PIC-MCC法模拟圆柱形朗缪尔探针鞘层区等离子体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于低压、稳定等离子体的诊断,应用最多的仍然是探针法,其中以朗缪尔探针最为人们所熟悉。朗缪尔探针作为20世纪20年代出现的一种等离子体诊断方法及工具,具有设备简单,使用方便的特点,而且它的诊断能力也比较强,诊断得到的信息也比较丰富,适用的范围除主要在低温低压等离子体领域外还在逐渐扩大。朗缪尔探针设备简单的优点也带来了弊端,就是抗干扰性较差,采集数据的过程中很容易受到干扰。计算机的出现在世界范围内引起了科技革命,利用计算机技术进行复杂的数据处理已经成为一种趋势,数值模拟在科学研究中的地位和实用性已经凸显出来,关于朗缪尔探针的计算机数值模拟也在不断发展。
     本文以圆柱形朗缪尔探针为模型基础。建立一个PIC-MCC模型,将探针浸入Ar等离子体中,不考虑等离子体与预鞘层之间的“过渡层”,并且为了验证模型,将所得的低压Ar等离子体的模拟结果与Sternovsky等人的理论结果和实验结果进行比较。关于假设电子与离子的热能(温度)的比值问题和波尔兹曼电子分布也有所讨论。
     以往的学者都是采作传统的流体动力学模型或蒙特卡罗模型,这样在模型的建立上,就人为地增加了计算误差。与以往的研究不同之处是,本文采用PIC-MCC模型,用PIC法进行数值计算,用蒙特卡罗截面法处理碰撞过程,可以减小一些人为的误差,所以我们的模拟结果比理论分析更接近于实验研究的结果。
The Langmuir probe is a well-established diagnostic tool for low-pressure, stationary plasma. As a plasma diagnostic method and tool which occurred in the 1920s, Langmuir probe is simple equipment, easy-to-use features, and its diagnostic capability is also relatively strong, and one can get rich information from the diagnosis, and the scope of its application mainly in the field of low-temperature low-pressure plasma is gradually expanding. There are drawbacks coming after the benefits of the simple equipment of the Langmuir probe, such as poor in interference and vulnerable to interference in the process of collecting data. The emergence of computers in the world brought on a science and technology revolution, and the use of computer technology for solving complex data has become a trend, so using computer programming method in the data processing of the Langmuir probe diagnosis can greatly improve efficiency and increase accuracy. The importance of numerical simulation for study is well known, and numerical simulations of Langmuir probe were developed.
     Our PIC-MCC model was based on cylindrical Langmuir probes, and in Ar plasma. The "buffer zone" between the plasma bulk and presheath zone is not considered and a more precise algorithm for the species'orbiting motion in the sheath and absorption on the probe surface is applied. Moreover, in order to verify the model, the results concerning low-pressure Ar plasma are compared here with the experimental and other theoretical results of Sternovsky et al. Also, the assumptions about the ratio of electron to ion thermal (temperature) energy and Boltzmann electron profile are discussed.
     At present, hybrid model and the Monte-Carlo method are used in most cases, but with them there are a lot of errors in the results. So, we used PIC method to solve the equations exactly, and used MCC method and the knowledge of collision cross sections for all possible collisions. The agreements between our results with the experimental results are better than the extended OML theoretical results.
引文
1.徐家鸾,金尚宪.等离子体物理学[M].北京:原子能出版社,1981,13-15.
    2.金佑民,樊友三.低温等离子体物理基础[M].北京:清华大学出版社,1983,2-4
    3.T.J.M.博伊德,J.J桑德森着;戴世强,陆志去译.等离子体动力学[M].北京:科学出版社,1977,331-334.
    4.杨津基.气体放电[M],北京:科学出版社,1983,145-292
    5.彭国贤.等离子体物理的应用—气体放电[M],上海:知识出版社,1982,170-204
    6.江剑平等.阴极电子学与气体放电原理[M],北京:国防工业出版社,1980,334-359
    7. 巴巴得.扎哈亮宾,库兹涅佐夫着;李凤照,刘大桑,张富厚,何锡祥,王世清译.辉光放电化学热处理[M],北京:机械工业出版社,1985,8-47
    8. S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood. Handbook of Plasma Processing Technology.Noyes Publication [J], Appl.Phys,1990,80:256-261
    9. M. A. Lieberman and A. J. Lichtenberg. Principles of plasma discharges and materials processing [J], John Wiley and Sons, Inc.,1994. ISBN 0-471-00577-0
    10. C. Wild and P. Koidl. Ion and electron dynamics in the sheath of radio frequency glow discharges [J], Appl. Phys,1991,69:2909-2922
    11. J. W Cobum and H. E Winters. Ion-and electron-assisted gas-surface chemistry-an important effect in plasma etching [J], Appl. Phys.,1979,50:3189-3193
    12. J.R.Roth.工业等离子体工程Ⅰ:基本原理[M].北京:科学出版社,1998,12.
    13. Langmuir, I. and H. M. Mott-Smith, [J]. Gen. Elec. Rev.26,1923:731; 27,1924: 449,583,616,726,810;Phys.Rev.28,1926:727.
    14. Druyvesteyn, M. J., Z.[J] physic,1930,64:781.
    15. J.P.Boeuf. Model of rf glow discharges [J], Physical Review A,1987,36:2782-2792
    16. Gogelides E&Srwin H H.Continuum modeling of radio-frequency glow discharge [J], Appl Phys,1992,72:3971-4002
    17. D P Lymberomoulos & D J Economous. Modeling and simulation of glow discharge plasma reactors [J], Vac.Sci.Tech.A,1994,12:1229-1236
    18. Mantzaris N V,Boudouris A & Gogolides E. Radio frequency plasma in CF4 self-consistent modeling of the plasma physics and chemistry [J], Appl Phys,1995,77: 6169-6180
    19. Albert D.Richards,Brain E.Thompson.and Herbert H.Sawin. Continuum modeling of argon radio frequency glow discharges [J], Appl.Phys.Lett,1987,50:492-494
    20.毛友德,刘艳,金传恩.辉光放电等离子体鞘层的计算机模拟[J],光电子技术,2001,21: 109-115
    21. K Nanbu & Y Kitatani. An ion-beutral species collision model for particle simulation of glow discharge [J], phys,D,Appl phys,1995,28:324-330
    22. Bogaerts A, Straten M V & Gijbels R. Description of thermalization process of the sputtered atoms in a glow discharge using a three-dimensional Monte-Carlo method [J], Appl.Phys,1995,77:1868-1874
    23. K Miyamoto. Plasma Physics for Nuclear Fusion [M], MIT Press, Cambridge, MA,1980
    24. N. A. Krall and A. W. Trivelpiece. Principles of Plasma Physics[M], McGraw-Hill Book Co., Inc., New York,1773
    25. W. N. Hitchon, d. J. Koch, and J. B. Adams, [J]. Comp. Phys.1989,97:83
    26. G J. Parker and W. N.Hitchon, Jpn. [J]. Appl. Phys.1997,36:4799
    27. C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation[M], Mcgraw-Hill Book Co. Inc., New York,1985
    28. T. Tajima, Computational Plasma Physics [M], Addison-Wesley Publishing Co., New York,1989
    29. C. K. Birdsall, Ieee Trans. Plasma Sci [J].1990,19:65
    30. D. Vender And R. W. Boswell, Ieee Trans. Plasma Sci [J].1990,18:725
    31. M. Surendra And D. B. Graves, Ieee Trans. Plasma Sci[J].1991,19:144
    32. V. Vahedi, M. A. Lieberman, M. V. Alves, J. P. Verboncoeur, and C. K. Birdsall [J]. Appl. Phys.1991,69:2008
    33. M. V. Alves, M.. Lieberman, V. Vahedi, and C. K. Birdsall [J]. Appl.Phys.1991,69:3823
    34. M. Turner and H. B. Hopkins, Phys [M]. Rev. Lett.1992,69:3511
    35. V. Vahedi, G Dipeso, C. K. Berdsall, M. A. Lieberman, and T. D. Rognlien, Plasma Sources Sci [M]. Technol.1993,2:261
    36. H. R. Skullerud [J]. Phys.1968,1:1567
    37. S. L. Lin And J. N. Bardsley[J], Chem. Phys.1997,66:435
    38. T. J. Sommerer and M. J. Kushner [J]. Appl. Phys.,1992,71:1654
    39. V. Vahedi, C. K. Birdsall, M. A. Lieberman, G Dipeso, and T. D. Rognlien[M], Plasma Sources Sci. Technol.1993,2:273
    40.金佑民.高温测量中的探针技术[M].北京:中国计量出版社,1988,34.
    41. F. F. Chen. Langmuir Probe Diagnostics[R]. Korea:IEEE-ICOPS meeting,2003.
    42. F. F. Chen. Langmuir Probe Diagnostics[R]. Korea:IEEE-ICOPS meeting,2003:19.
    43. F. F. Chen. Numerical Computations for Ion Probe Characteristics in a Collisionless Plasma[J]. Plasma Physics.1965, Vol.7:47-67.
    44. J. R. Roth.工业等离子体工程Ⅰ:基本原理[M].北京:科学出版社,1998,12.
    45. Ira B. Bernstein, Irving N. Ravinowitz. Theory of Electrostatic Probes in a Low-Density Plasma[J]. The Physics of Fluids. Vol.2, No.2,1959:112-121.
    46. Markus Klindworth. Fundamentals and Applicationsof Langmuir Probe Diagnosticsin Complex Plasmas[D]. Christian-Albrechts-Universitat,2004:62-63.
    47. Langmuir, I. and H. M. Mott-Smith, [J]. Gen. Elec. Rev.26,1923:731; 27,1924: 449,583,616,726,810; Phys.Rev.28,1926:727.
    48. Druyvesteyn, M. J., Z.[J] physic,1930,64:781.
    49. Johnson, E. O. and L. Malter,[J] Phys.1950, Rev.60:58.
    50. Boyd, R. L. F. and N. D. Twiddy,[J] Proc. Roy. Soc.1959, A,250:53.
    51. S. E. Rodil, J. J. Olaya, S. Muhl, B. Bhushan, G Wei. The influence of the magnetic field configuration on plasma parameters and microstructure of niobium nitride films[J]. Surface & Coatings Technology,2006:1016-1021.
    52. Robert Bruce Turkot, Jr. Plasma-material interactions:A Langmuir probe analysis of a cylindrical sio2 deposition system and a computational study using VFTRIM3D[D]. Urbana, Illinois:University of Illinois at Urbana-Champaign,1997.
    53. Yansheng Men. Characterization of Etching Plasmas Using Langmuir Probes and Infrared Diode Laser Absorption Spectroscopy[D]. University of Wisconsin-Madison, 2001.
    54. Junqi Xu, Hiroyuki Kousaka, Noritsugu Umehara, Dongfeng Diao. Plasma properties of a new surface-wave-sustained plasma source under the conditions of depositing DLC films[J]. Surface & Coatings Technology,201,2006:408-412.
    55. J.P. Gunn, P. Devynck, J.-Y. Pascal, J. Ad'amek, I. Duran, M. Hron, J. Stockel, F. Z' acek, O. Barina, R. Hrach, M. Vicher, G. Van Oost. A DC probe Diagnostics for Fast Electron Temperature Measurements in Tokamak Edge Plasmas[J]. Czechoslovak Journal of Physics,2002, Vol.52, No.10:1107-1114.
    56. M. Spolaore, V. Antoni, M. Bagatin, A. Buffa, R. Cavazzana, D. Desideri, E. Martines, N. Pomaro, G. Serianni, L. Tramontin. Automatic Langmuir probe measurement in a magnetron sputtering system[J]. Surface and Coatings Technology,1999,116-119: 1083-1088.
    57. J. I. FERNANDEZ PALOP, J. BALLESTEROS, M. A. HERNANDEZ, A Simplified Model Joining the Sheath and Plasma in Electronegative Plasmas [J], Czechoslovak Journal of Physics, Vol.54, No.2,2004:225-238.
    58. Yuancai Ye, R. Kenneth Marcus. Hardware and software systems for the determination of charged particle parameters in low pressure plasmas using impedance-tuned langmuir probes[J]. Spectrochimica Acta Part B 52.1997:2025-2041.
    59. B. Doggett, C. Budtz-Joergensen, J.G. Lunney, P. Sheerin, M.M. Turner. Behaviour of a planar Langmuir probe in a laser ablation plasma [J]. Applied Surface Science,2005,247: 134-138.
    60. F. Magnus and J. T. Gudmundsson. Digital Smoothing of the Langmuir Probe I-V Characteristic[M]. University of Iceland:Science Institute,2002,1-27.
    61. F. F. Chen. Langmuir probe analysis for high density plasmas[M]. Physics of Plasmas, vol.8,2001,3029-3062.
    62. F. F. Chen. Saturation ion currents to langmuir probes[J]. Journal of applied physics, Vol. 36, No.3,1965:675-678.
    63.孙爱萍.低温等离子体应用中的几个理论问题[D].核工业西南物理研究院,2000.
    64. I. D. Sudit And R. C. Woods, [J]. Appl. Phys.1994,76:4488
    65. Z. Sternovsky, S. Robertson, And M. Lampe,[J]. Appl. Phys.2003,94:1374
    66. Z. Zakrzewski And T. Kopiczynski. Plasma Phys [J].1974,16:1195
    67. Z. Sternovsky And S. Robertson[J], Appl. Phys. Lett.2002,81:1961
    68. D. T. K. Kwok, T. W. H. Oates, D. R. Mckenzie, and M. M. M. Bilek, IEEE Trans. Plasma Sci[J].2003,31:1044
    69. D. T. K. Kwok, M. M. M. Bilek, D. R. Mckenzie, T. W. H. Oates, and P. K. Chu [J], IEEE Trans. Plasma Sci.2004,32:422
    70. R. Hrach and M. Vicher, Czech. [J]. Phys.2001,51:557
    71. D. Trunec, M. Holik, P. Kudrna, O. Bilyk, A. Marek, R. Hippler, and M. Tichy. Contrib [J]. Plasma Phys.2004,44:557
    72. D. Trunec, P. Spanel. and D. Smith, Contrib. [J]. Plasma Phys.2002,42:91
    73. F. Taccogna, S. Longo, and M. Capitelli, Contrib[J]. Plasma Phys.2004,44:594
    74. A. Bergmann. Phys. Plasmas.1994,1:3598
    75. L. Oksuz, F. Soberon, and A. R. Ellingboe,[J]. Appl. Phys.2006,99:013304
    76. A. Kono, [J]. Phys. D 2001,34:1083
    77. E. Kawamura and J. H. Ingold, [J]. Phys. D 2001,34:3150
    78.刘超,王世金.Langmuir探针探测空间等离子体的分析[R].乌鲁木齐:中国空间科学学会空间探测专业委员会第十七次学术会议,2006.
    79.李亚磊.基于计算机的高信噪比Langmuir探针系统[D].大连:大连理工大学,2005.
    80.隋振中.AIP脉冲偏压电源及等离子体诊断系统的设计与应用研究[D].大连:大连理工大学,2003.
    81.王加扣.低温氢等离子体诊断[D].四川:四川大学,2005.
    82.林揆训,余云鹏,林璇英,王洪.射频辉光放电等离子体的电探针诊断[J].核聚变与等离子体物理,1994,3,vol.14,No.1:56-64.
    83.池凌飞,林揆训,姚若河,林璇英,余楚迎,余云鹏.Langmuir单探针诊断射频辉光放电等离子体及其数据处理[J].物理学报,2001,Vol.50,No.7:1313-1317.
    84.薛定宇,陈阳泉.高等应用数学问题的Matlab求解[M].北京:清华大学出版社,2004,9.
    85. A. Cenian, A. Chernukho, A. Bogaerts, R. Gijbels, and C. Leys, Cappsa 2004. Proceedings Of The International Workshop On Cold Atmospheric Pressure Plasmas: Sources and Applieations, Ghent. Belgium.14-16 January 2004 (University Of Chent, Chent, Belgium.2004, Pp.61-64.
    86. A. Cenian. A. Chernukho, A. Bogaerts, and C. Leys. Khim [J]. Fiz.2004,23:3
    87. V. A. Codyak, R. B. Piejak, and B. M. Alexandrovich, [J]. App;. Phys.1993,73:3657
    88. A. V. Phelps, [J[. Appl. Phys.1994,76:747
    89. H. R. Skullerud, [J]. Appl. Phys., D 1968,1:1567
    90. S. Robertson And Z. Sternovsky [J], Phys. Rer. E 2003,67:046405
    91. D. Piscitelli, A.Av. Phelps, J. De Urquijo, E. Basurto, and L. C. Pitchford, Phys. Rev. E 2003,68:046408
    92. S. M. Tarrh, M. S. Thesis, Massachusetts Institute Of Technology,1972; Cited By E. F. Jaeger; A. Berry, and D. B. Batchelor. [J]. Appl. Phys.1991,69:6918
    93. Z. Sternovsky (Private Communication).
    94. J. P. Raiser, Fizika Gazovovo Razriada[M] (Nauka, Moscow,1987).
    95. M. A. Lieberman and A. J. Lichtenberg, In Principles Of Plasma Discharges and Materials Processing [M](Wiley Interscience, New York,1994)
    96. A. Cenian, A. Chernukho, and C. Leys, Radiat [J], Phys. Chem.2003,69:109
    97. J. V. Jovanovic, S.B. Vrhovac, and Z. L. Petrovic, Eur. Phys.[J]. D 2002,21:335
    98. H. W. Ellis, R. Y. Pai, E. W. Mcdaniel, E. A. Mason, and L. A. Viehland, At. Data Nucl [M]. Data Tables 197617:177
    99. R. Hegerberg, M. T. Elford. and H. R. Skullerud, [J]. Phys. B 1982,15:797
    100.G. Sejkora, P. Girstmair, H. C. Bryant, and T. D. Mark, Phys[M]. Rev. A 1984,29:3379
    101. B. Schiestl, W. Sejkora, M. Leaius, M. Foltin, P. Scheier, and T. D. Mark, In 8th International Seminar On Electron and Ion Swarm (University Of Trondheim, Norwegian Institute Of Technology, Trondheim, Norway,1993), P.65.
    102. T. Sefansson and H. R. Skullerud, [J]. Phys. B 1999,32:1057

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700