不同微结构炭黑填充聚丙烯的导电性能及其在电阻焊接中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物基导电复合材料的导电性能取决于复合体系的导电网络,而导电填料本身的种类、微结构以及分散状况等因素对导电网络具有至关重要的影响。炭黑(CB)微结构多样、品种齐全,与聚合物复合易成型加工,所得制品导电性能持久稳定,是目前应用最为广泛的导电填料。因此,本文研究炭黑微结构对复合材料导电性能的影响,并探索导电复合材料在电阻焊接领域中的应用。
     首先,本文采用三种平均粒径相近而微结构不同的炭黑填充到聚丙烯(PP)基体中制备成导电复合材料,考察这三种不同复合体系的导电渗流和流变渗流。结果表明,低比表面积炭黑CB-N660、中比表面积炭黑CB-K300及高比表面积炭黑CB-K600填充聚丙烯复合体系出现导电渗流和流变渗流现象所需的炭黑含量依次减少。这是由于炭黑平均粒径接近时,比表面积越大,相同含量的炭黑在聚丙烯基体中的颗粒密度越大,越易形成炭黑网络结构。而导电渗流是炭黑网络在电场中的电学响应,流变渗流是炭黑网络在应力场中的力学响应,因此两者的渗流闽值相近。
     其次,本文考察了三种不同微结构炭黑填充聚丙烯复合材料的体积电阻率-温度效应,发现高比表面积炭黑CB-K600填充聚丙烯复合体系具有特殊的NTC-PTC-NTC三阶段体积电阻率-温度效应。另外,高比表面积炭黑CB-K600填充聚丙烯复合体系的PTC效应弱,电发热温度可以高于聚丙烯基体熔融温度,因此可用于热塑性聚合物及其复合材料的电阻焊接领域。
     最后,将高比表面积炭黑CB-K600填充聚丙烯复合材料制备成加热单元,采取简单搭接焊接形式,电阻焊接连续玻璃纤维增强聚丙烯(CGF-PP)复合材料样条,详细探讨了加热单元的性质、焊接电压、焊接时间和焊接压力等工艺参数对焊接质量的影响,CGF-PP样条的焊接系数在0.55~0.70之间。
The conductive property of polymer-based composites depends on the conductivity network. The type, microstructure, dispersion of conductive filler and other factors have an important effect on the conductivity network. Carbon black (CB) is most widely used, because it not only has varieties types and microstructure, but also easily compounded with polymer, and the conductivity of products is lasting stability. In this thesis, the effect of carbon black microstructure on the property of conductive composites was investigated, and the conductive composites in the field of resistance welding application were explored.
     Firstly, three kinds of carbon black with different microstructure which had similar average particle size filling polypropylene (PP) matrix were prepared. The conductive percolation and rehological percolation of the three composite systems were investigated. Results showed that low surface area carbon black CB-N660, the middle surface area carbon black CB-K300and high surface area carbon black CB-K600filled polypropylene composites all appeared conductive percolation phenomena and rheological percolation, but the required carbon black content was reduced with the surface area increasing. This was due to the particle density of carbon black in the polypropylene matrix, and the greater surface area of carbon black, the easier to form carbon black network. The carbon black network exhibited conductive percolation in response to the electric field and rheological percolation in response to the mechanical stess field, so the percolation thresholds were close.
     Secondly, volume resistivity-temperature characteristic of the three composite systems was investigated. Results showed that composites filled with high surface area carbon black CB-K600had a special resistivity-temperature characteristic,"NTC-PTC-NTC" characteristic. In addition, the PTC effect of CB-K600/PP composite was weak, and the electrical heating temperature could be higher than the melting temperature of PP matrix, so it could be applied in resistance welding field to join thermoplastic polymers and its composites.
     Finally, heating element made of polyproylene filled with high surface area carbon black CB-K600was prepared. Taken the form of a simple overlap welding, continuous glass fiber reinforced polypropylene (CGF-PP) composite specimens were resistance welded, and the properties of heating element, welding voltage, welding time, welding pressure and other process parameters on the welding quality were discussed in detail. The welding coefficient of CGF-PP specimens were between0.55-0.70.
引文
[1]钱玉剑.炭黑改性对CB/HDPE复合材料导电性能的影响.浙江大学硕士学位论文,2008.
    [2]张雄伟,黄锐.高分子复合导电材料及其应用发展趋势.功能材料,1994,25(6):492-499.
    [3]益小苏.复合导电高分子材料的功能原理.北京:国防工业出版社,2004.
    [4]Kost J, Narkis M, Foux A. Effects of axial stretching on the resistivity of carbon black filled silicone-rubber. Polymer Engineering & Science,1983,23(10):567-571.
    [5]Meyer J. Glass transition temperature as a guide to selection of polymers suitable for PTC materials. Polymer Engineering & Science,1973,13(6):462-468.
    [6]李文春.碳纳米管/高密度聚乙烯复合材料的导电性和动态流变行为研究.浙江大学硕士学位论文,2005.
    [7]Kirkpatrick S. Percolation and conduction. Reviews of Modern Physics,1973,45(4): 574-588.
    [8]A1-Allak H M, Brinkman A W, Woods J.I-V characteristics of carbon black-loaded crystalline polyethylene. Journal of Materials Science,1993,28(1):117-120.
    [9]Ohe K, Naito Y. A new resistor having an anomalously large positive temperature coefficient. Japanese Journal of Applied Physics,1971,10(1):99-108.
    [10]Sherman R D, Middleman L M, Jakobs S M. Electron transport processes in conductor-filled polymers. Polymer Engineering & Science,1983,23(1):36-46.
    [11]Shin'nosuke M, Eiki T. The conduction mechanism of polymer-filler particles. Journal of Applied Polymer Science,1985,30(7):2743-2751.
    [12]Norman R. Conductive rubbers and plastics. New York:Elseriver,1970.
    [13]Raychem C, Circuit protection devices comprising PTC element, US Patent,4413301,1983.
    [14]谭洪生.聚烯烃材料:抗冲共聚聚丙烯的结构与高密度聚乙烯导电复合材料的性能.浙江大学博士学位论文,2006.
    [15]Song Y-H, Zheng Q. Self-Heating and Conduction of an Acetylene Carbon Black Filled High-Density Polyethylene Composite at the Electric-Thermal Equilibrium State. Journal of Polymer Science:Part B:Polymer Physics.2005.43(18):2484-2492.
    [16]Wessling B, Volk H, Mathew W R, et al. Models for understanding processing properties of intrinsically conductive polymers. Molecular Crystals and Liquid Crystals,1988.160(1): 205-220.
    [17]Sumita M, Asai S, Miyadera N, et al. Electrical-conductivity of carbon-black filled ethylene-vinyl acetate copolymer as a function of vinyl-acetate content. Colloid & Polymer Science,1986,264(3):212-217.
    [18]Miyasaka K, Watanabe K, Jojima E, et al. Electrical-conductivity of carbon polymer composites as a function of carbon content. Journal of Materials Science,1982,17(6): 1610-1616.
    [19]Zhang M Q, G Yu, Zeng H M, Zhang H B, Hou Y H. Two-step percolation in polymer blends filled with carbon black. Macromolecules,1998,31(19):6724-6726.
    [20]Sumita M, Sakata K, Asai S, et al. Dispersion of fillers and the electrical-conductivity of polymer blends filled with carbon-black. Polymer Bulletin,1991,25(2):265-271.
    [21]Feng J, Chan C, Li J. A method to control the dispersion of carbon black in an immiscible polymer blend. Polymer Engineering & Science,2003,43(5):1058-1063.
    [22]Avlyanov J K, Schwartz K, Gerteisen S R, Dahman S. Self-organized networks of intrinsically conductive additives in two-phase plastics. Synthetic Metals,1999,102(1-3): 1274.
    [23]A1-Saleh M H, Sundararaj U. An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends. Composites Part A:Applied Science and Manufacturing,2008,39(2):284-293.
    [24]杨辉.导电高分子复合材料的导电网络构筑与性能.浙江大学硕士学位论文,2010.
    [25]Zhou Z, Wang S-F, Zhang Y, Zhang Y-X. Effect of Different Carbon Fillers on the Properties of PP Composites:Comparison of Carbon Black with Multiwalled Carbon Nanotubes. Journal of Applied Polymer Science,2006,102(5):4823-4830.
    [26]李文春,沈烈,郑强.多壁碳纳米管填充高密度聚乙烯复合材料的导电特性.高等学校化学学报,2005.26(2):382-384.
    [27]Wang L-W. Hong J-B, Chen G-H. Comparison Study of Graphite Nanosheets and Carbon Black as Fillers for High Density Polyethylene. Polymer Engineering & Science,2010, 50(11):2176-2181.
    [28]徐曼,陶吴,谢大荣,曹晓珑.高密度聚乙烯/炭纤维复合体系的PTC效应.高分子材料科学与工程,2011,27(2):90-93.
    [29]Thongruang W, Spontak R J, Balik C M. Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber. Polymer, 2002,43(8):2279-2286.
    [30]Di W. Zhang G, Xu J, Peng Y, Wang X J, Xie Z Y. Positive-temperature-coefficient/ negative-temperature-coefficient effect of low-density polyethylene filled with a mixture of carbon black and carbon fiber. Journal of Polymer Science:Part B:Polymer Physics.2003, 41(23):3094-3101.
    [31]沈烈,徐建文,益小苏.聚乙烯/炭黑/碳纤维复合材料阻温特性.复合材料学报,2001,18(03):18-21.
    [32]Frydman E. U. K. Patent Specification,601.695I 718 14s.
    [33]Kohler F. US Patent,3.243.753 March 29,1966.
    [34]贺丽丽,叶明泉,韩爱军.填充复合型导电高分子材料研究进展.材料导报,2008,22:294-300.
    [35]Narkis M, Vacam A. Resistivity behavior of filled electrically conductive crosslinked polyethylene. Journal of Applied Polymer Science,1984,29(1):1639-1652.
    [36]Takahashi M, Li L, Masuda T. Nonlinear viscoelasticity of ABS Polymers in the molten state. Journal of Rheology,1989,33(5):709-23.
    [37]董琦琼.粒子填充高密度聚乙烯复合体系形态结构与动态流变行为.浙江大学博士学位论文,2005.
    [38]吴刚.填充类导电复合材料结构与动态粘弹行为研究.浙江大学博士学位论文,2004.
    [39]Yousefpour A, Hojjati M, Immarigeon J P. Fusion Bonding/Welding of Thermoplastic Composites. Journal of Thermoplastic Composite Materials.2004,17:303-341.
    [40]秦明.热塑性聚芳醚酮类树脂基复合材料的制备及连接技术研究.浙江大学博士学位论文,2004.
    [41]Dube M, Hubert P, Yousefpour A, Denault. Resistance Welding of Thermoplastic Composites Skin/Stringer Joints. Composites:Part A,2007,38(12):2541-2552.
    [42]Stavrov D, Bersee HEN. Resistance Welding of Thermoplastic Composites-an Overview. Composites:Part A,2005,36(1):39-54.
    [43]Ahmed T J, Stavrov D, Bersee H E N. Beukers A. Induction Welding of Thermoplastic Composites-an Overview. Composites:Part A,2006,37(10):1638-1651.
    [44]Ageorges C, Ye L, Hou M. Advances in Fusion Bonding Techniques for Joining Thermoplastic Matrix Composites:a Review. Composites Part A,2001,32(6):839-57.
    [45]Grimm R A. Fusion welding techniques for plastics. Welding Journal,1990,69(3):23-28.
    [46]Potente H, Natrop J, Kilt Pedersen T, Uebbing M. Comparative investigation into the welding of glass-fibre-reinforeed PES. Jounal of Thermoplast Composite Mater,1993,6:147-159.
    [47]Cogswell F N. Thermoplastic aromatic polymer composite. London:Butterworth-Heinemann, 1992.
    [48]Beevers A. Welding:the way ahead for thermoplastics Engineering 1991; 231:ACE11-12.
    [49]Benatar A, Gutowski T G. Methods for fusion bonding thermoplastic composites. SAMPE Q 1986; 18(1):35-42.
    [50]Benatar A, Welding of thermoplastic and thermoplastic composites. Proceedings of the Seeond International Conference of Composites Engineering,1995.P.61-62.
    [51]Maguire D M. Joining thermoplastic composites. SAMPE J 1989; 25(1):11-14.
    [52]Cogswell F N, Meakin P J, Smiley A J. Harvey M T, Brooth C. Thermoplastic interlayer bonding for aromatic polymer composites.34th International SAMPE Symposium,1989: 2315-2325.
    [53]Fernie J A, Threadgill P L, Watson M N. Progress in joining advanced materials. Weld Metal Fabric,1991,5:179-184.
    [54]Sanders P, Electromagnetic welding:an advance in thermoplastic assembly. Mater Design, 1987,8(1):41-45.
    [55]McKnight S H, Holmes S T, Gillespie Jr J W, Lambing C L T, Marinelli J M. Scaling Issues in Resistance-Welded Thermoplastic Composite Joints. Advances in Polymer Technology, 1997,16(4):279-295.
    [56]闫久春,王晓春,杨士勤.PEEK/CF复合材料电阻焊接接头力学性能及断裂机理.全国特种连接技术交流会论文集.2002.
    [57]秦民,赵新英,益小苏.热塑性PEEK树脂基复合材料电阻焊接试验研究.全国特种连接技术交流会论文集.2002.
    [58]Bates P-J, Tan S, Zak G, McLeod M. Shear Strength and Meltdown Behavior of Reinforced Polypropylene Assemblies Made by Resistance Welding. Composites Part A,2009,40(1): 28-35.
    [59]Yuan Q, Hou M, Mai Y-W, Ye L. Resistance Welding of Carbon Fiber Reinforced Polyetherimide Composite. Journal of Thermoplastic Composite Materials,2001,14(1): 12-19.
    [60]Dube M, Hubert P, Gallet J N A H, Stavrov D, Bersee H E N, Yousefpour A. Fatigue performance characterisation of resistance-welded thermoplastic composites. Composites Science and Technology,2008,68(7-8):1759-1765.
    [61]Ageorges C, Ye L, Mai Y W, Hou M. Characteristics of resistance welding of lap shear coupons. Part I:Heat transfer. Composites Part A: Applied Science and Manufacturing,1998, 29(8):899-909.
    [62]Ageorges C, Ye L, Mai Y W, Hou M. Characteristics of resistance welding of lap shear coupons. Part I:Consolidation. Composites Part A:Applied Science and Manufacturing, 1998,29(8):911-919.
    [63]Ageorges C, Ye L, Mai Y W, Hou M. Characteristics of resistance welding of lap shear coupons. Part I:Crystallinity. Composites Part A:Applied Science and Manufacturing,1998, 29(8):921-932.
    [64]Yi X-S, Wu G-Z. Pan Y. Properties and Applications of Filled Conductive Polymer Composites. Polymer International,1997,44(2):117-124.
    [1]Takahashi M, Li L, Masuda T. Nonlinear viscoelasticity of ABS Polymers in the molten state. Journal of Rheology,1989,33(5):709-23.
    [2]Shenov A V. Rheology of filled polymer systems, Dordrecht: Kluwer Academic Publishers, 1999.
    [3]Potschke P, Fomes T D, Paul D R. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer,2002,43(11):3247.
    [4]益小苏.复合导电高分子材料的功能原理.北京:国防工业出版社,2004.
    [5]Carmona F. Conducting filled polymers. Physica A:Statistical Mechanics and its Applications,1989,157(1):461-469.
    [6]Zheng Q, Song Y H, Wu G, Song X B. Relationship between the positive temperature coefficient of resistivity and dynamic rheological behavior for carbon black-filled high-density polyethylene. Journal of polymer science:Part B:Polymer Physic,2003,41(9): 983-992.
    [7]Levine L E, Long G G, Ilavsky J, et al. Self-assembly of carbon black into nanowires that form a conductive three dimensional micronetwork. Applied Physics Letters,2007,90(1): 1-3.
    [8]杨辉.导电高分子复合材料的导电网络构筑与性能.浙江大学硕士学位论文,2010.
    [9]Al-Saleh M H, Sundararaj U. An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends. Composites Part A:Applied Science and Manufacturing,2008,39(2):284-293.
    [10]Zhou Z, Wang S-F, Zhang Y, Zhang Y-X. Effect of different carbon fillers on the properties of PP composites:Comparison of carbon black with multiwalled carbon nanotubes. Journal of Applied Polymer Science,2006,102(5):4823-830.
    [11]Wang L-W, Hong J-B, Chen G-H. Comparison study of graphite nanosheets and carbon black as fillers for high density polyethylene. Polymer Engineering and Science,2010,50(11): 2176-2181,.
    [12]Wei Z, Abbas A D-S, Richard S. Blackburn. Carbon based conductive polymer composites. Journal of Materials Science,2007,42(10):3408-3418.
    [13]Huang J-C. Carbon black filled conducting polymers and polymer blends. Advances in Polymer Technology,2002,21(4):299-313.
    [14]沈烈,钱玉剑,楼浙栋.炭黑改性对炭黑/高密度聚乙烯体系电性能稳定性的影响.复合材料学报.2008,25(4):13-17.
    [15]Hao X-Y, Gai G-S, Yang Y-F, et al. Development of the conductive polymer matrix composite with low concentration of the conductive filler. Materials Chemistry and Physics, 2008,109(1):15-19.
    [16]Wycisk R, Pozniak R, Pasternak A. Conductive polymer materials with low filler content. Journal of Electrostatics.2002,56(1):55-66.
    [17]Sanjines R, Abad M D, Vaju C, Smajda R,et al. Electrical properties and applications of carbon based nanocomposite materials:An overview. Surface & Coatings Technology,2011, 202(4):727-733.
    [18]Zheng Q, Shen L, Li W-C, et al. Nonlinear conductive properties and scaling behavior of conductive particle filled high-density polyethylene composites. Chinese Science Bulletin, 2005,50 (5):385-395.
    [19]Wu G, Song Y-H, Zheng Q, et al. Dynamic rheological properties for HDPE/CB composites melts. Journal of Applied Polymer Science,2003,88(9):2160-2167.
    [1]Kost J, Narkis M, Eoux A. Effects of axial stretching on the resistivity of carbon-black filled silicone-rubber. Polymer Engineering & Science,1983,23(10):567-571.
    [2]Yi X-S, Shen L, Pan Y. Thermal volume expansion in polymeric PTC composites:a theoretical approach. Composites science and technology,2001,61(7):949-956.
    [3]Xia J, Pan Y, Shen L, Yi X-S. A model-based approach to electrical percolation behavior of CB-HDPE composites. Jounal of Materials Science,2000,35(24):6145-150.
    [4]益小苏.复合导电高分子材料的功能原理.北京:国防工业出版社,2004.
    [5]Edward C, Wang F H, Chew D S, et al. US patent,20030111648.
    [6]Farhad A, Chechian K, Liu G J, et al. US patent,20030096888.
    [7]Jia W-T, Chen X-F, Li S-H. Effects of irradiation on PTC performance of LDPE/EPDM blends filled with carbon blacks. Journal of Applied Polymer Science,1996,60(13): 2317-2320.
    [8]Yu G, Zhang M-Q, Zeng M-H. Effect of filler treatment on temperature dependence of resistivity of carbon-black-filled polymer blends. Journal of Applied Polymer Science.1999, 73(9):489-494.
    [9]Tang H, Piao J-H, Chen X-F, et al. The positive temperature coefficient phenomenon of vinyl polymer/CB composites. Journal of Applied Polymer Science,1993,48(10): 1795-1800.
    [10]李文春.碳纳米管/高密度聚乙烯复合材料的导电性和动态流变行为研究.浙江大学硕士学位论文,2005.
    [11]Liu F, Zhang X-B, Li W-C, et al. Investigation of the electrical conductivity of HDPE composites filled with bundle-like MWNTs. Composites:Part A.2009,40(11):1717-1721.
    [12]李文春,沈烈,郑强.多壁碳纳米管填充高密度聚乙烯复合材料的导电特性.高等学校化学学报.2005,26(2):382-384.
    [13]Feng J I, Chan C-M. Carbon black-filled immiscible blends of poly(vinylidene fluoride) and high density polyethylene:the relationship between morphology and positive and negative temperature coefficient effects. Polymer Engineering & Science,1999,39(7): 1207-1215.
    [14]谭洪生,王日辉,李丽,郑强.复合型高分子自限温发热材料及元器件在汽车冷启动方面的应用.塑料工业.2004,32(12):51-53.
    [15]Raychem C. Circuit protection devices comprising PTC element, US Patent.413301.1983.
    [16]Yousefpour A. Hojjati M. Immarigeon J P. Fusion bonding/welding of thermoplastic composites. Journal of Thermoplastic Composite Materials.2004.17:303-341.
    [1]Ahmed T J, Stavrov D, Bersee H E N, Beukers A. Induction Welding of Thermoplastic Composites-an Overview. Composites:Part A,2006,37(10):1638-1651.
    [2]Yousefpour A, Hojjati M, Immarigeon J P. Fusion bonding/welding of thermoplastic composites. Journal of Thermoplastic Composite Materials,2004,17:303-341.
    [3]李新军,董君,曹清华,孟庆荣,沈烈.热塑性塑料的电阻焊接工艺.高分子材料科学与工程,2011,27(4):114-116.
    [4]Tan S-C. Resistance welding of polypropylene composites. Queen's University.2006.
    [5]Dube M, Hubert P, Gallet J-N-A-H, Stavrov D, Bersee H E N. Yousefpour A. Fatigue performance characterisation of resistance-welded thermoplastic composites. Composites Science and Technology,2008,68(7-8):1759-1765.
    [6]Ageorges C, Ye L, Hou M. Advances in Fusion bonding techniques for joining thermoplastic matrix composites:a review. Composites:Part A:Applied Science and Manufacturing,2001, 32(6):839-57.
    [7]Dube M, Hubert P, Yousefpour A, Denault J. Resistance welding of thermoplastic composites skin/stringer joints. Composites:Part A:Applied Science and Manufacturing, 2007,38(12):2541-2552.
    [8]Todd S-M. Joining thermalplastic composites. Proceedings of the 22nd International SAMPE Technical Conference,1990,22:383-392.
    [9]Hou M, Yan M-B. Beehag A. Mai Y-W, Ye L. Resistance welding of carbon fibre reinforced thermoplastic composite using alternative heating element. Composite Structures,1999, 47(1-4):667-672.
    [10]Bates P-J, Tan S, Zak G, McLeod M. Shear strength and meltdown behavior of reinforced polypropylene assemblies made by resistance welding. Composites:Part A:Applied Science and Manufacturing,2009,40(1):28-35.
    [11]Hou M, Ye L, Mai Y W. An experimental study of resistance welding of carbon fibre fabric reinforced polyetherimide (CF fabric/PEI) composite material. Applied Composite Materials, 1999,6(1):35-49.
    [12]Ageorges C, Ye L, Hou M. Experimental investigation of the resistance welding for thermoplastic-matrix composites. Part I:heating element and heat transfer. Composites Science and Technology,2000,60(7):1027-1039.
    [13]Kirkpatrick S. Percolation and conduction. Reviews of Modern Physics,1973,45(4): 574-588.
    [14]Stavrov D, Bersee H E N. Resistance Welding of Thermoplastic Composites-an Overview. Composites: Part A,2005,36(1):39-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700