Fe_3O_4、碳纳米管及石墨烯增强再生纤维素膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于石油资源日益枯竭以及石油制品生产的非降解塑料引起的环境污染日益严重,研究和开发以天然高分子为原料的新高分子材料已成为本世纪高分子领域的重要课题之一。纤维素是地球上最丰富的天然高分子,具有独特的性质,如无毒、安全、生物可降解性、生物相容性、亲水性、化学稳定性等,且价格低廉。目前,以纤维素为原料的再生纤维素制品如微孔膜和化学纤维已广泛地应用于各个领域。
     本论文用离子液体1-丁基-3-甲基咪唑氯([Bmin]C1)溶解纤维素,分别制备Fe304、碳纳米管和石墨烯增强再生纤维膜并研究其结构与性能。论文主要分为以下四个部分:
     (1)磁性复合膜具有广泛的潜在应用,我们首先用刮膜的方法制备出再生纤维素膜,接着以再生纤维素膜作为基体,采用原位共沉淀法将Fe304纳米粒子附着到再生纤维素膜上。扫描电子显微镜和X射线衍射的结果显示,球形的Fe304纳米粒子能均匀分散和固定在再生纤维素膜基体上,Fe304纳米粒子的结构在膜表面保存完好。傅立叶红外光谱表明,Fe304纳米粒子与再生纤维膜之间存在强烈的作用力,这样导致了磁性粒子能在膜表面形成,热重测试显示,随着复合膜中Fe304的摩尔分数从0.01增加到0.5,复合膜在空气环境烧后的残留量从6.8%提高到28.3%。同时复合膜显示出显著的力学强度。原位共沉淀的方法简单、易行,为制备纤维素基复合物提供了很好的途径。
     (2)碳纳米管的一维管状结构赋予其优异的物理化学性质,在纳米电子器件、复合材料和催化剂等领域具有广阔的应用前景。我们使用溶液共混方法制备出多壁碳纳米管/再生纤维素复合膜,使用了X射线衍射、傅立叶变换红外光谱、扫描电子显微镜和机械测试仪对复合膜的结构和力学性能进行了测试。结果显示,当多壁碳纳米管的填充量为5%(质量分数)时,碳纳米管/再生纤维素复合膜的抗张强度和抗张模量相对于纯纤维素膜分别提高了184%和54%。复合膜的强度和韧性能同时得到提高的原因有:多壁碳纳米管纳米片能均匀分散在再生纤维素基体内,多壁碳纳米管与再生纤维素膜间具有强烈的氢键作用。
     (3)石墨烯因为具有优异的物理和化学修饰性而得到人们的广泛关注。我们使用简单的溶液共混方法制备出石墨烯/再生纤维素复合膜,使用了X射线衍射、傅立叶变换红外光谱、扫描电子显微镜和力学测试仪对复合膜的结构和力学性能进行了测试。结果显示,当石墨烯的填充量为5%(质量分数)时,石墨烯/再生纤维素复合膜的抗张强度和抗张模量分别提高了137%和95%。复合膜的强度和韧性能同时得到提高的原因有:石墨烯纳米片能均匀分散在再生纤维素基体内,并呈平行排列;石墨烯与再生纤维素膜间具有强烈的氢键作用,同时石墨烯的添加显著提高了复合膜的结晶度。
     (4)尽管最近几年以石墨烯为基体的材料发展迅速,但是石墨烯填充高分子材料的报道却较少,主要原因是石墨烯纳米片很难以分子尺度分散在高聚物基体中。我们以剥落氧化石墨烯作为骨架,采用层层自组装的方法制备出氧化石墨烯/再生纤维素多层膜。场发射扫面电子显微镜测试结果显示多层膜是层状结构,50层膜的厚度为20μm,则每单层膜的厚度大约为400nm,而且多层膜的表面光滑。这是由于氧化石墨烯以分子尺度均匀分散在再生纤维膜的基体内。同时复合膜中氧化石墨烯的添加,使得再生纤维素膜产生导电性,而且多层膜的电导率层数的增加而增大。
With the decreasing amount of the reserved petroleum and increasing amount of pollution caused by the oil-based products, it is urgent and promising to develop bio-based polymer as supplement for the non-degraded synthetic polymers. Cellulose, the most abundant natural polymer in nature, is renewable, biodegradable, and biocompatible. Therefore, increasing attention has been paid to cellulose as an inexhaustible source of raw material to replace petrochemically derived compounds in many applications. Nowadays, the regenerated cellulose products such as membranes and fibers have been widely developed over a series of industry applications.
     The effect of Fe3O4, carbon nanotubes and graphene on regenerated cellulose composite has been investigated in this thesis. The present work includes four parts as follows:
     (1) The cellulose was dissolved in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), and the solution was casted and coagulated in a water bath under appropriate conditions. Then magnetic composite films were fabricated by introducing in-situ synthesized Fe3O4 nanoparticles into the wet cellulose films, in which regenerated cellulose (RC) film was used as a matrix and mixture solutions of Fe3+/Fe2+ as precursors. The structure and morphology of the composite films were studied by Scanning electron microscopy and X-ray diffraction. The results indicate that the spherical magnetic Fe3O4 nanoparticles were dispersed uniformly and immobilized in the matrix, and the structure of Fe3O4 are perfect. FT-IR results demonstrate that there are good interactions between cellulose and Fe3O4 in the films, leading to the formation and stabilization of the novel magnetic materials. The thermogravimetric analysis reveals that with an increasing concentration of precursors from 0.01 to 0.5, the content of Fe3O4 nanoparticles in the dried composites films increases from 6.8% to 28.3%. The cellulose composite films show a higher mechanical strength than that of RC films. Therefore, a simple and effective way is provided to prepare the regenerated-cellulose/Fe3O4 composite films that might be used for the production of cellulose-based films.
     (2) Carbon nanotubes (CNTs) exhibit novel structure-related physical and chemical properties due to their unique one-dimensional tubular structure, and show significant potential applications for electronic devices, composite materials, and catalysts. The structure and mechanical properties of the composite films were investigated by X-ray diffraction, scanning electron microscopy, and mechanical testing, respectively. The results reveal that a significant enhancement of mechanical properties has been achieved, that is,184% improvement of tensile strength and 54% increase of tensile modulus with 5wt.% MWCNTs loading. The simultaneous improvement of strength and toughness could be attributed to the homogeneous dispersion of CNTs in the RC matrix. The comparison between the experimental results and the Halpin-Tsai theoretical prediction indicates that MWCNTs might be randomly distributed in the RC matrix. Meanwhile, it is interesting to note that all the composites films are transparent. The overall mechanical performance of the composites is suitable for further use in some fields which need materials with higher mechanical properties.
     (3) Graphene has attracted attention because of its remarkable physical properties and chemical functionalization capabilities. We present the preparation of graphene/RC composites through solution blending. The structure and mechanical properties of the composite films were investigated by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, and mechanical testing, respectively. A significant enhancement of mechanical properties is achieved, with 137% improvement of tensile strength and 95% increase of tensile modulus with 5wt.% graphene loading. The simultaneous improvement of strength and toughness is due to the uniform dispersion of graphene and alignment of graphene nanosheets in the RC matrix, and the strong interfacial interactions between graphene and RC, as well as the higher crystallinity of the composites compared to the pure RC film.
     (4) Despite great development with graphene-based materials, the progress of strong and cost-efficient multifunctional graphene-filled polymer composites has few to be made. A key challenge in the preparation of nanoplatelet-filled polymer composites is the ability to realize the nanometer-level dispersion and the planar orientation of nanosheets in polymer matrices. In this report, multilayer films were successfully fabricated by layer-by-layer assembly of regenerated cellulose and exfoliated graphene oxide, in which exfoliated graphene oxide nanosheets were used as the building blocks. Typical field emission scanning electron microscope images demonstrate an ordered arrangement of layers. The thickness of 50 layer film is about 20μm and the film exhibits a high degree of smoothness. This may be attributed to the well-defined layered structure with high degree of planar orientation and nanolevel assemblies of graphene oxide nanosheets in the polymer matrices. The electrical conductivity of the multilayer films shows a remarkable increase with increasing number of layers in the films.
引文
[1]Cutter C N. Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods [J]. Meat Science,2006,74(1):131-142.
    [2]Kumar R, Liu D G, Zhang L N. Advances in proteinous biomaterials [J]. Journal of Biobased Materials and Bioenergy,2008,2(1):1-24.
    [3]Sun S M, Song Y H, Zheng Q. Morphologies and properties of thermo-molded biodegradable plastics based on glycerol-plasticized wheat gluten [J]. Food Hydrocolloids,2007,21(7): 1005-1013.
    [4]Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose Ⅰ β from synchrotron X-ray and Neutron fiber diffraction [J]. Journal of the American Chemical Society,2002,124(31):9074-9082.
    [5]Klemm D, Heublein B, Fink H P. Cellulose:Fascinating biopolymer and sustainable raw material [J]. Angewandte Chemie International Edition,2005,44(22):3358-3393.
    [6]Xie H B, King A, Kilpelainen I, et al. Thorough chemical modification of wood-based lignocellulosic materials in ionic liquids [J]. Biomacromolecules,2007,8(12):3740-3748.
    [7]Henriksson M, Berglund L A, Isaksson P, et al. Cellulose nanopaper strucutres of high toughness [J]. Biomacromolecules,2008,9(6):1579-1585.
    [8]Klemm D, Schumann D, Udhardt U, et al. Bacterial synthesized cellulose-artificial blood vessels for microsurgery [J]. Progress in Polymer Science,2001,26(9):1561-1603.
    [9]Diddens I, Murphy B, Krisch M, et al. Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering [J]. Macromolecules,2008,41 (24):9755-9759.
    [10]Fengel D. Ideas on ultrastructural organization of cell-wall components [J]. Journal of Polymer Science Part C:Polymer Symposia,1971,36(1):383-392.
    [11]Fengel D. Characteristics of cellulose by deconvoluting the OH valency range in FTIR spectra [J]. Holzforschung,1992,46(4):283-288.
    [12]Fengel D, Stoll M. Crystals of cellulose grown from TFA solution [J]. Wood Science and Technology,1989,23(1):85-94.
    [13]Fengel D, Stoll M. Studies on holocellulose and alpha-cellulose from spruce wood using cryo-ultramicrotomy part 2:The influence of heavy metal salt impregnation and the dimensions of delignified cell wall layers [J]. Wood Science and Technology,1978,12(4):261-269.
    [14]Fengel D, Wegener G, Greune A. Studies on the delignification of spruce wood by organosolv pulping using SEM-EDXA and TEM [J]. Wood Science and Technology,1989,23(2):123-130.
    [15]Leob S. The leob-sourirajan membrane:How it came about, in synthetic membranes: Desalination [J]. American Chemical Soceity-Symposium Series,153,1981(4):1-9.
    [16]Tanabe T, Touma K, Hamasaki K, et al. Immobilized fluoscent cyclodextrin on a cellulose membrane as a chemosensor for molecule detection [J]. Aanlytical Chemistry,2001,73(13): 3126-3130.
    [17]Bonne M J, Edler K J, Buahanan J G, et al. Thin-film modified electrodes with reconstituted cellulose-PDDAC films for the accumulation and detection of triclosan [J]. The Journal of Physical Chemistry C,2008,112(7):2660-2666.
    [18]Cai J, Wang L X, Zhang L N. Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH/urea aqueous solution [J]. Cellulose, 2007,14(3):205-215.
    [19]Mao Y, Zhou J P, Zhang L N. Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution [J]. Journal of Membrane Science,2006, 279(1-2):246-255.
    [20]Lu Y S, Weng L H, Zhang L N. Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers [J]. Biomacromolecules,2004,5(3):1046-1051.
    [21]Weber C J, Haugaard V, Festersen R, et al. Production and applications of biobased packageing materials for K the food industry [J]. Food Additives Contaminants,2002,19(6): 172-177.
    [22]Marsh K, Bugusu B. Food packaging-roles, materials, and environmental issues [J]. Journal of Food Science,2007,72(3):39-55.
    [23]Cai J, Zhang L N, Zhou J, et al. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:structure and properties [J]. Advanced Materials,2007,19(6): 821-825.
    [24]Bellesia G, Langan P, Dale B E, et al. Probing the early events associated with liquid ammonia pretreatment of native crystalline cellulose [J]. The Journal of Physical Chemistry B, 2011,115(32):9782-9788.
    [25]Qi H S, Chang C, Zhang L N. Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process [J]. Green Chemistry,2009,11(2): 177-184.
    [26]Qi H S, Cai J, Zhang L N, et al. Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution [J]. Biomacromolecules,2009,10(6): 1597-1602.
    [27]Raymond L, Revol J F, Ryan D H, et al. In situ synthesis of ferrites in cellulosics [J]. Chemistry of Materials,1994,6(2):249-255.
    [28]Marchessault R H, Rioux P, Raymond L. Magnetic cellulose fibers and paper:preparation, processing and properties [J]. Polymer,1992,33(19):4024-4028.
    [29]Sourty E, Ryan D H, Marchessault R H. Ferrite-loaded membranes of microfibrillar bacterial cellulose prepared by in situ precipitation [J]. Chemistry of Materials,1998,10(7):1755-1757.
    [30]Rubacha M. Magnetically active composite cellulose fibers [J]. Journal of Applied Polymer Science,2006,101(3):1529-1534.
    [31]Morales M P, Veintemillas-Verdaguer S, Montero M, et al. Surface and internal spin canting inγ-Fe2O3 nanoparticles [J]. Chemistry of Materials,1999,11(11):3058-3064.
    [32]Gotic M, Jurkin T, Music S. Factors that may influence the micro-emulsion synthesis of nanosize magnetite particles [J]. Colloid and Polymer Science,2007,285(7):793-800.
    [33]Hyeon T, Lee S S, Park J, et al. Synthesis of highly crystalline and monodisperse magemite nanocrystallites without a size-selction process [J]. Journal of the American Chemical Society, 2001,123(51):12798-12801.
    [34]Sun S H, Zeng H. Size-controlled synthesis of magnetite nanoparticles [J]. Journal of the American Chemical Society,2002,124(28):8204-8205.
    [35]Tang N J, Zhong W, Jiang H Y, et al. Nanostructured magnetite (Fe3O4) thin films prepared by sol-gel method [J]. Journal of Magnetism and Magnetic Materials,2004,282:92-95.
    [36]Vijayakumar R, Koltypin Y, Felner I, et al. Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles [J]. Materials Science and Engineering:A,2000,286(1): 101-105.
    [37]Cabrera L, Gutierrez S, Menendez N, et al. Magnetite nanoparticles:Electrochemical synthesis and characterization [J]. Electronchimica Acta,2008,53(8):3436-3441.
    [38]Ye E, Liu B H, Fan W Y, et al. Preparation of graphite-coated iron nanoparticles using pulsed laser decomposition of Fe3(CO)12 and PPh3 in hexane [J]. Chemistry of Materials,2007,19(15): 3845-3849.
    [39]Kroto H W, Heath J R, O'Brien S C, et al. C60:Buckyminister-fulerence [J]. Nature,1985, 318(6042):162-163.
    [40]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [41]Lau K T, Hui D. The revolutionary creation of new advanced materials-carbon nanotube composites [J]. Composites Part B,2002,33(4):263-277.
    [42]Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature,1996,381(6584):678-680.
    [43]Krishnan A D. Young's modulus of single-walled nanotubes [J]. Physical Review B,1998, 58(20):4013-4019.
    [44]Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics:Elasticity, strength, and toughness of nanorobs and nanotubes [J]. Science,1997,277(5334):1971-1975.
    [45]Salvetat J P, Kulik A J, Bonard J M. Elastic modulus of ordered and disordered multiwalled carbon nanotube [J]. Advanced Materials,1999,11(2):161-165.
    [46]Salvetat J P, Kulik A J, Bonard J M, et al. Elastic and shear moduli of single-walled carbon nanotube ropes [J]. Physical Review Letters,1999,82(2):944-947.
    [47]Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load [J]. Science,2000,287(5453):637-640.
    [48]Yu M F, Files B S, Arepalli S, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties [J]. Physical Review Letters,2000,84(24):5552-5555.
    [49]Kaskela A, Nasibulin A G, Timmermans M Y, et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique [J]. Nano Letters,2010, 10(11):4349-4355.
    [50]Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters,2008,8(3):902-907.
    [51]Zhao H, Min K, Aluru N R. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension [J]. Nano Letters,2009,9(8):3012-3015.
    [52]Robertson D H, Brenner D W, Mintmire J W. Energetics of nanoscale graphitic tubules [J]. Physical Review B,1992,45(2):12592-12595.
    [53]Park S, Rouff S. Chemical methods for the production of graphenes [J]. Nature Nanotechnololgy,2009,4(2):217-224.
    [54]Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nature Nanotechnology,2007,3(5):101-105.
    [55]Yu M, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load [J]. Science,2000,287(13):637-640.
    [56]Li Y J, Wang K L, Wei J Q, et al. Tensile properties of long alligned double-walled carbon nanotube strands [J]. Carbon,2005,43(1):31-35.
    [57]Yuen S M, Ma C M, Chiang C L, et al. Silane-modified MWCNT/PMMA composites-preparation, electrical resistivity, thermal conductivity and thermal stability [J]. Composites Part A:Applied Science and Manufacturing,2007,38(3):2527-2535.
    [58]Itkis M E, Borondics F, Yu A, et al. Thermal conductivity measurements of semitransparent single-walled carbon nanotube films by a bolometric technique [J]. Nano Letters,2007,7(7): 900-904.
    [59]Lewandowska M, Krawczynska A T, Kulczyk M, et al. Structure and properties of nano-sized Eurofer 97 steel obtained by hydrostatic extrusion [J]. Journal of Nuclear Materials,2009,386(8): 499-502.
    [60]Chrissafisa K, Paraskevopoulosa K M, Pavlidoua E, et al. Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles [J]. Thermochimica Acta,2009, 485(1-2):65-71.
    [61]Li Y C, Chen G H. HDPE/expanded graphite nanocomposites prepared via masterbatch process [J]. Polymer Engineering and Science,2007,47(6):882-888.
    [62]Woo M W, Wong P, Tang Y, et al. Melting behavior and thermal properties of high density polyethylene [J]. Polymer Engineering and Science,1995,35(2):151-156.
    [63]Sun Y H, Luo Y F, Jia D M. Preparation and properties of natural rubber nanocomposites with solid-state organomodified montmorillonite [J]. Journal of Applied Polymer Science,2008,107(5): 2786-2792.
    [64]Ventura G, Martelli V. Thermal conductivity of Kevlar 49 between 7 and 290 K [J]. Cryogenics,2009,49(12):735-737.
    [65]Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites [J]. Applied Physics Letters,2000,76(20):2868-2871.
    [66]Kumar S, Dang T D, Arnold F E, et al. Synthesis, structure, and properties of PBO/SWNT composites [J]. Macromolecules,2002,35(24):9039-9043.
    [67]Zhu J, Kim J, Peng H, et al. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization [J]. Nano Letters,2003,3(8): 1107-1113.
    [68]Geng H, Rosen R, Zheng B, et al. Fabrication and properties of composites of poly(ethylene oxide) and functionalized carbon nanotubes [J]. Advanced Materials,2002,14(19):1387-1390.
    [69]Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials,2007,6(2):183-191.
    [70]Lee C, Wei X D, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science,2008,321(385):385-388.
    [71]Gomez-Navarro C, Burghard M, Kern K. Elastic properties of chemically derived single graphene sheets [J]. Nano Letters,2008,8(7):2045-2049.
    [72]Balandin A A, Ghosh S, Lau C N, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters,2008,8(3):902-907.
    [73]Du X, Skachko I, Andrei E Y. Approaching ballistic transport in suspended graphene [J]. Nature Nanotechnology,2008,3(3):491-495.
    [74]Stoller M D, An J H, Ruoff R S, et al. Graphene-based ultracapacitors [J]. Nano Letters,2008, 8(10):3498-3502.
    [75]Bolotin K I, Sikes K J, Stormer H L, et al. Ultrahigh electron mobility in suspended graphene [J]. Solid State Communication,2008,146(9-10):351-355.
    [76]Ansari S, Giannelis E P. Functionalized graphene sheet-poly (vinylidene fluoride) conductive nanocomposites [J]. Journal of Polymer Science Part B:Polymer Physics,2009,47(9):888-897.
    [77]Yan J, Wei T, Fan Z J, et al. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors [J]. Journal of Power Sources,2010,195 (9): 3041-3045.
    [78]Liang J J, Wang Y, Chen, Y S, et al. Electromagnetic interference shielding of graphene/epoxy composites [J]. Carbon,2009,47(3):922-925.
    [79]Zhu Y W, Stoller M D, Ruoff R S, et al. Exfoliation of graphene oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets [J]. ACS Nano,2010,4(2): 1227-1233.
    [80]Murugan A V, Muraliganth T, Manthiram A. Rapid, facile microwave solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage [J]. Chemistry of Materials,2009,21(21):5004-5006.
    [81]Liang J J, Guo T Y, Chen Y S, et al. Infrared-triggered actuators from graphene-based nanocomposites [J]. The Journal of Physical Chemistry C,2009,113(22):9921-9927.
    [82]Xiao X C, Xie T, Cheng Y. Self-healable graphene polymer composite [J]. Journal of Materials Chemistry,2010,20(17):3508-3514.
    [83]Vadukumpully S, Paul J, Mahanta N, et al. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability [J]. Carbon,2011,49(1): 198-205.
    [84]Qiu J J, Wang S R. Enhancing polymer performance through graphene sheets [J]. Journal of Applied Polymer Science,2011,119(6):3670-3674.
    [85]Xu Z, Gao C. In-situ polymerization approach to graphene-reinforced nylon-6 composites [J]. Macromolecules,2010,43(16):6716-6723.
    [86]Frankland S J V, Caglar A, Brenner D W, et al. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces [J]. The Journal of Physical Chemistry B,2002,106(12):3046-3048.
    [87]Bai J B, Allaoui A. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation [J]. Composites Part A:Applied Science and Manufacturing,2003,34(8):689-694.
    [88]Gojny F H, Wichmann M H G, Fiedler B, et al. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study [J]. Composites Science and Technology,2005,65(15-16):2300-2313.
    [89]Coleman J N, Curran S, Dalton A B, et al. Physical doping of a conjugated polymer with carbon nanotubes [J]. Synthetic Metals,1999; 102(1-3):1174-1175.
    [90]Cooper C A, Young R J, Halsall M. Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy [J]. Composites Part A:Applied Science and Manufacturing,2001,32(3-4):401-411.
    [91]Pirlot C, Willems I, Fonseca A, et al. Preparation and characterization of carbon nanotube/polyacrylonitrile composites [J]. Advanced Engineering Materials,2002; 4(3):109-114.
    [92]Allaoui A, Bai S, Cheng H M, et al. Mechanical and electrical properties of a MWNT/epoxy composite [J]. Composites Science and Technology,2002,62(15):1993-1998.
    [93]Maser W K, Benito A M, Callejas M A, et al. Synthesis and characterization of new polyaniline/nanotube composites [J]. Materials Science and Engineering:C,2003,23(1-2):87-91.
    [94]Velasco-Santos C, Martinez-Hernandez A L, Consultchi A, et al. Naturally produced carbon nanotubes [J]. Chemical Physics Letters,2003,373(3-4):272-276.
    [95]Goh H W, Goh S H, Xu G Q, et al. Dynamic mechanical behavior of in situ functionalized multi-walled carbon nanotube/phenoxy resin composite [J]. Chemical Physics Letters,2003, 373(3-4):277-283.
    [96]Gong X Y, Liu J, Baskaran S, et al. Surfactant-assisted processing of carbon nanotube/polymer composites [J]. Chemistry of Materials,2000,12 (4):1049-1052.
    [97]Decher G, Hong J D, Schmitt J. Building of ultrathin multilayer films by a self-assembly proesss:Ⅲ. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces [J]. Thin solid film,1992,210-211(2):831-835.
    [98]Decher G. Fuzzy nanoassemblies:Toward layered polymeric multicomposites [J]. Science, 1997,277(5330):1232-1237.
    [99]Nishino T, Takano K, Nakamae K. Elastic modulus of the crystalline regions of cellulose polymorphs [J]. Journal of Polymer Scienc Part B:Polymer Physics,1995,33(11):1647-1561.
    [100]Wang B, Tang Y F, Wen Z W, et al. Dissolution and regeneration of polybenzimidazoles using ionic liquids [J]. European Polymer Journal,2009,45(10):2962-2965.
    [101]Deng F, Ito M, Noguchi T, et al. Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites [J]. ACS Nano,2011,5(5):3858-3866.
    [102]Mallick P K, Marcel D. Fiber reinforced composites [M]. New York:Academic,1993.
    [103]Zhao X, Zhang Q H, Chen D J. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites [J]. Macromolecules,2010,43(5):2357-2363.
    [104]Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids [J]. Journal of the American Chemical Society,2002,124(18):4974-4975.
    [105]Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society,1958,80(6):1339-1339.
    [106]Kovtyukhova N I, Ollivier P J. Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations [J]. Chemistry of Materials,1999,11(3):771-778.
    [107]Park S, An J, Piner R D, et al. Aqueous suspension and characterization of chemically modified graphene sheets [J]. Chemistry of Materials,2008,20(21):6592-6594.
    [108]Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide [J]. Carbon,2008,46(14): 1994-1998.
    [109]Fan Z J, Wang K, Yan J, et al. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide [J]. ACS Nano,2011,5(1):191-198.
    [110]Kim Y K, Min D H. Preparation of scrolled graphene oxides with multi-walled carbon nanotube templates [J]. Carbon,2010,48(15):4283-4288.
    [111]Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45(7):1558-1565.
    [112]Gao J, Liu F, Liu Y L, et al. Environment-friendly method to produce graphene that employs vitamin C and amino acid [J]. Chemistry of Materials,2010,22(7):2213-2218.
    [113]Tang Z H, Zhuang J, Wang X. Exfoliation of graphene from graphite and their self-assembly at the oil-water interface [J]. Langmuir,2010,26(11):9045-9049.
    [114]Li M L, Kim H, Jeong Y G. Cellulose acetate/multiwalled carbon nanotube nanocomposites with improved mechanical, thermal, and electrical properties [J]. Journal of Applied Polymer Science,2010,118(4):2475-2481.
    [115]Omidi M, Milani A S, Seethaler R J, et al. Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures [J]. Carbon,2010,48(11):3218-3228.
    [116]Lerf A, He H Y, Klinowski J, et al. Structure of graphite oxide revisited [J]. The Journal of Physical Chemistry B,1998,102(23):4477-4482.
    [117]Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films micron-sized graphite oxide sheets and polycations [J]. Chemistry of Materials, 1999,11(3):771-778.
    [118]Cortez C, Quinn J F, Hao X J, et al. Multilayer buildup and biofouling characteristics of PSS-b-PEG containing films [J]. Langmuir,2010,26(12):9720-9727.
    [119]Shim B S, Chen W, Kotov N A, et al. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes [J]. Nano Letters,2008, 8(12):4151-4157.
    [120]Zeng G H, Xing Y B, Zhang X, et al. Unconventional layer-by-layer assembly of graphene multilayer films for enzyme-based glucose and maltose biosensing [J]. Langmuir,2010,26(18): 15022-15026.
    [121]Wang L Y, Cui S X, Zhang X, et al. Multilayer assemblies of copolymer PSOH and PVP on the basis of hydrogen bonding [J]. Langmuir,2000,16(2):10490-10494.
    [122]Fu Y, Bai S L, Zhang X, et al. Hydrogen-bonding-directed layer-by-layer multilayer assembly:reconformation yielding microporous films [J]. Macromolecules,2002,35(3): 9451-9458.
    [123]Bai S L, Wang Z Q, Zhang X. Hydrogen-bonding-directed layer-by-layer films:effect of electrostatic interaction on the microporous morphology variation [J]. Langmuir,2004,20(12): 11828-11832.
    [124]Cerkez I, Kocer H B, Worley S D, et al. Biocidal coatings via a layer-by-layer assembly technique [J]. Langmuir,2011,27(2):4091-4097.
    [125]Pan Y X, Tong B, Shi J B, et al. Fabrication, characterization, and optoelectronic properties of layer-by-layer films based on terpyridine-modified MWCNTs and Ruthenium(III) Ions [J]. The Journal of Physical Chemistry C,2010,114(7):8040-8047.
    [126]Zhang X C, Wang Y F, Xu J, et al. Arithmetic computation using self-assembly of DNA tiles: subtraction and division [J]. Progress in Natural Science:Materials International,2009,19(3): 377-388.
    [127]Zhao X B, Pan F, Lu J R. Recent development of peptide self-assembly [J]. Progress in Natural Science:Materials International,2008,18(6):653-660.
    [128]Feng Y Y, Xue Q, Yong T, et al. A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite [J]. Carbohydrate Polymers,2012,87(1):644-649.
    [129]Kim C J, Khan W, Kim D H, et al. Graphene oxide/cellulose composite using NMMO monohydrate [J]. Carbohydrate Polymers,2011,86(4):903-909.
    [130]Paredes J I, Villar-Rodil S, Martinez-Alonso A, et al. Graphene oxide dispersions in organic solvents [J]. Langmuir,2008,24(19):10560-10564.
    [131]Zhao X, Zhang Q H, Hao Y P, et al. Alternate multilayer films of poly(vinyl alcohol) and exfoliated graphene oxide fabricated via a facial Layer-by-Layer assembly [J]. Macromolecules, 2010,43(1):9411-9416.
    [132]Gilje S, Han S, Wang M, et al. A chemical route to graphene for device applications [J]. Nano Letters,2007,7(11):3394-3398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700