letters 2005,59,1383-1386.
    [19]Note, C.; Kosmella, S.; Koetz, J. Poly (ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions. Colloid. Surface. A 2006,290,150-156.
    [20]Kuo, L. P..; Chen, W. F. Formation of silver nanoparticles under structured amino groups in pseudo-dendritic poly(allylamine) derivatives.J. Phys. Chem. B 2003,107, 11267-11272.
    [21]Sun, X. P.; Luo, Y. L. Preparation and size control of silver nanoparticles by a thermal method. Mater. Lett.2005,59,3847-3850.
    [22]Sun, S. K.; Wang, H. F.; Yan, X. P. A sensitive and selective resonance light scattering bioassay for homocysteine in biological fluids based on target-involved assembly of polyethyleneimine-capped Ag-nanoclusters. Chem. Commun.2011,47,3817-3819.
    [23]Sun, X. P.; Dong, S. J.; Wang, E. K. One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules 2004, 37,7105-7108.
    [24]Pulkkinen, P.; Shan, J.; Leppanen, K.; Kansakoski, A.; Laiho, A.; Jam, M.; Tenhu, H. Poly(ethyleneimine) and tetraethylenepentamine as protecting agents for metallic copper nanoparticles. Mater. Interfaces 2009,1,519-525.
    [25]Koupanou, E.; Ahualli, S.; Glatter,O.; Delgado, A.; Krumeich, F.; Leontidis, E. Stabilization of lead sulfide nanoparticles by polyamines in aqueous solutions. A structural study of the dispersions. Langmuir 2010,26,16909-16920.
    [26]Sun, S. H.; Anders, S.; Hamann, H. F.; Thiele, J. U; Baglin, J. E. E.; Thomson, T.; Fullerton, E. E.; Murray, C. B.; Terris, B. D. Polymer mediated self-assembly of magnetic nanoparticles. J. Am. Chem. Soc.2002,124,2884-2885.
    [27]Duan, H; Nie, S. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers:a new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc.2007,129,2412-2413.
    [28]Rao, T. U. B; Pradeep, T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem. Int. Ed. 2010,49,3925-3929.
    [29]Xavier, L. G.; Spies, C.; Daum, N.; Jung, G.; Schneider, M. Highly fluorescent silver nanoclusters stabilized by glutathione:a promising fluorescent label for bioimaging. Nano Res.2012,5,379-387.
    [30]Yuan, X.; Luo, Z. T.; Zhang, Q. B.; Zhang, X. H.; Zheng, Y. G; Lee, J. Y.; Xie, J. P. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011,5,8800-8808.
    [31]Muhammed, M. A. H.; Aldeek, F.; Palui, G.; Trapiella-Alfonso, L.; Mattoussi, H. Growth of in situ functionalized luminescent silver nanoclusters by direct reduction and size focusing. ACS Nano 2012,6,8950-8961.
    [32]Godbey, W. T.; Wu, K. K.; Hirasaki, G J.; Mikos, A.G Improved packing of poly (ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther.1996,6, 1380-1388.
    [33]Hu, C.; Peng, Q.; Chen, F. J.; Zhong, A. L.; Zhuo, R. X. Low molecular weight polyethylenimine conjugated gold nanoparticles as efficient gene vectors. Bioconjugate Chem.2010,21,836-843.
    [34]Liu, Z. Z.; Zheng, M.; Meng, F. H.; Zhong, Z. Y. Non-viral gene transfection in vitro using endosomal pH-sensitive reversibly hydrophobilized polyethyleneimine. Biomaterials 2011,32,9109-9119.
    [35]Roesler, S.; Koch, F. P. V.; Schmeh, T.; Weissmann, N.; Seeger, W.; Gessler, T.; Kissel, T. Amphiphilic, low molecular weight poly(ethyleneimine) derivatives with enhanced stability for efficient pulmonary gene delivery. J Gene Med 2011,13,123-133.
    [36]Kim, H.; Namgung, R.; Singha, K.; Oh, I. K.; Kim, W. J. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjugate Chem.2011,22,2558-2567.
    [37]Yao, J. H.; Elder, K. R.; Guo, H.; Grant, M. Theory and simulation of Ostwald ripening. Phys. Rev. B 1993,47,14110.
    [38]Alloyeau, D.; Prevot, G.; Bouar, Y. L.; Oikawa, T.; Langlois, C.; Loiseau, A.; Ricolleau, C. Ostwald ripening in nanoalloys:when thermodynamics drives a size-dependent particle composition. Phys. Rev. Lett.2010,105,255901.
    [39]Ershov, B. G.; Janata, E.; Henglein, A.; Fojtik, A. Silver atoms and clusters in aqueous solution:absorption spectra and the particle growth in the absence of stabilizing Ag+ ions. J. Phys. Chem.1993,97,4589-4594.
    [40]Henglein, A.; Mulvaney, P.; Linnert, T. Chemistry of Agn aggregates in aqueous solution:non-metallic oligomeric clusters and metallic particles. Faraday Discuss. 1991,92,31-44.
    [41]Ershov, B. G.; Henglein, A. Reduction of Ag+ on polyacrylate chains in aqueous solution. J. Phys. Chem. B 1998,102,10663-10666.
    [42]Linnert, T.; Mulvaney, P.; Henglein, A.; Weller, H. Long-lived nonmetallic silver clusters in aqueous solution:preparation and photolysis. J. Am. Chem. Soc.1990,11-2, 4657-4664.
    [43]Henglein, A. Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal Particles, and the atom-to-metal transition. J. Phys. Chem.1993,97,5457-5471.
    [44]Rao, T. U. B.; Nataraju, B.; Pradeep, T. Ag9 quantum cluster through a solid-state route. J. Am. Chem. Soc.2010,132,16304-16307.
    [45]Bootharaju, M. S.; Pradeep, T. Investigation into the reactivity of unsupported and supported Ag7 and Ag8 clusters with toxic metal ions. Langmuir 2011,27,8134-8143.
    [46]Li, X.; Lenhart, J. J.; Walker, H. W. Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 2010,26,16690-16698.
    [47]Yin, Y. D.; Li, Z. Y.; Zhong, Z. Y.; Gates, B.; Xia, Y N.; Venkateswaranc, S. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J. Mater. Chem.2002,12,522-527.
    [48]Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Digestive-ripening agents for gold nanoparticles:alternatives to thiols. Chem. Mater.2003,15,935-942.
    [49]Hyning, D. L. V.; Klemperer, W. C.; Zukoski, C. F. Silver nanoparticle formation: predictions and verification of the aggregative growth model. Langmuir 2001,17, 3128-3135.
    [1]Zheng, J.; Petty, J. P.; and Robert M. Dickson, R. M. High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc.2003,125,7780-7781.
    [2]Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc.2009,131,888-889.
    [3]Peyser, L. A.; Vinson, A. E.; Bartko, A. P.; Dickson, R. M. Photoactivated fluorescence from individual silver nanoclusters. Science 2001,29,103-106.
    [4]Tang, Z. H.; Xu, B.; Wu, B. H.; Germann, M. W.; Wang, G. L. Synthesis and structural determination of multidentate 2,3-dithiol-stabilized Au clusters. J. Am. Chem. Soc.2010,132,3367-3374.
    [5]Lin, C. J.; Yang, T. Y.; Lee, C. H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J. L.; Wang, H. H.; Yeh, H. I.; Parak, W. J.; Chang, W. H. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009,3,395-401
    [6]Huang, C. C.; Chiang, C. K.; Lin, Z. H.; Lee, K. H.; Chang, H. T. Bioconjugated gold Nanodots and nanoparticles for protein assays based on photoluminescence quenching. Anal. Chem.2008,80,1497-1504.
    [7]Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater.2008,7,442-453.
    [8]Liz-Marzan, L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006,22,32-41.
    [9]Diez, I.; Pusa, M.; Kulmala, S.; Jiang, H.; Walther, A.; Goldmann, A. S.; Muller, A. H. E.; Ikkala, O.; Ras. R. H. A. Color tunability and electrochemiluminescence of Silver nanoclusters. Angew. Chem. Int. Ed. 2009,48,2122-2125.
    [10]Diez, I.; Kanyuk, M. I.; Demchenko, A. P.; Walther, A.; Jiang, H.; Ikkala, O.; Ras. R. H. A. Blue, green and red emissive silver nanoclusters formed in organic solvents. Nanoscale 2012,4, 4434-4437.
    [11]Patel, S. A.; Cozzuol, M.; Hales, J. M.; Richards, C. I.; Sartin, M.; Hsiang, J. C.; Vosch, T.; Perry J. W.; Dickson, R. M. Electron transfer-induced blinking in Ag nanodot fluorescence. J. Phys. Chem. C 2009,113,20264-20270.
    [12]Rao, T. U. B.; Pradeep, T. Luminescent Ag7 and Agg Clusters by interfacial synthesis. Angew. Chem. Int. Ed.2010,49,3925-3929.
    [13]Muhammed, M. A. H.; Aldeek, F.; Palui, G.; Trapiella-Alfonso, L.; Mattoussi, H. Growth of in situ functionalized luminescent silver nanoclusters by direct reduction and size focusing. ACS Nano 2012,6,8950-8961.
    [14]Dhami, S.; Mello, A. J. D.; Rumbles, G.; Bishop, S. M.; Phillips, D.; Beeby, A. Phthalocyanine fluorescence at high concentration:dimmers or reabsorption effect? Photochem. Photobiol.1995,61,341-346.
    [15]Lippert, E. Spectroscopic determination of the dipole moment of aromatic compounds in the first excited singlet state. Z. Elektrochem.61,962-975 (1957).
    [16]Acemioglua, B.; Arika, M.; Efeoglub, H.; Onganer, Y. Solvent effect on the ground and excited state dipole moments of fluorescein. J. Mol. Struct. (Theochem) 2001,548,165-171.
    [17]Fletcher. A. N. Quinine sulfate as a flurescence quantum yield standard. Photochem. Photobiol.1969,9,439-444.
    [18]A Guide to Recording Fluorescence Quantum Yields, HORIBA Jobin Yvon Inc. http://www.jobinyyon.com/SiteResources/Data/MediaArchive/files/Fluorescence /applications/quantumyieldstrad.pdf (accessed April 3,2012).
    [19]Wu, Z. K.; Jin, R. C. On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett 2010,10,2568-2573.
    [20]Rakshit, S.; Saha, R.; Verma, P. K.; Pal, S. K. Role of solvation dynamics in excited state proton transfer of 1-naphthol in nanoscopic water clusters formed in a hydrophobic solvent. Photochem Photobiol 2012,88,851-859.
    [21]Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble metal quantum dots. Annu Rev Phys Chem.2007,58,409-431.
    [1]Liu, Y. L.; Ai, K. L.; Cheng, X. L.; Huo, L. H.; Lu, L. H. Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv. Funct. Mater.2010,20,951-956.
    [2]Bootharaju, M. S.; Pradeep, T. Investigation into the reactivity of unsupported and supported Ag7 and Ag8 clusters with toxic metal ions. Langmuir 2011,27, 8134-8143.
    [3]Zhang, M.; Ye, B. C. Label-free fluorescent detection of copper(Ⅱ) using DNA-templated highly luminescent silver nanoclusters. Analyst 2011,136,5139-5142.
    [4]Wen, F.; Dong, Y. H.; Feng, L.; Wang, S.; Zhang, S. C.; Zhang, X. R. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem.2011,83,1193-1196.
    [5]Fillingame, R. H. Molecular rotary motors. Science 1999,286,1687-1688.
    [6]Snee, P. T.; Somers, R. C.; Nair, G.; Zimmer, J. P.; Bawendi, M. G.; Nocera, D. G. A ratiometric CdSe/ZnS nanocrystal pH sensor. J. Am. Chem. Soc.2006,128, 13320-13321.
    [7]Tomasulo, M.; Yildiz, I.; Raymo, F. M. pH-Sensitive Quantum Dots. J. Phys. Chem. B 2006,110,3853-3855.
    [8]Deng, Z. T.; Zhang, Y.; Yue, J. C.; Tang, F. Q.; Wei, Q. Green and orange CdTe quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. J. Phys. Chem. B 2007,111,12024-12031.
    [9]Liu, Y. S.; Sun, Y. H.; Vernier P. T.; Liang, C. H.; Chong, S. Y. C.; Gundersen, M. A. pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J. Phys. Chem. C 2007,111,2872-2878.
    [10]Jin, T.; Sasaki, A,; Kinjo, M.; Miyazaki, J. A quantum dot-based ratiometric pH sensor. Chem. Commun.2010,46,2408-2410.
    [11]Tang, R.; Lee, H.; Achilefu, S. Induction of pH sensitivity on the fluorescence lifetime of quantum dots by NIR fluorescent dyes. J. Am. Chem. Soc.2012,134, 4545-4548.
    [12]Zheng, J.; Stevenson, M. S.; Hikida, R. S.; Patten. P. G. V. Influence of pH on dendrimer-protected nanoparticles. J. Phys. Chem.B 2002,106,1252-1255.
    [13]Kozlovskaya, V.; Kharlampieva, E.; Chang, S.; Muhlbauer, R.; Tsukruk, V. V. pH-responsive layered hydrogel microcapsules as gold nanoreactors. Chem. Mater.2009,21,2158-2167.
    [14]Kim, K.; Lee, J. W.; Choi, J. Y.; Shin, K. S. pH effect on surface potential of polyelectrolytes-capped gold nanoparticles probed by surface-enhanced Raman scattering. Langmuir 2010,26,19163-19169.
    [15]Lei, J. Y.; Wang, L. Z.; Zhang, J. L. Ratiometric pH sensor based on mesoporous silica nanoparticles and Forster resonance energy transfer. Chem. Commun.2010, 46,8445-8447.
    [16]Yu, M. X.; Zhou, C.; Liu, J. B.; Hankins, J. D.; Zheng, J. Luminescent gold nanoparticles with pH-dependent membrane adsorption. J. Am. Chem. Soc.2011, 133,11014-11017.
    [17]Saha, S.; Chakraborty, K.; Krishnan, Y. Tunable, colorimetric DNA-based pH sensors mediated by A-motif formation. Chem. Commun.2012,45,2513-2515.
    [18]Chen, X.; Cheng, X. Y.; Gooding, J. J. Multifunctional modified silver nanoparticles as ion and pH sensors in aqueous solution. Analyst 2012,137, 2338-2343.
    [19]Nagaya, J.; Homma, M.; Tanioka, A.; Minakata, A. Relationship between protonation and ion condensation for branched poly(ethylenimine). Biophys. Chem.1996,60,45-51.
    [20]Borkovec, M.; Koper, G. J. M. Proton binding characteristics of branched polyelectrolytes. Macromolecules 1997,30,2151-2158.
    [21]Godbey, W. T.; Wu, K. K.; Hirasaki, G. J.; Mikos, A. G. Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency. Gene Therapy 1996,6,1380-1388.
    [22]Liu, Z. Z.; Zheng, M.; Meng, F. H.; Zhong, Z. Y. Non-viral gene transfection in vitro using endosomal pH-sensitive reversibly hydrophobilized polyethyleneimine. Biomaterials 2011,32,9109-9119.
    [23]Kim, H.; Namgung, R.; Singha, K.; Oh, I. K.; Kim, W. J. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjugate Chem.2011,22,2558-2567.
    [24]Vosch, T.; Antoku, Y.; Hsiang, J. C.; Richards, C. I.; Gonzalez J. I.; Dickson, R. M. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc. Natl. Acad. Sci.2007,104,12616-12621.
    [25]Ershov, B. G.; Janata, E.; Henglein, A.; Fojtik, A. Silver atoms and clusters in aqueous solution:absorption spectra and the particle growth in the absence of stabilizing Ag+ions.J. Phys. Chem.1993,97,4589-4594.
    [26]Henglein, A.; Mulvaney, P.; Linnert, T. Chemistry of Agn aggregates in aqueous solution:non-metallic oligomeric clusters and metallic particles. Faraday Discuss.1991,92,31-44.
    [27]Ershov, B. G.; Henglein, A. Reduction of Ag+on polyacrylate chains in aqueous solution. J. Phys. Chem. B 1998,102,10663-10666.
    [28]Linnert, T.; Mulvaney, P.; Henglein, A.; Weller, H. Long-lived nonmetallic silver clusters in aqueous solution:preparation and photolysis. J. Am. Chem. Soc. 1990,112,4657-4664.
    [29]Henglein, A. Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem.1993,97,5457-5471.
    [30]Griffiths, P. C.; Paul, A.; Stilbs, P.; Petterson E. Charge on poly(ethylene imine): comparing electrophoretic NMR measurements and pH titrations. Macromolecules 2005,38,3539-3542.
    [31]Crea, F.; Stefano, C. D.; Porcino, N.; Sammartano, S. Sequestering ability of phytate towards protonated BPEI and other polyammonium cations in aqueous solution. Biophys. Chem.2008,136,108-114.
    [32]Song, T.; Dai, S.; Tam, K. C.; Lee, S. Y.; Goh, S. H. Aggregation behavior of C60-end-capped poly(ethylene oxide)s. Langmuir 2003,19,4798-4803.
    [33]Sharma, K. P.; Choudhury, C. K.; Srivastava, S.; Davis, H.; Rajamohanan, P. R.; Roy, S.; Kumaraswamy, G. Assembly of polyethyleneimine in the hexagonal mesophase of nonionic surfactant:effect of pH and temperature. J. Phys. Chem. B 2011,115,9059-9069.
    [34]Wu, C. F. pH response of conformation of poly(propylene imine) dendrimer in water:a molecular simulation study. Mol. Simul.2010,36,1164-1172.
    [35]Welch, P.; Muthukumar, M. Tuning the density profile of dendritic polyelectrolytes. Macromolecules 1998,31,5892-5897.
    [36]Liu, Y.; Bryantsev, V. S.; Diallo, M. S.; Goddard III, W. A. PAMAM dendrimers undergo pH responsive conformational changes without swelling. J. Am. Chem. Soc.2009,131,2798-2799.
    [37]Li, X.; Lenhart, J. J.; Walker, H. W. Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 2010,26,16690-16698.
    [38]Pande, S.; Crooks, R. M. Analysis of poly(amidoamine) dendrimer structure by UV-vis spectroscopy. Langmuir 2011,27,9609-9613.
    [1]Cohen, T. S.; Prince, A. Cystic fibrosis:a mucosal immunodeficiency syndrome. Nat. Med. 2012,18,509-519.
    [2]Nitu, M.; Montgomery, G.; Eigen, H. Acid-Base Disorders. Pediatr. Rev.2011,32, 240-251.
    [3]Azizi, F.; Hedayati, M.; Rahmani, M.; Sheikholeslam, R.; Allahverdian, S.; Salarkia, N. Reappraisal of the risk of iodine-induced hyperthyroidism:an epidemiological population survey. JEndocrinol Invest.2005,28,23-29.
    [4]Leeuwen, F. X. R.; Sangster, B; Hildebrandt, A. G. The toxicology of the bromide ion. Crit. Rev. Toxicol.1987,18,189-213.
    [5]Villagran, C.; Deetlefs, M.; Pitner, W. R.; Hardacre, C. Quantification of halide in ionic liquids using ion chromatography. Anal. Chem.2004,76,2118-2123.
    [6]Hao, F. P.; Haddad, P. R.; Ruther, T. IC determination of halide impurities in ionic liquids. Chromatographia 2008,67,495-498.
    [7]Malongo, T. K.; Patris, S.; Macours, P.; Cotton, F.; Nsangu, J.; Kauffmann, J. Highly sensitive determination of iodide by ionchromatography with amperometric detection at a silver-based carbon paste electrode. Talanta 2008,76. 540-547.
    [8]Gilday, L. C.; White, N. G.; Beer, P. D. Triazole- and triazolium-containing porphyrin-cages for optical anion sensing. Dalton Trans.2012,41,7092-7097'.
    [9]Li, E. Y.; Lin, L.; Wang, L.; Pei, M. S.; Xu, J. K.; Zhang. G. Y. Synthesis of a new cationic polythiophene derivative and its application for colorimetric and fluorometric detection of iodide ion and anionic surfactants in water. Macromol. Chem. Phys.2012,213,887-892.
    [10]Caballero, A.; Zapata, F.; White, N. G.; Costa. P. J.; Felix, V.; Bee, P. D. A halogen-bonding catenane for anion recognition and sensing. Angew. Chem. 2012,124,1912-1916.
    [11]Trnkova, L.; Adam, V.; Hubalek, J.; Babula. P.; Kizek, R. Amperometric sensor for detection of chloride ions. Sensors 2008,8,5619-5636.
    [12]Zahran, E. M.; Hua, Y.; Lee, S.; Flood, A. H.; Bachas, L. G. Ion-selective electrodes based on a pyridyl-containing triazolophane:altering halide selectivity by combining dipole-promoted cooperativity with hydrogen bonding. Anal. Chem.2011,83,3455-3461.
    [13]Chiu, M. H.; Cheng, W. L.; Muthuraman, G.; Hsu, C. T.; Chung, H. H.; Zen, J. M. A disposable screen-printed silver strip sensor for single drop analysis of halide in biological samples. Biosens. Bioelectron.2009,24,3008-3013.
    [14]Qin, X.; Wang, H. C.; Miao, Z. Y.; Wang, X. S.; Fang, Y. X.; Chen, Q.; Shao, X. G. Synthesis of silver nanowires and their applications in the electrochemical detection of halide. Talanta,2011,84,673-678
    [15]Kumar, A.; Chhatra, R. K.; Pandey, P. S. Synthesis of click bile acid polymers and their application in stabilization of silver nanoparticles showing iodide sensing property. Org. Lett.,2010,12,24-27.
    [16]Graefe, A.; Stanca, S. E.; Nietzsche, S.; Kubicova, L.; Beckert, R.; Biskup, C.; Mohr, G. J. Development and critical evaluation of fluorescent chloride nanosensors. Anal. Chem.2008,80,6526-6531.
    [17]Ruedas-Rama, M. J.; Orte, A.; Hall, E. A. H.; Alvarez-Pez, J. M.; Talavera, E. M. A chloride ion nanosensor for time-resolved fluorimetry and fluorescence lifetime imaging. Analyst 2012,137,1500-1508.
    [18]Vivek, J. P.; Burgess, I. J. Insight into chloride induced aggregation of DMAP-monolayer protected gold nanoparticles using the thermodynamics of ideally polarized electrodes. J. Phys. Chem. C 2008,112,2872-2880.
    [19]Zhang, J.; Xu, X. W.; Yang, C.; Yang, F.; Yang; X. R. Colorimetric iodide recognition and sensing by citrate-stabilized core/shell Cu@Au nanoparticles. Anal. Chem.2011,83,3911-3917.
    [20]Zhang, J.; Yuan, Y.; Xu, X. W.; Wang, X. L.; Yang, X. R. Core/shell Cu@Ag nanoparticle:a versatile platform for colorimetric visualization of inorganic anions. ACS Appl. Mater. Interfaces 2011,3,4092-4100.
    [21]Jiang, X. C.; Yu, A. B. Silver nanoplates:a highly sensitive material toward inorganic anions. Langmuir 2008,24,4300-4309.
    [22]Jin, J. Y.; Ouyang, X. Y.; Li, J. S.; Jiang, J. H; Wang, H.; Wang, Y. X.; Yang, R. H. Nucleic acid-modulated silver nanoparticles:A new electrochemical platform for sensing chloride ion. Analyst 2011,136,3629-3634.
    [23]Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble metal quantum dots. Annu Rev Phys Chem.2007,58,409-431.
    [24]Schaaff, T. G.; Knight, G.; Shafigullinet, M. N.; Borkman, R. F.; Whetten, R. L. Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound.J. Phys. Chem. B 1998,102,10643-10646.
    [25]Lee, T. H.; Gonzalez, J. I.; Zheng, J.; Dickson, R. M. Single-molecule optoelectronics. Acc. Chem. Res.2005,38,534-541.
    [26]Zhou, T. Y.; Rong, M. C.; Cai, Z. M.; Yang, C. J.; Chen, X. Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2' sensing. Nanoscale 2012,4,4103-4106.
    [27]Guo, C. L.; Irudayaraj, J. Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal. Chem.2011,83,2883-2889.
    [28]Chen, W. Y.; Lan, G. Y.; Chang, H. T. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal. Chem.2011,83, 9450-9455.
    [29]Godbey, W. T.; Wu, K. K.; Hirasaki, G. J.; Mikos, A. G. Improved packing of poly (ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther.1996,6,1380-1388.
    [30]Liu, Z. Z.; Zheng, M.; Meng, F. H.; Zhong, Z. Y. Non-viral gene transfection in vitro using endosomal pH-sensitive reversibly hydrophobilized polyethyleneimine. Biomaterials 2011,32,9109-9119.
    [31]Kim, H.; Namgung, R.; Singha, K.; Oh, I. K.; Kim, W. J. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjugate Chem.2011,22,2558-2567.
    [32]Dong, Y. Q.; Wang, R. X.; Li, G. L.; Chen, C. Q.; Chi, Y. W.; Chen. G. L. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper Ions. Anal. Chem.2012,84,6220-6224.
    [33]Nagaya, J.; Homma, M.; Tanioka, A.; Minakata, A. Relationship between protonation and ion condensation for branched poly(ethylenimine). Biophys. Chem.1996,60,45-51.
    [34]Borkovec, M.; Koper, G. J. M. Proton binding characteristics of branched polyelectrolytes. Macromolecules 1997,30,2151-2158.
    [35]Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y. Large-scale synthesis of Silver nanocubes:The role of HC1 in promoting cube perfection and monodispersity. Angew. Chem.2005,117,2192-2195.
    [36]Ershov, B. G.; Janata, E.; Henglein, A.; Fojtik, A. Silver atoms and clusters in aqueous solution:absorption spectra and the particle growth in the absence of stabilizing Ag+ions. J. Phys. Chem.1993,97,4589-4594.
    [37]Henglein, A.; Mulvaney, P.; Linnert, T. Chemistry of Agn aggregates in aqueous solution:non-metallic oligomeric clusters and metallic particles. Faraday Discuss.1991,92,31-44.
    [38]Ershov, B. G.; Henglein, A. Reduction of Ag+ on polyacrylate chains in aqueous solution. J. Phys. Chem. B 1998,102,10663-10666.
    [39]Linnert, T.; Mulvaney, P.; Henglein, A.; Weller, H. Long-lived nonmetallic silver clusters in aqueous solution:preparation and photolysis. J. Am. Chem. Soc. 1990,112,4657-4664.
    [40]Henglein, A. Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem.1993,97,5457-5471.
    [41]Yin, Y. D.; Li, Z. Y.; Zhong, Z. Y.; Gates, B.; Xia, Y. N.; Venkateswaranc, S. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles trough the Tollens process. J. Mater. Chem.2002,12,522-527.
    [42]Li, X.; Lenhart, J. J.; Walker, H. W. Aggregation behavior of C60-end-capped polyethylene oxide)s. Langmuir 2010,26,16690-16698.
    [43]Espinoza, M. G.; Hinks, M. L.; Mendoza, A. M.; Pullman, D. P.; Peterson, K. I. Kinetics of halide-induced decomposition and aggregation of silver nanoparticles. J. Phys. Chem. C 2012,116,8305-8313.
    [44]Song, T.; Dai, S.; Tam, K. C.; Lee, S. Y.; Goh, S. H. Langmuir 2003,19,4798-4803.
    [45]Kapoor, S. Preparation, characterization, and surface modification of silver particles. Langmuir 1998,14,1021-1025.
    [46]Iski, E. V.; El-Kouedi, M.; Calderon, C.; Wang, F.; Bellisario, D. O.; Ye, T.; Sykes, E. C. H. The extraordinary stability imparted to silver monolayers by chloride. Electrochim. Acta 2011,56,1652-1661.
    [47]Berry, C. R. Growth of silver filaments and dendrites. J. Opt. Soc. Am.1950,40, 615-617.
    [48]Cheng, W. L.; Dong,S. J.; Wang, E. K. Iodine-induced gold-nanoparticle fusion/fragmentation/aggregation and iodine-linked nanostructured assemblies on a glass substrate. Angew. Chem.2003,115,465-468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700