静电纺丝法制备复合纳米纤维及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电纺丝技术是一种简单且实用的制备连续纳米纤维的方法。纳米纤维具有优良的力学性能、大的比表面积和长径比,因而被广泛应用于催化剂、气体传感、增强材料、组织工程支架材料、光电材料等领域。本论文采用静电纺丝技术制备复合纳米纤维,研究内容主要包括以下三个方面:
     (1)通过静电纺丝方法制备了直径为85-200 nm TiO_2/ZnO复合纳米纤维。在0.1mol/L NaOH水溶液中水解TiO_2/ZnAc/CA复合纳米纤维,使其转化为TiO_2/Zn(OH)2/纤维素复合纳米纤维。分别在500和700℃下煅烧TiO_2/Zn(OH)2/纤维素复合纳米纤维而得到TiO_2/ZnO复合纳米纤维。实验结果表明:在TiO_2中加入一定量的ZnO后,生成了新的ZnTiO3晶相,使其提高了对光的利用率。当ZnO的加入量为15.76 wt%且在500℃下煅烧时,光催化活性最强。TiO_2/ZnO复合纳米纤维对罗丹明B和苯酚的降解率达到100%和85%。
     (2)通过静电纺丝技术制备了孔径小于15nm的多孔ZnO/SnO_2复合纳米纤维。透射电镜表明:多孔纤维是由许多纳米尺寸的颗粒组成,且这些纳米颗粒随着煅烧温度的升高,颗粒逐渐变大。实验结果表明:多孔ZnO/SnO_2复合纳米纤维的催化活性与比表面积、光利用率和光生电子/空穴对的分离效率有关。当Zn:Sn摩尔比为2:1且在500℃下煅烧5h,光催化活性达到最大值。最后提出了电荷分离和光催化反应机理。
     (3)通过静电纺丝技术制备了一系列组分比例不同的聚氨酯(PU)/聚碳酸酯(PC)复合纳米纤维。实验结果表明:纤维结构和形态受到二元混合物组成比例的影响。PU/PC复合纳米纤维综合了PU和PC各自的优点。PC纳米纤维较脆容易断裂。但随着PU/PC复合组分中PU含量的增加,PU组分不仅促进了PC的纺丝,而且改善了PU/PC纳米纤维膜的力学性能。然而加入一定量的PC有效的改善了PU的热稳定性。主要是因为PU上的羰基和PC上的酰胺基形成氢键,有助于改善其在界面上的相容性。在一系列组分比例不同的PU/PC纳米纤维膜中,PU/PC(70/30)展示了优异的拉伸强度(9.60 MPa)和杨氏模量(55 Mpa)。用丙酮洗涤选择性去除PC组分后,剩余PU组分仍保持纤维形貌。但是,剩余的PU纤维变得不规则且表面含有很多凹槽。纺丝溶液和纺丝过程中的相分离导致PU/PC复合纳米纤维为海-岛结构。
Electrospinning is a simple and versatile technique for generating continuous nanofibers. Nanofiber possesses features of excellent mechanical property, very high specific surface area and aspect ratios, which assure its promising applications in various areas, such as catalysts, gas sensing, reinforcing materials, tissue engineering scaffolds, and photoelectric materials. This thesis research work includes the following aspects:
     (1) TiO_2/ZnO composite nanofibers with diameter in the range of 85-200 nm were fabricated via the electrospinning technique. After treated with 0.1 mol/L NaOH solution, TiO_2/ZnAc/CA composite nanofibers were transformed into Ti02/Zn(OH)2/cellulose composite nanofibers. TiO_2/ZnO composite nanofibers were obtained by calcinating the hydrolyzed composite fibers at 500 and 700℃for 5h. With the blending of ZnO into TiO_2, a new crystallite ZnTiO3 was formed in addition to the ZnO and TiO_2 crystallites, and the ultraviolet light absorption efficiency was enhanced according to the UV-vis diffuse reflectance spectroscopy (DRS). Almost 100% Rhodamine B (RhB) and 85% phenol were decomposed in the presence of TiO_2/ZnO composite nanofibers under mild conditions. The results demonstrated that the blending of ZnO in the composite nanofibers increased the photocatalytic efficiency, whereas the optimum ZnO content was 15.76 wt% to reach the most efficient photocatalytic activity.
     (2) The mesoporous ZnO/SnO_2 composite nanofibers with pore size less than 15 nm were prepared via the electrospinning technique. Transmission electron microscopy (TEM) images showed that the mesoporous ZnO/SnO_2 composite nanofibers were composed of grain-like nanoparticles. The nanoparticles size increased with the increasing of the calcination temperature from 500℃to 900℃. Moreover, the crystal phases, grain sizes, and band gap energy of the mesoporous ZnO/SnO_2 composite nanofibers were influenced by the molar ratio of Zn:Sn and the calcination temperatures. It was found that the photocatalytic activity of the mesoporous ZnO/SnO_2 composite nanofibers was dependant on their surface areas, light utilization efficiency, and the separation of photogenerated electron/hole pairs. The maximum photocatalytic activity was shown for composite nanofibers with the molar ratio of Zn:Sn=2:1 and calcination at 500℃for 5 h. A mechanism of the charge separation and photocatalytic reaction for the mesoporous ZnO/SnO_2 composite nanofibers was also presented.
     (3) Sea-island polyurethane (PU)/polycarbonate (PC) composite nanofibers were obtained through electrospinning of partially miscible PU and PC in 3:7 (v/v) N,N-dimethylformamide (DMF) and tetrahydrofuran (THF) mixture solvent. The structures and morphologies of the nanofibers were influenced by composition ratio in the binary mixtures. The pure PC nanofiber was brittle and easy to break. With increasing the PU content in the PU/PC composite nanofibers, PU component not only facilitated the electrospinning of PC, but improved the mechanical properties of PU/PC nanofibrous mats. In a series of nanofibrous mats with varied PU/PC composition ratios, PU/PC 70/30 showed excellent tensile strength of 9.60 Mpa and Young's modulus of 55 Mpa. After selective removal of PC component in PU/PC composite nanofibers by washing with acetone, the residual PU maintained fiber morphology. However, the residual PU nanofiber became irregular and contained elongated indents and ridges along the fiber surface. PU/PC composite fibers showed sea-island nanofiber structure due to phase separation in the spinning solution and in the course of electrospinning.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,1-30.
    [2]Daniel M, Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews,2004,104(1):293-346.
    [3]Kruis F, Fissan H, Peled A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review[J]. Journal of Aerosol Science,1998,29(5-6):511-535.
    [4]Hewick R M, Hunkapiller M W, Hood L E, et al. A gas-liquid solid phase peptide and protein sequenator[J]. Journal of Biological Chemistry,1981,256(15):7990-7997.
    [5]Ondarcuhu T, Joachim C. Drawing a single nanofibre over hundreds of microns[J], Europhysics Letters,1998,42(2):215-220.
    [6]Xie R C, Shang J K. Morphological control in solvothermal synthesis of titanium oxide[J]. Journal of Materials Science,2007,42(16):6583-6589.
    [7]Che G, Lakshmi B B, Martin C R, et al. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method[J]. Chemistry Materials,1998,10(1): 260-267.
    [8]Niece K L, Hartgerink J D, Donners J J, et al. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction[J]. Journal of America Chemistry Society,2003,125(24):7146-7147.
    [9]Ma P X, Zhang R. Synthetic nano-scale fibrous extracellular matrix[J]. Journal of Biomedical Materials Research,1999,46(1):60-72.
    [10]Li D, Xia Y. Electrospinning of nanofibers:reinventing the wheel?[J]. Advanced Materials, 2004,16(14):1151-1170.
    [11]Huang Z, Zhang Y, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology,2003,63(15): 2223-2253.
    [12]Bahnemann D. Photocatalytic water treatment:solar energy applications[J]. Solar Energy,2004, 77(5):445-459.
    [13]Malato S, Blanco J, Vidal A, et al. Photocatalysis with solar energy at a pilot-plant scale:an overview[J]. Applied Catalysis B:Environmental,2002,37(1):1-15.
    [14]Fujishima A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238(5358):37-38.
    [15]Gueymard C A. The sun's total and spectral irradiance for solar energy applications and solar radiation models[J]. Solar Energy,2004,76(4):423-453.
    [16]Hu Y, Tsai H, Huang C. Effect of brookite phase on the anatase-rutile transition in titania nanoparticles[J]. Journal of the European Ceramic Society,2003,23(5):691-696.
    [17]范崇政,肖建平,丁延伟.纳米Ti02的制备与光催化反应研究进展[J].科学通报,2001,46(004):265-273.
    [18]Tang C, Chen V. The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor[J]. Water Research,2004,38(11):2775-2781.
    [19]Zhang Q, Gao L, Guo J. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis[J]. Applied Catalysis B:Environmental,2000, 26(3):207-215.
    [20]Salvador P, Garcia Gonzalez M, Munoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium (IV) oxide rutile[J]. The Journal of Physical Chemistry, 1992,96(25):10349-10353.
    [21]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [22]孙福侠,吴鸣,王红等.纳米Ti02光催化降解苯酚的动力学研究[J].催化学报,1999,30(3):301-304.
    [23]许宜铭.苯乙酮的Ti02光催化降解及其影响因素[J].高等学校化学学报,2000,21(010):1539-1542.
    [24]Jeong D S, Schroeder H, Waser R. Abnormal bipolar-like resistance change behavior induced by symmetric electroforming in Pt/TiO2/Pt resistive switching cells[J]. Nanotechnology,2009, 20:375201.
    [25]Kondarides D I, Patsoura A, Verykios X E. Anaerobic Photocatalytic Oxidation of Carbohydrates in Aqueous Pt/TiO2 Suspensions with Simultaneous Production of Hydrogen[J]. Journal of Advanced Oxidation Technologies,2010,13(1):116-123.
    [26]Yu J, Yu J C, Cheng B, et al. Photocatalytic activity and characterization of the sol-gel derived Pb-doped TiO2 thin films[J]. Journal of Sol-Gel Science and Technology,2002,24(1):39-48.
    [27]Einaga H, Ibusuki T, Futamura S. Improvement of catalyst durability by deposition of Rh on TiO2 in photooxidation of aromatic compounds[J]. Environmental Science and Technology, 2004,38(1):285-289.
    [28]AsiltUrk M, Say Ikan F, Arpa E. Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry,2009,203(1):64-71.
    [29]Choi J, Park H, Hoffmann M R. Combinatorial doping of TiO2 with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation[J]. Journal of Materials Research,2010,25(1):149-158.
    [30]Shen Q H, Yang H, Xu Q, et al. In-situ preparation of TiO2/SnO2 nanocrystalline sol for photocatalysis[J]. Materials Letters,2010,64(3):442-444.
    [31]Jang J, Li W, Oh S, et al. Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light[J]. Chemical Physics Letters,2006,425(4-6):278-282.
    [32]Kuo S L, Liao C J. Solar photocatalytic degradation of 4-chlorophenol in kaolinite catalysts[J]. Journal of the Chinese Chemical Society,2006,53(5):1073-1083.
    [33]Wang C, Wang X, Xu B Q, et al. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,168(1-2):47-52.
    [34]Zhang Z, Yuan Y, Fang Y, et al. Preparation of photocatalytic nano-ZnO/TiO2 film and application for determination of chemical oxygen demand[J]. Talanta,2007,73(3):523-528.
    [35]Kathiravan A, Renganathan R. Photosensitization of colloidal TiO2 nanoparticles with phycocyanin pigment[J]. Journal of Colloid and Interface Science,2009,335(2):196-202.
    [36]Shiga T, Motohiro T. Photosensitization of nanoporous TiO2 film with porphyrin-linked fullerene[J], Thin Solid Films,2008,516(6):1204-1208.
    [37]Reneker D, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning[J]. Nanotechnology,1996,7(2):216-223.
    [38]Dzenis Y. Spinning Continuous Fibers for Nanotechnology [J]. Science,2004,304(5679): 1917-1919.
    [39]Larrondo L, Manley R. Electrostatic fiber spinning from polymer melts. Ⅰ. Experimental observations on fiber formation and properties[J]. Journal of Polymer Science Part B:Polymer Physics,1981,19(6):909-920.
    [40]Larrondo L, Manley R. Electrostatic fiber spinning from polymer melts. Ⅱ. Examination of the flow field in an electrically driven jet[J]. Journal of Polymer Science Part B:Polymer Physics, 1981,19(6):921-932.
    [41]Larrondo L, Manley R. Electrostatic fiber spinning from polymer melts. Ⅲ. Electrostatic deformation of a pendant drop of polymer melt[J]. Journal of Polymer Science Part B:Polymer Physics,1981,19(6):933-940.
    [42]Duan B, Dong C, Yuan X, et al. Electrospinning of chitosan solutions in acetic acid with poly (ethylene oxide)[J]. Journal of Biomaterials Science, Polymer Edition,2004,15(6):797-811.
    [43]Geng X, Kwon O, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution[J]. Biomaterials,2005,26(27):5427-5432.
    [44]Liu H Q, Tang C Y. Electrospinning of cellulose acetate in solvent mixture N, N-dimethylacetamide (DMAc)/acetone[J]. Polymer Journal,2007,39(1):65-72.
    [45]McKee M, Wilkes G, Colby R, et al. Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters[J]. Macromolecules,2004,37(5):1760-1767.
    [46]Gupta P, Elkins C, Long T, et al. Electrospinning of linear homopolymers of poly (methyl methacrylate):exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent[J]. Polymer,2005,46(13):4799-4810.
    [47]Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning[J]. Materials Letters,2004,58(3-4):493-497.
    [48]Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafine electrospun polyamide-6 fibers:effect of solution conditions on morphology and average fiber diameter[J]. Macromolecular Chemistry and Physics,2004,205(17):2327-2338.
    [49]Fong H, Chun I, Reneker D. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999,40(4585-4592.
    [50]Liu H Q, Hsieh Y. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate[J]. Journal of Polymer Science Part B:Polymer Physics,2002,40(18):2119-2129.
    [51]Zhang C, Yuan X, Wu L, et al. Study on morphology of electrospun poly (vinyl alcohol) mats[J]. European Polymer Journal,2005,41(3):423-432.
    [52]Demir M, Yilgor I, Yilgor E, et al. Electrospinning of polyurethane fibers[J]. Polymer,2002, 43(11):3303-3309.
    [53]Zong X, Kim K, Fang D, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J]. Polymer,2002,43(16):4403-4412.
    [54]Kenawy E, Layman J, Watkins J, et al. Electrospinning of poly (ethylene-co-vinyl alcohol) fibers[J]. Biomaterials,2003,24(6):907-913.
    [55]Han X, Huang Z, He C, et al. Coaxial electrospinning of PC (shell)/PU (core) composite nanofibers for textile application[J]. Polymer Composites,2008,29(5):579-584.
    [56]McCann J, Li D, Xia Y N. Electrospinning of nanofibers with core-sheath, hollow, or porous structures[J]. Journal of Materials Chemistry,2005,15(7):735-738.
    [57]Li D, Wang Y, Xia Y N. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano Letters,2003,3(8):1167-1171.
    [58]Li D, Xia Y N. Fabrication of titania nanofibers by electrospinning[J]. Nano Letters,2003,3(4): 555-560.
    [59]Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[J]. Nano Letters,2004,4(5):933-938.
    [60]Zhang T, Ge L, Wang X, et al. Hollow TiO2 containing multilayer nanofibers with enhanced photocatalytic activity[J]. Polymer,2008,
    [61]Liu Z, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method[J]. Nano Letters,2007, 7(4):1081-1085.
    [62]Dosunmu O, Chase G, Kataphinan W, et al. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface[J]. Nanotechnology,2006,17(1123-1127.
    [63]Ding B, Kimura E, Sato T, et al. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning[J]. Polymer,2004,45(6):1895-1902.
    [64]Lee J, Choi K, Ghim H, et al. Role of molecular weight of atactic poly (vinyl alcohol)(PVA) in the structure and properties of PVA nanofabric prepared by electrospinning[J]. Journal of Applied Polymer Science,2004,93(4):1638-1646.
    [65]Ki C, Baek D, Gang K, et al. Characterization of gelatin nanofiber prepared from gelatin-formic acid solution[J]. Polymer,2005,46(14):5094-5102.
    [66]Zussman E, Burman M, Yarin A, et al. Tensile deformation of electrospun nylon-6,6 nanofibers[J]. Journal of Polymer Science Part B:Polymer Physics,2006,44(10):1482-1489.
    [67]Chand S. Review carbon fibers for composites[J]. Journal of Materials Science,2000,35(6): 1303-1313.
    [68]Kim J, Reneker D. Mechanical properties of composites using ultrafine electrospun fibers[J]. Polymer Composites,1999,20(1):124-131.
    [69]Bergshoef M, Vancso G. Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement[J]. Advanced Materials,1999,11(16):1362-1365.
    [70]Tang C, Liu H. Cellulose nanofiber reinforced poly (vinyl alcohol) composite film with high visible light transmittance[J]. Composites Part A,2008,39(10):1638-1643.
    [71]Chen G, Liu H. Electrospun cellulose nanofiber reinforced soybean protein isolate composite film[J]. Journal of Applied Polymer Science,2008,110(2):641-646.
    [72]Linsebigler A, Lu G, Yates Jr J. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chemical Reviews,1995,95(3):735-758.
    [73]Hoffmann M, Martin S, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews,1995,95(1):69-96.
    [74]张世英,周武艺,周艺等.纳米二氧化钛纤维的制备及其光催化活性[J].硅酸盐学报,2006,34(001):55-59.
    [75]Alves A, Berutti F, Clemens F, et al. Photocatalytic activity of titania fibers obtained by electrospinning[J]. Materials Research Bulletin,2009,44(2):312-317.
    [76]Chang G, Zheng X, Chen R, et al. Silver Nanoparticles Filling in TiO2 Hollow Nanofibers by Coaxial Electrospinning[J]. Acta Physico-Chimica Sinica,2008,24(10):1790-1797.
    [77]Liu H Q, Yang J X, Liang J H, et al. ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light[J]. Journal of the American Ceramic Society,2008,91(4):1287-1291.
    [78]Liu R L, Ye H Y, Xiong X p, et al. Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property [J]. Materials Chemsitry and Physics,2010, doi:10.1016/j.matchemphys.2010.02.002
    [79]Liu H Q, Kameoka J, Czaplewski D A, et al. Polymeric nanowire chemical sensor[J]. Nano Letters,2004,4(4):671-675.
    [80]Zhang Y, He X, Li J, et al. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers[J]. Sensors and Actuators B:Chemical,2008,132(1): 67-73.
    [81]Ding B, Yamazaki M, Shiratori S. Electrospun fibrous polyacrylic acid membrane-based gas sensors[J]. Sensors and Actuators B:Chemical,2005,106(1):477-483.
    [82]Song X F, Wang W Z, Liu Y B, et al. A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers[J]. Nanotechnology,2009,20(7):75501.
    [83]Schreuder-Gibson H, Gibson P, Senecal K, et al. Protective textile materials based on electrospun nanofibers[J]. Journal of Advanced Materials,2002,34(3):44-55.
    [84]Graham S. Smart'silicon dust could help screen for chemical weapons[J]. Scientific American, 2002,15(3):159-163
    [85]Buchko C J, Chen L C, Shen Y, et al. Processing and microstructural characterization of porous biocompatible protein polymer thin films[J]. Polymer,1999,40(3):7397-7407.
    [86]Buchko C J, Slattery M J, Kozloff K M, et al. Mechanical properties of biocompatible protein polymer thin films[J]. Journal of Materials Research,2000,15(1):231.
    [87]Liang D H, Hsiao B S, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications[J]. Advanced Drug Delivery Reviews,2007,59(14):1392-1412.
    [88]Suwantong O, Opanasopit P, Ruktanonchai U, et al. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance[J]. Polymer,2007, 48(26):7546-7557.
    [89]Bavykin D V, Friedrich J M, Walsh F C. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications[J]. Advanced Materials,2006,18(21):2807.
    [90]Wang Z L. Zinc oxide nanostructures:growth, properties and applications[J]. Journal of Physics Condensed Matter,2004,16(2):829-858.
    [91]Rogach A L, Eychmuller A, Hickey S G, et al. Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications[J]. Small,2007,3(4):536.
    [92]Guan H, Shao C, Wen S, et al. Preparation and characterization of NiO nanofibres via an electrospinning technique[J]. Inorganic Chemistry Communications,2003,6(10):1302-1303.
    [93]Birkby I, Stevens R. Applications of zirconia ceramics[J]. Key Engineering Materials,1996, 122(3):527-552.
    [94]Sigmund W, Yuh J, Park H, et al. Processing and structure relationships in electrospinning of ceramic fiber systems[J]. Journal of the American Ceramic Society,2006,89(2):395-407.
    [95]McCann J T, Li D, Xia Y N. Electrospinning of nanofibers with core-sheath, hollow, or porous structures[J]. Journal of Materials Chemistry,2005,15(7):735-738.
    [96]Li D, Wang Y, Xia Y N. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films[J]. Advanced Materials,2004,16(4):361-366.
    [97]Moon J, Park J A, Lee S J, et al. Structure and electrical properties of electrospun ZnO-NiO mixed oxide nanofibers[J]. Current Applied Physics,2009,9(3):213-216.
    [98]Wang Z, Li Z, Liu L, et al. A Novel Alcohol Detector Based on ZrO2-Doped SnO2 Electrospun Nanofibers[J]. Journal of the American Ceramic Society,2009,93(3):634-637.
    [99]Bhatkhande D S, Pangarkar V G, Beenackers A. Photocatalytic degradation for environmental applications-a review[J]. Journal of Chemical Technology and Biotechnology,2002,77(1): 102-116.
    [100]Pera T M, Garca M, Baos M A, et al. Degradation of chlorophenols by means of advanced oxidation processes:a general review[J]. Applied Catalysis B:Environmental,2004,47(4): 219-256.
    [101]Moon S C, Farris R J. The morphology, mechanical properties, and flammability of aligned electrospun polycarbonate (PC) nanofibers[J]. Polymer Engineering and Science,2008,48(9): 1848-1854.
    [102]Demir M M, Yilgor I, Yilgor E, et al. Electrospinning of polyurethane fibers[J]. Polymer, 2002,43(11):3303-3309.
    [103]Han X J, Huang Z M, He C L, et al. Coaxial electrospinning of PC (shell)/PU (core) composite nanofibers for textile application[J]. Polymer Composites,2008,29(5):579-584.
    [1]Hoffmann M, Martin S, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews,1995,95(1):69-96.
    [2]Zhang Z, Yuan Y, Fang Y, et al. Preparation of photocatalytic nano-ZnO/TiO2 film and application for determination of chemical oxygen demand[J]. Talanta,2007,73(3):523-528.
    [3]Rachel A, Subrahmanyam M, Boule P. Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids[J]. Applied Catalysis B:Environmental,2002,37(4):301-308.
    [4]Li D, Xia Y N. Fabrication of titania nanofibers by electrospinning[J]. Nano Letters,2003,3(4): 555-560.
    [5]Liu H Q, Yang J X, Liang J H, et al. ZnO Nanofiber and Nanoparticle Synthesized Through Electrospinning and Their Photocatalytic Activity Under Visible Light[J]. Journal of the American Ceramic Society,2008,91(4):1287-1291.
    [6]Liu Z, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method[J]. Nano Letters,2007, 7(4):1081-1085.
    [7]Ding B, Kim H, Kim C, et al. Morphology and crystalline phase study of electrospun TiO2-SiO2 nanofibres[J]. Nanotechnology,2003,14(5):532-537.
    [8]Liu H Q, Tang C Y. Electrospinning of cellulose acetate in solvent mixture N, N-dimethylacetamide (DMAc)/acetone[J]. Polymer Journal,2007,39(1):65-72.
    [9]Liu H Q, Hsieh Y L. Surface methacrylation and graft copolymerization of ultrafine cellulose fibers[J]. Journal of Polymer Science Part B:Polymer Physics,2003,41(9):953-964.
    [10]Hosono E, Fujihara S, Onuki M, et al. Low-temperature synthesis of nanocrystalline zinc titanate materials with high specific surface area[J]. Journal of the American Ceramic Society,2004, 87(9):1785-1788.
    [11]Ramaseshan R, Ramakrishna S. Zinc titanate nanofibers for the detoxification of chemical warfare simulants[J]. Journal of the American Ceramic Society,2007,90(6):1836-1842.
    [12]Marcl G, Augugliaro V, Lopez-munoz M J. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems.2 surface, bulk characterization and 4-nitrophenol photodegradation in liquid-solid regime[J]. Journal of Physical Chemistry B,2001,105(5): 1033-1040.
    [13]Wang N, Li X, Wang Y, et al. Synthesis of ZnO/TiO2 nanotube composite film by a two-step route[J]. Materials Letters,2008,62(21-22):3691-3693.
    [14]Provenzano P L, Jindal G R, Sweet J R, et al. Flame-excited luminescence in the oxides Ta2O5, Nb2O5, TiO2, ZnO and SnO2 [J]. Journal of Luminescence,2001,92(4):297-305.
    [15]Wang C, Zhao J, Wang X. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts[J]. Applied Catalysis B:Environmental,2002,39(3):269-279.
    [16]Liao D L, Badour C A, Liao B Q. Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange[J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,194(1):11-19.
    [17]Xiao M W, Wang L, Wu Y, et al. Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties[J]. Nanotechnology,2008,19(1): 15706..
    [18]Kapoor P N, Uma S, Rodriguez S, et al. Aerogel processing of MTi2O5(M= Mg, Mn, Fe, Co, Zn, Sn) compositions using single source precursors:synthesis, characterization and photocatalytic behavior[J]. Journal of Molecular Catalysis A:Chemical,2005,229(1-2):145-150.
    [19]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chemical Reviews,1995,95(3):735-758.
    [20]Pal B, Sharon M. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process[J]. Materials Chemistry and Physics,2002,76(1):82-87.
    [1]Hoffmann M, Martin S, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews,1995,95(1):69-96.
    [2]Alves A, Berutti F, Clemens F, et al. Photocatalytic activity of titania fibers obtained by electrospinning[J]. Materials Research Bulletin,2009,44(2):312-317.
    [3]Liu H Q, Yang J X, Liang J H, et al. ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light[J]. Journal of the American Ceramic Society,2008,91(4):1287-1291.
    [4]Liu Z, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method[J]. Nano Letters,2007, 7(4):1081-1085.
    [5]Liu R L, Ye H Y, Xiong X p, et al. Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property [J]. Materials Chemsitry and Physics,2010 doi:10.1016/j.matchemphys.2010.02.002
    [6]Song X F, Wang W Z, Liu Y B, et al. A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers[J]. Nanotechnology,2009,20(7):75501.
    [7]Liu H Q, Hsieh Y L. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate[J]. Journal of Polymer Science Part B:Polymer Physics,2002,40(18):2119-2129.
    [8]Liu H Q, Hsieh Y L. Surface methacrylation and graft copolymerization of ultrafine cellulose fibers[J]. Journal of Polymer Science Part B:Polymer Physics,2003,41(9):953-964.
    [9]Wu H, Pan W. Preparation of zinc oxide nanofibers by electrospinning[J]. Journal of the American Ceramic Society,2006,89(2):699-701.
    [10]Hashemi T, Al-Allak H M, Illingsworth J, et al. Sintering behaviour of zinc stannate[J]. Journal of Materials Science Letters,1990,9(7):776-778.
    [11]Wang C, Wang X, Xu B Q, et al. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,168(1-2):47-52.
    [12]Recnik A, Daneu N, Walther T, et al. Structure and chemistry of basal-plane inversion boundaries in antimony oxide-doped zinc oxide[J]. Journal of the American Ceramic Society,2001,84(11): 2657-2668.
    [13]Provenzano P L, Jindal G R, Sweet J R, et al. Flame-excited luminescence in the oxides Ta2O5, Nb2O5, TiO2, ZnO and SnO2 [J]. Journal of Luminescence,2001,92(4):297-305.
    [14]Wang C, Xu B Q, Wang X, et al. Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture[J]. Journal of Solid State Chemistry,2005,178(11):3500-3506.
    [15]Hagfeldt A, Gratzel M. Molecular and supermolecular surface modification of nanocrystalline TiO2 films[J]. Chemical Reviews,1995,95(3):49-68.
    [16]Wang C, Zhao J, Wang X. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts[J]. Applied Catalysis B:Environmental,2002,39(3):269-279.
    [17]Seftel E M, Popovici E, Mertens M, et al. SnIV-containing layered double hydroxides as precursors for nano-sized ZnO/SnO2 photocatalysts[J]. Applied Catalysis B:Environmental,2008, 84(3):699-705.
    [18]Zhang M L, An T, Hu X, et al. Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide[J]. Applied Catalysis A:General,2004,260(2):215-222.
    [19]Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry,1985,57(4):603-619.
    [20]He Z, Sun C, Yang S, et al. Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation:Mechanism and pathway[J]. Journal of Hazardous Materials,2009,162(2-3):1477-1486.
    [21]Chen C, Zhao W, Li J, et al. Formation and identification of intermediates in the visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous TiO2 dispersion[J]. Environmental Science and Technology,2002,36(16):3604-3611.
    [22]Tennakone K, Bandara J. Photocatalytic activity of dye-sensitized tin (IV) oxide nanocrystalline particles attached to zinc oxide particles:long distance electron transfer via ballistic transport of electrons across nanocrystallites[J]. Applied Catalysis A:General,2001,208(1-2):335-341.
    [23]Kiriakidou F, Kondarides D I, Verykios X E. The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes[J]. Catalysis Today,1999,54(1): 119-130.
    [1]杨剑,滕凤恩.纳米材料综述[J].材料导报,1997,11(002):6-10
    [2]Xia Y, Yang P, Sun Y, et al. One-dimensional nanostructures:synthesis, characterization, and applications[J]. Advanced Materials,2003,15(5):353-389
    [3]Subbiah T, Bhat G S, Tock R W, et al. Electrospinning of nanofibers[J]. Journal of Applied Polymer Science,2005,96(2):557-569
    [4]崔启征,董相廷,于伟利等.静电纺丝技术制备无机物纳米纤维的最新研究进展[J].稀有金属材料与工程,2006,35(007):1167-1171
    [5]Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers[J]. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2001,187(23):469-481
    [6]Mo X M, Xu C Y, Kotaki M, et al. Electrospun P (LLA-CL) nanofiber:a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation[J]. Biomaterials, 2004,25(10):1883-1890
    [7]Norris I D, Shaker M M, Ko F K, et al. Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends[J]. Synthetic Metals,2000,114(2):109-114
    [8]Ding B, Kimura E, Sato T, et al. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning[J]. Polymer,2004,45(6):1895-1902
    [9]Theron S A, Yarin A L, Zussman E, et al. Multiple jets in electrospinning:experiment and modeling[J]. Polymer,2005,46(9):2889-2899
    [10]Gupta P,Wilkes G L. Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach[J]. Polymer,2003,44(20):6353-6359
    [11]Liu Z, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method[J]. Nano Letters,2007, 7(4):1081-1085
    [12]Han X J, Huang Z M, He C L, et al. Coaxial electrospinning of PC (shell)/PU (core) composite nanofibers for textile application[J]. Polymer Composites,2006,27(4):381-387
    [13]李岩,黄争鸣,聚合物的静电纺丝[J].高分子通报,2006,5(4):178-185
    [14]Tang C, Chen P, Liu H. Cocontinuous cellulose acetate/polyurethane composite nanofiber fabricated through electrospinning[J]. Polymer Engineering and Science,2008,48(7):1296-1303
    [15]Wei M, Lee J, Kang B, et al. Preparation of core-sheath nanofibers from conducting polymer blends[J]. Macromolecular Rapid Communacation,2005,26(14):1127-1135
    [16]Jin H J, Fridrikh S V, Rutledge G C, et al. Electrospinning bombyx mori silk with poly (ethylene oxide)[J]. Biomacromolecular,2002,3(6):1233-1239
    [17]Park K E, Jung S Y, Lee S J, et al. Biomimetic nanofibrous scaffolds:Preparation and characterization of chitin/silk fibroin blend nanofibers [J]. International Journal of Biological Macromolecules,2006,38(3-5):165-173
    [18]Moon S, Farris R J. The morphology, mechanical properties, and flammability of aligned electrospun polycarbonate (PC) nanofibers[J]. Polymer Engineering and Science,2008,48(9): 1848-1854
    [19]Demir M M, Yilgor I, Yilgor E, et al. Electrospinning of polyurethane fibers[J]. Polymer,2002, 43(11):3303-3309
    [20]Lee K H, Kim H Y, Ryu Y J, et al. Mechanical behavior of electrospun fiber mats of poly (vinyl chloride)/polyurethane polyblends[J]. Journal of Polymer Science Part B:Polymer Physics,2003, 41(11):1256-1262
    [21]Koombhongse S, Liu W, Reneker D H. Flat polymer ribbons and other shapes by electrospinning[J]. Journal of Polymer Science Part B:Polymer Physics,2001,39(21): 2598-2606
    [22]Bradley A, Hardacre C, Holbrey J, et al. Small-angle X-ray scattering studies of liquid crystalline l-alkyl-3-methylimidazolium salts[J]. Chemistry of Materials,2002,14(2):629-635
    [23]Zhang L, Hsieh Y. Nanoporous ultrahigh specific surface polyacrylonitrile fibres[J]. Nanotechnology,2006,17(17):4416-4423
    [24]Bognitzki M, Frese T, Steinhart M, et al. Preparation of fibers with nanoscaled morphologies: electrospinning of polymer blends[J]. Polymer Engineering and Science,2001,41(6):982-989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700