TiO_2及C/TiO_2纳米材料的结构设计与光催化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2光催化剂因自身无毒、无害、无腐蚀性等优点,是最重要的一种光催化材料。碳纳米材料由于其独特的物理化学性质,受到了研究者的广泛关注。本文合成了TiO_2及C/TiO_2等不同结构的纳米材料,并对其光催化性质进行了研究,主要包括以下内容:
     (1)用水蒸气辅助快速水解的方法制备了孔窄且分布均一的多孔TiO_2纳米球。
     (2)用电化学方法在高纯水中制备出了具有荧光和上转换荧光性质的碳点,该碳点与TiO_2的复合物具有很强的光催化作用和强的光电流。
     (3)水热碳化葡萄糖制备了碳负载TiO_2纳米粒子的复合物,该复合物具有高的光催化活性。
     (4)以乙二胺为碳源和氮源,对TiO_2纳米粒子进行修饰和掺杂,制备了氮共掺杂的C/TiO_2复合物,该复合物有很强的光催化活性。
TiO_2based photocatalysts have been one of the most active topics inheterogeneous catalysis due to their great photocatalytic abilities, avirulence andharmlessness. Carbon nanomaterials with special electronic, mechanical, optical andchemical characteristics have attracted great interest, both from a fundamental point ofview and for future applications. In this dissertation, we focus on the research ofcomposition design and photocatalytic properties of the TiO_2and C/TiO_2nanomaterials.The main contents are as follows:
     (1) Nanoporous TiO_2nanospheres with excellent visible light photocatalyticabilities and narrow pore size (11±1nm) distribution can be obtained via a rapid vaporassisted hydrolysis technique.
     (2) High quality carbon nanodots (C-dots) with high purity were synthesizedthrough a mild, one-step electrochemical approach, without the assistance of anychemicals but only pure water presented. In addition, a novel photocatalyst (TiO_2/C-dots)was obtained by combining C-dots with TiO_2through an easy hydrothermal method.Remarkably, TiO_2/C-dots exhibited an excellent visible-light photocatalytic activity.
     (3) Carbon-TiO_2nanohybrids (named as CTs) have been successfully prepared viaa mild, one-step hydrothermal approach in the presence of glucose. CTs exhibit anefficient environmental application such as photodegradation of toxic organic(rhodamine B, benzene) and inorganic (K2Cr2O7) pollutant.
     (4) C/TiO_2nanohybrids co-doped by N were obtained by one step reaction andexhibited excellent photocatalytic performance.
引文
[1] Chen X B, Mao S S, Titanium dioxide nanomaterials: synthesis, properties,modifications, and applications, Chem. Rev.,2007,107,2891-2959.
    [2] Patton T C, Pigment Handbook.Wiley:New York1973.
    [3] Kominami H, Kohno M, Kera Y, Synthesis of brookite-type titanium oxidenano-crystals in organic media, J. Mater. Chem.,2000,10,1151-1156.
    [4] Bokhimi X, Morales A, M Aguilar, Toledo-Antonio J A, Pedraza F, Local order intitania polymorphs, Int. J. Hydrog. Energy,2001,26,1279-1287.
    [5]张阳,基于过氧化钛体系钛基功能化材料的可控合成及其应用,中国科学院博士论文.
    [6] Ohtani B, Preparing articles on photocatalysis-beyond the illusions, misconceptions,and speculation, Chem. Lett.,2008,37,217-29.
    [7] Fujishima A, Zhang X, Tryk D A, TiO2photocatalysis and related surfacephenomena, Surf. Sci. Rep.,2008,63,515-82.
    [8] Hashimoto K, Irie H, Fujishima A. TiO2photocatalysis: a historical overview andfuture prospects, Jpn. J. Appl. Phys.,2005,44,8269-85.
    [9] Kamat P V, Meeting the clean energy demand: nanostructure architectures for solarenergy conversion. J. Phys. Chem. C,2007,111,2834-60.
    [10] Malatoa S, Fernández-Ibá eza P, Maldonadoa M I, Blancoa J, Gernjakb W,Decontamination and disinfection of water by solar photocatalysis: recentoverview and trends, Catal. Today,2009,147,1-59.
    [11] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting,Chem. Soc. Rev.,2009,38,253-78.
    [12] Ni M, Leung M K H, Leung D Y C, Sumathy K, A review and recentdevelopments in photocatalytic water-splitting using TiO2for hydrogen production.Renewable Sustainable Energy Rev.,2007,11,401-25.
    [13] Fujishima A, Zhang X, Tryk D A, TiO2photocatalysis and related surfacephenomena, Surf. Sci. Rep.,2008,63,515-82.
    [14] Hoffmann M R, Martin S T, Choi W, Bahnemann D W, Environmentalapplications of semiconductor photocatalysis, Chem. Rev.,1995,95,69-96.
    [15] Lepore G P, Langford C H, Photochemistry and picosecond absorption spectra ofaqueous suspensions of a polycrystalline titanium dioxide optically transparent inthe visible spectrum. J. Photochem. Photobiol. A,1993,75,67-755.
    [16] Hu X, Li G, Yu J C, Design, fabrication, and modification of nanostructuredsemiconductor materials for environmental and energy applications, Langmuir,2009,26,3031-3039.
    [17] Yu J C, Yu J J, Ho W, Zhang L, Preparation of highly photocatalytic activenano-sized TiO2particles via ultrasonic irradiation, Chem. Commun.,2001,1942-1943.
    [18] Satoh N, Nakashima T, Kamikura K, Yamamoto K, Quantum size effect in TiO2nanoparticles prepared by finely controlled metal assembly on dendrimer templates,Nat. Nano.,2008,3,106-111.
    [19] Moshfegh A Z, Nanoparticle catalysts, J. Phys. D: Appl. Phys.,2009,42,233001.
    [20] Leary R, Westwood A, Carbonaceous nanomaterials for the enhancement of TiO2photocatalysis, Carbon,2011,49,741-772.
    [21] Wu J M, Shi H C, Wu W T, Electron field emission from single crystalline TiO2nanowires prepared by thermal evaporation, Chem. Phys. Lett.,2005,413,490-494.
    [22] Bessekhouad Y, Robert D, Weber J V, Synthesis of photocatalytic TiO2nanoparticles: optimization of the preparation conditions, J. Photochem. Photobiol.A: Chemistry,2003,157,47-53.
    [23] Niederberger M, Bartl M H, Stucky G D, Benzyl alcohol and titaniumtetrachloride-A versatile reaction system for the nonaqueous and low-temperaturepreparation of crystalline and luminescent titania nanoparticles, Chem. Mater.,2002,14,4364-4370.
    [24] Xie Y, Yuan C, Characterization and photocatalysis of Eu3+-TiO2sol in thehydrosol reaction system, Mater. Res. Bull.,2004,39,533-543.
    [25] Kim C S, Moon B K, Park J H, Chung S, Son S M, Synthesis of nanocrystallineTiO2in toluene by a solvothermal route, J. Crys. Grow.,2003,254,405-410.
    [26] Gao X, Li J, Gao W,Study on preparation of nano-TiO2by W/O microemulsionreactor and its photocatalytic degradation of air pollution, Colloid Journal,2008,70,392-395.
    [27] Diebold U, The surface science of titanium dioxide, Surf. Sci. Rep.,2003,48,53-229.
    [28] Calatayud M, Minot C, Effect of relaxation on structure and reactivity of anatase{100} and {001} surfaces, Surf. Sci.,2004,552,169-179.
    [29] Abdelkrim C, Tomas M, Nanostructuring titania control over nanocrystal structure,size, shape, and organization, Eur. J. Inorg. Chem.,1999,2,235-245.
    [30] Sugimoto T, Zhou X, Muramatsu A, Synthesis of uniform anatase TiO2nanoparticles by gel-sol method:3. Formation process and size control, J. ColloidInter. Sci.,2003,259,43-52.
    [31] Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Formation of titaniumoxide nanotube, Langmuir,1998,14,3160-3163.
    [32] Yu A, Qing G, Drennan J, Gentle I R, Tubular titania nanostructures vialayer-by-layer self-assembly, Adv. Func. Mater.,2007,17,2600-2605.
    [33] Wei M, Zhou H, Konishi Y, Ichihara M, Sugiha H, Arakawa H, Synthesis oftubular titanate via a self-assembly and self-removal process, Inorg. Chem.,2006,45,5684-5690.
    [34] Wu D, Liu J, Zhao X, Li A, Chen Y, Ming N, Sequence of events for the formationof titanate nanotubes, nanofibers, nanowires and nanobelts, Chem. Mater.,2006,18,547-553.
    [35] Barnard A S, Curtiss L A, Prediction of TiO2nanoparticle phase and shapetransitions controlled by surface chemistry, Nano Lett.,2005,5,1261-1266.
    [36] Diebold U, The surface science of titanium dioxide, Surf. Sci. Rep.,2003,48,53-229.
    [37] Imanishi A, Okamura T, Ohashi N, Nakamura R, Nakato Y, Mechanism of waterphotooxidation reaction at atomically flat TiO2(Rutile)(110) and (100) surfaces:Dependence on solution pH, J. Am. Chem. Soc.,2007,129,11569-11578.
    [38] Barnard A S, Zapol P, Curtiss L A, Anatase and rutile surfaces with adsorbatesrepresentative of acidic and basic conditions, Surf. Sci.,2005,582,173-188.
    [39] Finnegan M P, Zhang H, Banfield J F, Phase stability and transformation in titaniananoparticles in aqueous solutions dominated by surface energy, J. Phys. Chem. C,2007,111,1962-1968.
    [40] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Visible-light photocatalysis innitrogen-doped titanium oxides, Science,2001,293,269-271.
    [41] Varghese O K, Paulose M, LaTempa T J, Grimes C A, High-rate solarphotocatalytic conversion of CO2and water vapor to hydrocarbon fuels, Nano Lett.,2009,9,731-737
    [42] Bosi S, Ros T D, Spalluto G, Prato M, Fullerene derivatives: an attractive tool forbiological applications, Eur. J. Med. Chem.,2003,38,913.
    [43] Satoh M, Takayanagi I, Pharmacological studies on fullerene (C60), a novel carbonallotrope, and its derivatives, J. Pharmacol. Sci.,2006,513-518.
    [44] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J,Harruff B A, Wang X, Wang H, Luo P G, Yang H, Kose M E, Chen B, Veca L M,Xie S Y, Quantum-sized carbon dots for bright and colorful photoluminescence, J.Am. Chem. Soc.2006,128,7756.
    [45] Hu S L, Niu K Y, Sun J, Yang J, Zhao N Q, Du X W, One-step synthesis offluorescent carbon nanoparticles by laser irradiation, J. Mater. Chem.,2009,19,484-488.
    [46] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A,Yang X B, Lee S T, Water-soluble fluorescent carbon quantum dots andphotocatalyst design, Angew. Chem., Int. Edit.,2010,49,4430-4434.
    [47] Dai H J, Hafner J H, Rinzler A G, Colbert D T, Smalley R E, Nanotubes asnanoprobes in scanning probe microscopy, Nature,1996,384,147-150.
    [48] Poncharal P, Wang Z L, Ugarte D, Heer W A, Electrostatic deflections andelectromechanical eesonances of carbon nanotubes, Science,1999,283,1513-1516.
    [49] Kong J, Franklin N R, Zhou C W, Chapline M G, Peng S, Cho K, Dai H J,Nanotube molecular wires as chemical sensors, Science,2000,287,622-625.
    [50] Collins P G, Bradley K, Ishigami M, Zettl A, Extreme oxygen sensitivity ofelectronic properties of carbon nanotubes, Science,2000,287,1801-1804.
    [51] Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S, Heben M J,Storage of hydrogen in single-walled carbon nanotubes, Nature,1997,386,377-379.
    [52] Bunch J S, Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M,Craighead H G, McEuen P L, Electromechanical resonators from graphene sheets,Science,2007,315,490-493.
    [53] Lee C, Wei X D, Kysar J W, Hone J, Measurement of the elastic properties andintrinsic strength of monolayer graphene, Science,2008,321,385-388.
    [54] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V,Dubonos S V, Firsov A A, Two-dimensional gas of massless dirac fermions ingraphene, Nature,2005,438,197-200.
    [55] Zhang Y B, Tan Y W, Stormer H L, Kim P, Experimental observation of thequantum Hall effect and Berry's phase in graphene, Nature,2005,438,201-204.
    [56] Miao F, Wijeratne S, Zhang Y, Coskun U C, W Bao, Lau C N, Phase-coherenttransport in graphene quantum billiards, Science,2007,317,1530-1533.
    [57] Yeh T F, Syu J M, Cheng C, Chang T H, Teng H S, Graphite oxide as aphotocatalyst for hydrogen production from water, Adv. Funct. Mater.,2010,20,2255-2262.
    [58] Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H A, Chen I S, Chen C W,Chhowalla M, Blue photoluminescence from chemically derived graphene oxide,Adv. Mater.,2010,22,505-509.
    [59] Gill I, Ballesteros A, Encapsulation of biologicals within silicate, siloxane, andhybrid sol-gel polymers: An efficient and generic approach, J. Am. Chem. Soc.,1998,128,8587-8598.
    [60] Buchold D H M, Feldmann C, Nanoscale γ-AlO(OH) hollow spheres: synthesisand container-type functionality, Nano Lett.,2007,7,3489-3492.
    [61] Zelikin A N, Li Q, Caruso F, Degradable polyelectrolyte capsules filled witholigonucleotide sequences, Angew. Chem., Int. Ed.,2006,45,7743-7745.
    [62] Mathiowitz E, Jacob J S, Jong Y S, Carino G P, Chickering D E, Chaturvedi P,Santos C A, Vijayaraghavan K, Montgomery S, Bassett M, Morrell C, Biologicallyerodable microspheres as potential oral drug delivery systems, Nature1997,386,410-414.
    [63] Chen H M, Liu R S, M Y Lo, Chang S C, Tsai L D, Peng Y M, Lee J F, Hollowplatinum spheres with nano-channels: synthesis and enhanced catalysis for oxygenreduction, J. Phys. Chem. C,2008,112,7522-7526.
    [64] Caruso F, Caruso R A, Mo wald H, Nanoengineering of inorganic and hybridhollow spheres by colloidal templating, Science,1998,282,1111-1114.
    [65] Joncheray T J, Audebert P, Schwartz E, Jovanovic A V, Ishaq O, Chavez J L,Pansu R, Duran R S, Preparation of poly (L-lactide)-based microspheres having acationic or anionic surface using biodegradable surfactants, Langmuir,2006,22,8684-8689.
    [66] Feng W, Feng Y, Wu Z, Fujii A, Ozaki M, Yoshino K, Optical and electricalcharacterizations of nanocomposite film of titania adsorbed onto oxidizedmultiwalled carbon nanotubes, J. Phys. Condens. Matter.,2005,17,4361-4368.
    [67] Yao Y, Li G, Ciston S, Lueptow R M, Gray K A. Photoreactive TiO2/carbonnanotube composites: synthesis and reactivity, Environ. Sci. Technol.,2008,42,4952-4957.
    [68] Wang W, Serp P, Kalck P, Faria J L, Visible light photodegradation of phenol onMWNT-TiO2composite catalysts prepared by a modified sol-gel method, J. Mol.Catal. A: Chem.,2005,235,194-199.
    [69] Long Y Z, Lu Y, Huang Y, Peng Y C, Lu Y J, Kang S Z, Mu J, Effect of C60onthe photocatalytic activity of TiO2nanorods, J. Phys. Chem. C,2009,113,13899-905.
    [70] Khan S U M, Al-Shahry M, Ingler J W B, Efficient photochemical water splittingby a chemically modified n-TiO2, Science,2002,297,2243-2245.
    [71] Pierre A C, Introduction to sol-gel processing. Boston: Kluwer AcademicPublishers;1998
    [72] Byrappa K, Yoshimura M. Handbook of hydrothermal technology: a technologyfor crystal growth and materials processing. Norwich (NY): Noyes Publications,William Andrew Publishing;2001.
    [73] Franssila S. Introduction to microfabrication. Chichester; Hoboken, NJ: John Wileyand Sons;2004.
    [74] Reichelt K, Jiang X, The preparation of thin films by physical vapour depositionmethods, Thin Solid Films,1990,191,91-126.
    [75] Dobkin D M, Zuraw M K, Principles of chemical vapour deposition. Dordrecht,The Netherlands: Kluwer Academic Press;2003.
    [76] Vander B O, Electrophoretic deposition of materials, Ann. Rev. Mater. Sci.,1999,29,356-372.
    [77] Akpan U G, Hameed B H, The advancements in sol-gel method of doped-TiO2photocatalysts, Appl. Catal. A,2010,375,1-11.
    [78] Li P G, Bono A, Krishnaiah D, Collin J G. Preparation of titanium dioxidephotocatalyst loaded onto activated carbon support using chemical vapordeposition: a review paper, J. Hazard. Mater.,2008,157,209-219.
    [79] Woan K, Pyrgiotakis G, Sigmund W, Photocatalytic carbonnanotube-TiO2composites, Adv. Mater.,2009,21,2233-2239.
    [80] Battiston S, Bolzan M, Fiameni S, Gerbasi R, Meneghetti M, Miorin E, Mortalòa C,Pagura C, Single wall carbon nanohorns coated with anatase titanium oxide,Carbon,2009,47,1321-1326.
    [81] Battiston S, Minella M, Gerbasi R, Visentin F, Guerriero P, Leto A, Pezzottif G,Miorina E, Fabrizioa M, Pagura C, Growth of titanium dioxide nanopetals inducedby single wall carbon nanohorns, Carbon,2010,48,2470-2477.
    [82] Wang H, Quan X, Yu H, Chen S, Fabrication of a TiO2/carbon nanowallheterojunction and its photocatalytic ability, Carbon,2008,46,1126-1132.
    [83] An G M, Ma W H, Sun Z Y, Liu Z M, Han B X, Miao S D, Miao Z J, Ding K L,Preparation of titania/carbon nanotube composites using supercritical ethanol andtheir photocatalytic activity for phenol degradation under visible light irradiation,Carbon,2007,45,1795-1801.
    [84] Oh W C, Jung A R, Ko W B, Characterization and relative photonic efficiencies ofa new nanocarbon/TiO2composite photocatalyst designed for organic dyedecomposition and bactericidal activity, Mater. Sci. Eng. C,2009,29,1338-1347.
    [85] Oh W C, Ko W B, Characterization and photonic properties for thePt-fullerene/TiO2composites derived from titanium (IV) n-butoxide and C60, J.Ind. Eng. Chem.,2009,15,791-797.
    [86] Zhang H, Lv X, Li Y, Wang Y, Li J, P25-graphene composite as a highperformance photocatalyst, ACS Nano,2009,4,380-386.
    [87] Luo Y, Heng Y, Dai X, Chen W, Li J, Preparation and photocatalytic ability ofhighly defective carbon nanotubes, J. Solid. State. Chem.,2009,182,2521-2525.
    [88] Dunens O M, MacKenzie K J, Harris A T, Large-scale synthesis of double-walledcarbon nanotubes in fluidized beds, Ind. Eng. Chem. Res.,2010,4031-4035.
    [89] Maynard A D, Aitken R J, Butz T, Colvin V, Donaldson K, Oberdorster G, PhilbertM A, Ryan J, Seaton A, Stone V, Tinkle S S, Tran L, Walker N J, Warheit D B,Safe handling of nanotechnology, Nature,2006,444,267-269.
    [90] Nel A, Xia T, Madler L, Li N, Toxic potential of materials at the nanolevel,Science,2006,311,622-627.
    [91] Velasco L F, Parra J B, Ania C O, Role of activated carbon features on thephotocatalytic degradation of phenol, Appl. Surf. Sci.,2010,256,5254-5258.
    [92] Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis, ApplCatal. A,2003,253,337-358.
    [93] Tryba B, Morawski A W, Inagaki M. Application of TiO2-mounted activatedcarbon to the removal of phenol from water, Appl. Catal. B,2003,41,427-433.
    [94] Tryba B, Increase of the photocatalytic activity of TiO2by carbon and ironmodifications, Int. J. Photoenergy,2008,2008[Article ID721824].
    [95] Rodriguez-Reinoso F. Introduction to carbon technologies. In: Marsh H, Heintz EA,Rodriguez-Reinoso F, editors. Publicaciones de la Universidad de Alicante.Alicante: Universidad de Alicante;1979. p.35.
    [96] Lee D K, Kim S C, Kim S J, Chung I S, Kim S W, Photocatalytic oxidation ofmicrocystin-LR with TiO2-coated activated carbon, Chem. Eng. J,2004,102,93-98.
    [97] Han F, Kambala V S R, Srinivasan M, Rajarathnam D, Naidu R, Tailored titaniumdioxide photocatalysts for the degradation of organic dyes in wastewater treatment:a review, Appl. Catal. A,2009,359,25-40.
    [98] Chen X, Mao S S, Titanium dioxide nanomaterials: synthesis, properties,modifications, and applications, Chem. Rev.,2007,107,2891-959.
    [99] Neumann B, Bogdanoff P, Tributsch H, Sakthivel S, Kisch H, Electrochemicalmass spectroscopic and surface photovoltage studies of catalytic waterphotooxidation by undoped and carbon-doped titania, J. Phys. Chem. B,2005,109,16579-16586.
    [100] Park J H, Kim S, Bard A J, Novel carbon-doped TiO2nanotube arrays with highaspect ratios for efficient solar water splitting, Nano Lett.,2006,6,24-28.
    [101] Zhao L, Chen X F, Wang X C, Zhang Y J, Wei W, Sun Y H, Antonietti M,Titirici M M, One-step solvothermal synthesis of a carbon@TiO2dyade structureeffectively promoting visible-light photocatalysis, Adv. Mater.,2010,22,3317-3321.
    [102] Iijima S, Helical microtubules of graphitic carbon, Nature,1991,354,56-58.
    [103] Woan K, Pyrgiotakis G, Sigmund W, Photocatalytic carbonnanotube-TiO2composites, Adv. Mater.,2009,21,2233-2239.
    [104] Xu Y J, Zhuang Y B, Fu X Z, New insight for enhanced photocatalytic activity ofTiO2by doping carbon nanotubes: A case study on degradation of benzene andmethyl orange, J. Phys. Chem. C,2010,114,2669-2676.
    [105] Liu S, Li J M, Shen Q, Cao Y, Guo X F, Zhang G M, Feng C Q, Zhang J, Liu Z F,Steigerwald M L., Xu D S, Nuckolls C, Mirror-image photoswitching of individualsingle-walled carbon nanotube transistors coated with titanium dioxide, Angew.Chem. Int. Ed.,2009,48,4759-4762.
    [106] Guldi D M, Prato M, Excited-state properties of C60fullerene derivatives, AccChem. Res.,2000,33,695-703.
    [107] Tokuyama H, Nakamura E, Synthetic chemistry with fullerenes.Photooxygenation of olefins, J. Org. Chem.,1994,59,1135-1138.
    [108] Fuzumi S, Development of bioinspired artificial photosynthetic systems, Phys.Chem. Chem. Phys.,2008,10,2283-2297.
    [109] Po R, Maggini M, Camaioni N, Polymer solar cells: recent approaches andachievements, J. Phys. Chem. C,2009,114,695-706.
    [110] Mu S, Long Y, Kang S Z, Mu J, Surface modification of TiO2nanoparticles witha C60derivative and enhanced photocatalytic activity for the reduction of aqueousCr(VI) ions, Catal. Commun.,2010,11,741-744.
    [111] Tang Y B, Lee C S, Xu J, Liu Z T, Chen Z H, He Z B, Cao Y L, Yuan G D, SongH S, Chen L M, Luo L B, Cheng H M, Zhang W J, Bello I, Lee S T, Incorporationof graphenes in nanostructured TiO2films via molecular grafting for dye-sensitizedsolar cell application, ACS nano,2010,4,3482-3488.
    [112] Chen C, Cai W M, Long M C, Zhou B X, Wu Y H, Wu D Y, Feng Y Y, Synthesisof visible-light responsive graphene oxide/TiO2composites with p/n heterojunction,ACS Nano,2010,4,6425-6432.
    [113] Zhang L W, Fu H B, Zhu Y F, Efficient TiO2photocatalysts from surfacehybridization of TiO2particles with graphite-like carbon, Adv. Funct. Mater.,2008,18,2180-2189.
    [114] Ao Y, Xu J, Shen X, Fu D, Yuan C, Magnetically separable compositephotocatalyst with enhanced photocatalytic activity, J. Hazard. Mater.,2008,160,295-300.
    [115] Zhu Z, Zhou Y, Yu H, Nomura T, Fugetsu B, Photodegradation of humicsubstances on MWCNT/Nanotubular-TiO2composites, Chem. Lett.,2006,35,890-1.
    [116] Liu S X, Chen X Y, Chen X, A TiO2/AC composite photocatalyst with highactivity and easy separation prepared by a hydrothermal method, J. Hazard. Mater.,2007,143,257-263.
    [117] Lin J, Zong R, Zhou M, Zhu Y, Photoelectric catalytic degradation of methyleneblue by C60-modified TiO2nanotube array, Appl. Catal. B,2009,89,425-431.
    [118] Wang X, Hu Z, Chen Y, Zhao G, Liu Y, Wen Z, A novel approach towardshigh-performance composite photocatalyst of TiO2deposited on activated carbon,Appl. Surf. Sci.,2009,255,3953-3958.
    [119] Yu Y, Yu J C, Chan C Y, Che Y K, Zhao J C, Ding L, Gef W K, Wong P K,Enhancement of adsorption and photocatalytic activity of TiO2by using carbonnanotubes for the treatment of azo dye, Appl. Catal. B,2005,61,1-11.
    [120] Jung M J, Im J S, Palanivelu K, Kim T, Lee Y S, Photocatalytic degradation ofprocion blue dye in aqueous solution by a TiO2-carbon nano-composite, J. Nanosci.Nanotechnol.,2010,10,297-302.
    [121] Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z. Low temperature preparation andvisible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2,Appl. Catal. B,2007,69,138-44.
    [122] Kedem S, Rozen D, Cohen Y, Paz Y. Enhanced stability effect in compositepolymeric nanofibers containing titanium dioxide and carbon nanotubes, J. Phys.Chem. C,2009,113,14893-14899.
    [123] Kuo C Y, Prevenient dye-degradation mechanisms using UV/TiO2/carbonnanotubes process, J. Hazard. Mater.,2009,163,239-244.
    [124] Krishna V, Pumprueg S, Lee S H, Zhao J, Sigmund W, Koopman B, Moudgil BM, Photocatalytic disinfection with titanium dioxide coated multi-wall carbonnanotubes, Process Saf. Environ.,2005,83,393-397.
    [125] Li Q, Mahendra S, Lyon D Y, Brunet L, Liga M V, Li D, Alvarez P J J,Antimicrobial nanomaterials for water disinfection and microbial control: potentialapplications and implications, Water Res.,2008,42,4591-4602.
    [126] Xia X H, Jia Z J, Yu Y, Liang Y,Wang Z, Ma L L, Preparation of multi-walledcarbon nanotube supported TiO2and its photocatalytic activity in the reduction ofCO2with H2O, Carbon,2007,45,717-721.
    [127] Roy S C, Varghese O K, Paulose M, Grimes C A, Toward solar fuels:photocatalytic conversion of carbon dioxide to hydrocarbons, ACS Nano,2010,4,1259-1278.
    [128] Gr tzel M, Conversion of sunlight to electric power by nanocrystallinedye-sensitized solar cells, J. Photochem. Photobiol. A,2004,164,3-14.
    [129] O’Regan B, Gratzel M, A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2films, Nature,1991,353,737-740.
    [130] Gratzel M, Photoelectrochemical cells, Nature,2001,414,338-344.
    [131] Zhang W D, Xu B, Jiang L C, Functional hybrid materials based on carbonnanotubes and metal oxides, J. Mater. Chem.,2010,20,6383-6391.
    [1] Hu Y S, Guo Y G, Sigle W, Hore S, Balaya P, Maier J, Electrochemical lithiationsynthesis of nanoporous materials with superior catalytic and capacitive activity,Nat. Mater.,2006,5,713-717;
    [2] Cheetham A K, Ferey G, Loiseau T, Open-framework inorganic materials, Angew.Chem., Int. Ed.,1999,38,3268-3292.
    [3] Lee J S, Joo S H, Ryoo R, Synthesis of mesoporous silicas of controlled pore wallthickness and their replication to ordered nanoporous carbons with various porediameters, J. Am. Chem. Soc.,2002,124,1156-1157.
    [4] Wen C Y, Sun L L, Yan J H, Liu Y, Song J Z, Zhang Y, Lian H Z, Kang Z H,Mesoporous rare earth fluoride nanocrystals and their photoluminescenceproperties, J. Colloid Interface Sci.,2011,357,116-120.
    [5] Chen X B, Mao S S, Titanium dioxide nanomaterials: synthesis, properties,modifications, and applications, Chem. Rev.,2007,107,2891-2959.
    [6] Crepaldi E L, Soler-Illia G J, Grosso D, Cagnol F, Ribot F, Sanchez C, Controlledformation of highly organized mesoporous titania thin films: Frommesostructured hybrids to mesoporous nanoanatase TiO2, J. Am. Chem, Soc.,2003,125,9770-9772.
    [7] Guo F Q, Li H F, Zhang Z F, Meng S L, Li D Q, Synthesis of mesoporous YF3nanoflowers via solvent extraction route, Mat. Sci. Eng. B,2009,163,134-137.
    [8] O'Callaghan J M, Petkov N, Copley M P, Arnold D C, Morris M A, Amenitsch H,Holmes J D, Time-resolved SAXS studies of periodic mesoporous organosilicas inanodic alumina membranes, Micropor. Mesopor. Mat.,2010,130,203-207.
    [9] Henderson G S, Liu X, Fleet M E, A Ti L-edge X-ray absorption studying ofTi-silicates glasses, Phys. Chem. Minerals,2002,29,32-42.
    [10] Yang C X, Yi H M, Facile approaches to control catalytic activity ofviral-templated palladium nanocatalysts for dichromate reduction, Biochem. Eng.J.,2010,52,160-167.
    [11] Tang J, Zhou Z, Ye J H, Effects of substituting Sr2+and Ba2+for Ca2+on thestructural properties and photocatalytic behaviors of CaIn2O4, Chem. Mater.,2004,16,1644-1649.
    [12] Emeline A V, Vladimir K R, Serpone N, Spectral dependencies of the quantumyield of photochemical processes on the surface of nano-/microparticulates ofwide-band-gap metal oxides, J. Phys. Chem. B,1999,103,1316-1324.
    [13] Volodin A M, Photoinduced phenomena on the surface of wide-band-gap oxidecatalysts, Catal. Today,2000,58,103-114.
    [14] Zou X X, Li G D, Wang K X, Li L, Su J, Chen J S, Light-induced formation ofporous TiO2with superior electron-storing capacity, Chem. Commun.,2010,46,2112-2114.
    [1] Yang S T, Wang X, Wang H F, Lu F S, Luo P G, Cao L, Meziani M J, Liu J H, LiuY F, Chen M, Huang Y P, Sun Y P, Carbon dots as nontoxic and high-performancefluorescence imaging agents, J. Phys. Chem. C,2009,113,18110-18114.
    [2] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, YangX B, Lee S T, Water-soluble fluorescent carbon quantum dots and photocatalystdesign, Angew. Chem., Int. Edit.,2010,49,4430-4434.
    [3] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, HarruffB A, Wang X, Wang H F, Luo P G, Yang H, Kose M E, Chen B L, Veca L M,Xie S Y, Quantum-sized carbon dots for bright and colorful photoluminescence, J.Am. Chem. Soc.,2006,128,7756-7757.
    [4] Zheng L Y, Chi Y W, Dong Y Q, Lin J P, Wang B B, Electrochemiluminescenceof water-soluble carbon nanocrystals released electrochemically from graphite, J.Am. Chem. Soc.,2009,131,4564-4565.
    [5] Liu H P, Ye T, Mao C D, Fluorescent carbon nanoparticles derived from candle soot,Angew. Chem. Int., Ed.,2007,46,6473-6475.
    [6] Liu R L, Wu D Q, Liu S H, Koynov K, Knoll W, Li Q, An queous route tomulticolor photoluminescent carbon dots using silica spheres as carriers, Angew.Chem., Int. Ed.,2009,48,4598-4601.
    [7] Sun X M, Li Y D, Colloidal carbon spheres and their core/shell structures withnoble-metal nanoparticles, Angew. Chem. Int., Ed.,2004,43,597-601.
    [8] Li H T, X D He, Huang H, Liu Y, Lian S Y, Lee S T, Kang Z H, One-step ultrasonicsynthesis of water-soluble carbon nanoparticles with excellent photoluminescentproperties, Carbon,2011,49,605-609.
    [9] He X D, Li H T, Liu Y, Huang H, Kang Z H, Lee S T, Water soluble carbonnanoparticles: Hydrothermal synthesis and excellent photoluminescence properties,Colloid. Surface. B,2011,87,326-332.
    [10] He X D, Liu Y, Li H T, Huang H, Liu J L, Kang Z H, Lee S T, PhotoluminescentFe3O4/carbon nanocomposite with magnetic property, J. Colloid. Interf. Sci.,2011,356,107-110.
    [11] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G, Processable aqueousdispersions of graphene nanosheets, Nat. Nanotech.,2008,32,101-105.
    [12] Kang Z H, Wang E B, Mao B D, S Z M u, Gao L, Lian S Y, Xu L, Controllablefabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mildhydrothermal process, J. Am. Chem. Soc.,2005,127,6534-6535.
    [13] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S,Jiang D, Novoselov K S, Roth S, Geim A K, Raman spectrum of graphene andgraphene layers, Phys. Rew. Lett.,2006,97,187401.
    [14] Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J, One-step ionic-liquid-assistedelectrochemical synthesis of ionic-liquid-functionalized graphene sheets directlyfrom graphite, Adv. Funct. Mater.,2008,18,1518-1525.
    [15] Lu J, Yang J X, Wang J Z, Lim A L, Wang S, Loh K P, One-pot synthesis offluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation ofgraphite in ionic liquids, ACS nano,2009,3,2367-2375.
    [16] Heitz T, Godet C, BoureéJ G, Drevillon B, Conde J P, Radiative and nonradiativerecombination in polymerlike a-C:H films, Phys. Rev. B,1999,60,6045-6052.
    [17] Lapko V F, Gerasimyuk I P, Kuts V S, Tarasenko Y A, The activationcharacteristics of the decomposition of H2O2on palladium-carbon catalysts, Russ.J. Phys. Chem. A.,2010,84,934-940.
    [18] Yeh T F, Syu J M, Cheng C, Chang T H, Teng H S, Graphite oxide as aphotocatalyst for hydrogen production from water, Adv. Funct. Mater.,2010,20,2255-2262.
    [19] Tang Y B, Lee C S, Xu J, Liu Z T, Chen Z H, He Z B, Cao Y L, Yuan G D, SongH S, Chen L M, Luo L B, Cheng H M, Zhang W J, Bello I, Lee S T, Incorporationof graphenes in nanostructured TiO2films via molecular grafting for dye-sensitizedsolar cell application, ACS nano,2010,4,3482-3488.
    [20] Zhao L, Chen X F, Wang X C, Zhang Y J, Wei W, Sun Y H, Antonietti M, TitiriciM M, One-step solvothermal synthesis of a carbon@TiO2dyade structureeffectively promoting visible-light photocatalysis, Adv. Mater.,2010,22,3317-3321.
    [21] Liu J C, Bai H W, Wang Y J, Liu Z Y, Zhang X W, Sun D D, Self-assemblingTiO2nanorods on large graphene oxide sheets at a two-phase interface and theiranti-recombination in photocatalytic applications, Adv. Funct. Mater.,2010,20,4175-4181.
    [22] Wang C, Daimon H, Sun S H, Dumbbell-like Pt Fe3O4nanoparticles and theirenhanced catalysis for oxygen reduction reaction, Nano Lett.,2009,9,1493-1496.
    [23] Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H A, Chen I S, Chen C W,Chhowalla M, Blue photoluminescence from chemically derived graphene oxide,Adv. Mater.,2010,22,505-509.
    [24] Zhang L W, Fu H B, Zhu Y F, Efficient TiO2photocatalysts from surfacehybridization of TiO2particles with graphite-like carbon, Adv. Funct. Mater.,2008,18,2180-2189.
    [25] Zhang H C, Ming H, Lian S Y, Huang H, H. T. Li, L. L. Zhang, Y. Liu, Z. H. Kang,S. T. Lee, Fe2O3/carbon quantum dots complex photocatalysts and their enhancedphotocatalytic activity under visible light, Dalton Trans.,2011,40,10822-10825.
    [1] Chen X B, Mao S S, Titanium dioxide nanomaterials: synthesis, properties,modifications, and applications, Chem. Rev.,2007,107,2891-2959.
    [2] Chen X B, Liu L, Yu P Y, Mao S S, Increasing solar absorption for photocatalysiswith black hydrogenated titanium dioxide nanocrystals, Science,2011,331,746-750.
    [3] Linsebigler A L, Lu G Q, Yates J T, Photocatalysis on TiOn surfaces: principles,mechanisms, and selected results, Chem. Rev.,1995,95,735-758.
    [4] Fujishima A, Honda K, Electrochemical photolysis of water at a semiconductorelectrode, Nature,1972,238,37-38.
    [5] Zhu Y F, Fu Y Q, Ni Q Q, Preparation and performance of photocatalytic TiO2immobilized on palladium-doped carbon fibers, Appl. Surf. Sci.,2011,257,2275-2280.
    [6] Zhao L, Chen X F, Wang X C, Zhang Y J, Wei W, Sun Y H, Antonietti M, TitiriciM M, One-step solvothermal synthesis of a carbon@TiO2dyade structureeffectively promoting visible-light photocatalysis, Adv. Mater.,2010,22,3317-3321.
    [7] Wang X J, Hu Z H, Chen Y J, Zhao G H, Liu Y F, Wen Z B, A novel approachtowards high-performance composite photocatalyst of TiO2deposited on activatedcarbon, Appl. Surf. Sci.,2009,255,3953-3958.
    [8] Zhao W X, Bai Z P, Ren A L, Guo B, Wu C, Sunlight photocatalytic activity of CdSmodified TiO2loaded on activated carbon fibers, Appl. Surf. Sci.,2010,256,3493-3498.
    [9] Park S, Ruof R S, Chemical methods for the production of graphenes, NatureNanotechnology,2009,4,217-224.
    [10] Tasis D, Tagmatarchis N, Bianco A, Prato M, Chemistry of carbon nanotubes,Chem. Rev.,2006,106,1105-1136.
    [11] Allen M J, Tung V C, Kaner R B, Honeycomb carbon: A review of graphene, Chem.Rev.,2010,110,132-145.
    [12] Lee C, Wei X, Kysar J W, Hone J, Measurement of the elastic properties andintinsic strength of monolayer graphene, Science,2008,321,385-388.
    [13] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N,Superior thermal conductivity of single-Layer graphene, Nano Lett.2008,8,902-907.
    [14] Bolotin K I, Sikesb K J, Jianga Z, Klimac M, Fudenberga G, Honec J, Kima P,Stormera H L, Ultrahigh electron mobility in suspended grapheme, Solid StateCommun.,2008,146,351-355.
    [15] Stoller M D, Park S, Zhu Y, An J, Ruoff R S, Graphene-based ultracapacitors,Nano Lett.,2008,8,3498-3502.
    [16] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A,Yang X B, Lee S T, Water-soluble fluorescent carbon quantum dots andphotocatalyst design, Angew. Chem., Int. Edit.,2010,49,4430-4434.
    [17] Li H T, X D He, Huang H, Liu Y, Lian S Y, Lee S T, Kang Z H, One-stepultrasonic synthesis of water-soluble carbon nanoparticles with excellentphotoluminescent properties, Carbon,2011,49,605-609.
    [18] Wu X, Sprinkle M, Li X, Ming F, Berger C, Heer W A,Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxialgraphene electronics, Phys. Rev. Lett.,2008,101,026801.
    [19] Gilje S, Han S, Wang M, Wang K L, Kaner R B, A chemical route to graphene fordevice applications, Nano Lett.,2007,7,3394-3398.
    [20] Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruof R S, Graphene andgraphene oxide: synthesis, properties, and applications, Adv. Mater.2010,22,3906-3924.
    [21] Gong K, Du F, Xia Z, Durstock M, Dai L M, Nitrogen-doped carbon nanotubearrays with high electrocatalytic activity for oxygen reduction, Science,2009,323,760-764.
    [22] Felten A, Hody H, Bittencourt C, Pireaux J J, Scanning transmission x-raymicroscopy of isolated multiwall carbon nanotubes, Appl. Phys. Lett.,2006,89,093123.
    [23] Felten A, Bittencourt C, Pireaux J J, Reichelt M, Mayer J, Cruz D H, Hitchcock AP, Nonlinear optical imaging of individual carbon nanotubes withfour-wave-mixing microscopy, Nano Lett.,2007,7,2435-2440.
    [24] Henderson G S, Liu X, Fleet M E, A Ti L-edge X-ray absorption studying ofTi-silicates glasses, Phys. Chem. Minerals,2002,29,32-42.
    [25] Dingwell D B, Paris E, sefert F, Mottana A, Romano C, X-ray absorption study ofTi-bearing silicate glasses, Phys. Chem. Minerals,1994,21,501-509.
    [26] Yang C X, Yi H M, Facile approaches to control catalytic activity ofviral-templated palladium nanocatalysts for dichromate reduction, Biochem. Eng.J.,2010,52,160-167.
    [27] Jiang F, Zheng Z, Xu Z Y, Zheng S Y, Guo Z B, Chen L Q, Aqueous Cr(VI)photo-reduction catalyzed by TiO2and sulfated TiO2, J. Hazard. Mater.,2006,134,94-103.
    [28] Yeh T F, Syu J M, Cheng C, Chang T H, Teng H S, Graphite oxide as aphotocatalyst for hydrogen production from water, Adv. Funct. Mater.,2010,20,2255-2262.
    [29] Li Y, Hu Y, Zhao Y, Shi G Q, Deng L E, Hou Y B, Qu L T, An electrochemicalavenue to green-luminescent graphene quantum dots as potentialelectron-acceptors for photovoltaics, Adv. Mater.2011,23,776-780.
    [1] Chen X B, Mao S S, Titanium dioxide nanomaterials: synthesis, properties,modifications, and applications, Chem. Rev.,2007,107,2891-2959.
    [2] Chen X B, Liu L, Yu P Y, Mao S S, Increasing solar absorption for photocatalysiswith black hydrogenated titanium dioxide nanocrystals, Science,2011,331,746-750.
    [3] Linsebigler A L, Lu G Q, Yates J T, Photocatalysis on TiOn surfaces: principles,mechanisms, and selected results, Chem. Rev.,1995,95,735-758.
    [4] Fujishima A, Honda K, Electrochemical photolysis of water at a semiconductorelectrode, Nature,1972,238,37-38.
    [5] Zhao L, Chen X F, Wang X C, Zhang Y J, Wei W, Sun Y H, Antonietti M, TitiriciM M, One-step solvothermal synthesis of a carbon@TiO2dyade structureeffectively promoting visible-light photocatalysis, Adv. Mater.,2010,22,3317-3321.
    [6] Sano T, Negishi N, Koike K, Takeuchi K, Matsuzawa S, Preparation of a visiblelight-responsive photocatalyst from a complex of Ti4+with a nitrogen-containingligand, J. Mater. Chem.,2004,14,380-384.
    [7] Tang Y B, Lee C S, Xu J, Liu Z T, Chen Z H, He Z B, Cao Y L, Yuan G D, Song HS, Chen L M, Luo L B, Cheng H M, Zhang W J, Bello I, Lee S T, Incorporation ofgraphenes in nanostructured TiO2films via molecular grafting for dye-sensitizedsolar cell application, ACS nano,2010,4,3482-3488.
    [8] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, YangX B, Lee S T, Water-soluble fluorescent carbon quantum dots and photocatalystdesign, Angew. Chem., Int. Edit.,2010,49,4430-4434.
    [9] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Visible-light photocatalysis innitrogen-doped titanium oxides, Science,2001,293,269-271.
    [10] Ming H, Ma Z, Huang H, Lian S Y, Li H T, He X D, Yu H, Pan K M, Liu Y, KangZ H, Nanoporous TiO2spheres with narrow pore size distribution and improvedvisible light photocatalytic abilities, Chem. Commun.,2011,47,8025-8027.
    [11] Burda C, Lou Y B, Chen X B, Samia A C S, Stout J, Gole J L, Enhanced nitrogendoping in TiO2nanoparticles, Nano Lett.,2003,3,1049-1051.
    [12] Chen X B, Lou Y B, Dayal S, Qiu X F, Krolicki R, Burda C, Zhao C F, Becker J,Doped semiconductor nanomaterials, J. Nanosci. Nanotechnol.,2005,5,1408-1420.
    [13] Zhang Y Z, Deng S H, Sun B Y, Xiao H, Li L, Yang G, Hui Q, Wu J, Zheng J T,Preparation of TiO2-loaded activated carbon fiber hybrids and application in apulsed discharge reactor for decomposition of methyl orange, J. Colloid. Interf.Sci.,2010,347,260-266.
    [14] Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H, Aptamer/graphene oxidenanocomplex for in situ molecular probing in living cells, J. Am. Chem. Soc.2010,132,9274-9276.
    [15] Qu L T, Liu Y, Baek J B, Dai L M, Nitrogen-doped graphene as efficientmetal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano,2010,4,1321-1326.
    [16] Wang X R, Li X L, Zhang L, Yoon Y, Weber P K, Wang H L, Guo J, Dai H J,N-doping of graphene through electrothermal reactions with ammonia, Science2009,324,768-771.
    [17] Kang Z H, Wang E B, Mao B D, S Z M u, Gao L, Lian S Y, Xu L, Controllablefabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mildhydrothermal process, J. Am. Chem. Soc.,2005,127,6534-6535.
    [18] P. Leinweber, J. Kruse, F.L. Walley, A. Gillespie, K.U. Eckhardt, R.I.R. Blythc, T.Regierc, Nitrogen K-edge XANES-an overview of reference compounds used toidentify unknown organic nitrogen in environmental samples, J. SynchrotronRadiat.,2007,14,500-511.
    [19] Wang C, Daimon H, Sun S H, Dumbbell-like Pt Fe3O4nanoparticles and theirenhanced catalysis for oxygen reduction reaction, Nano Lett.,2009,9,1493-1496.
    [20] Yang C X, Yi H M, Facile approaches to control catalytic activity ofviral-templated palladium nanocatalysts for dichromate reduction, Biochem. Eng.J.,2010,52,160-167.
    [21] Yen C C, Wang D Y, Chang L S, Shih H C, Characterization and photocatalyticactivity of Fe-and N-co-deposited TiO2and first-principles study for electronicstructure, J. Solid State Chem.,2011,184,2053-2060.
    [22] P.K. Sitch, G. Jungnickel, T. Kohler, T. Frauenheim, D. Porezag, P-and n dopingin carbon Modifications, J. Non-Cryst. Solids,1998,607,227-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700