基于虚拟样机的柴油机动力学仿真及扭振分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机是汽车、机车、拖拉机、工程机械、船舶等的基本动力装置。自二十世纪五十年代以来,随着科学技术的迅猛发展,以柴油机为动力的各种装置保有量的日益增加,人们对柴油机的要求越来越高。而发动机的主要承载零件的性能优劣直接影响着发动机的可靠性和寿命。随着发动机强化指标的不断提高,其工作部件的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证各部件具有足够的疲劳强度和刚度及良好的动静态力学特性成为柴油机设计的关键性问题,而曲轴做为柴油机中最关键的部件,保证其安全性和稳定性一直是柴油机研发工作中的重点。本文旨在探索一条可以较为精确分析柴油机曲轴工作时动力学响应的方法。
     本文选取某16缸柴油机作为研究对象,结合有限元软件ANSYS和多体动力学软件ADAMS构建了柴油机的虚拟样机模型(包括全刚性体模型、曲轴为柔性和机体曲轴都为柔性的刚柔耦合模型)。对比研究了三个模型下曲轴主轴颈和曲柄销承载曲线的异同,并得到曲轴和机体的柔性化对主轴颈的载荷时间历程曲线有较大的影响的结论。本文进一步对曲轴的扭振特性进行了研究,利用柴油机的多体动力学模型计算出了各工作转速的扭振角周期变化曲线,并进行了谐次分解。计算结果表明本文研究的柴油机一阶扭转固有频率较高,靠近一阶扭转频率的谐次都是高阶谐次,因此工作转速内的扭转振幅并不会危害到曲轴的安全性。
     通过上述工作及其结果与分析可见虚拟样机技术确实能够比较准确和方便的预测实际发动机的动力学性能。在发动机研发过程中能节约研发成本、提高研发效率以及提升产品性能。
Diesel is the basic power device of car,locomotive,tractor,construction machinery,ships, etc. Since the twentieth century, the fifties, along with the rapid development of science and the increasing of devices powered by internal combustion engines,people have more and more demindings on the improving of diesel.The performance of main parts of engine directly affects the reliability and life of the engine.With the continuous improving of strength norm, the working conditions of the working parts become more complex.Under a variety of Cyclical changing loads.the key issue is how to ensure that the parts of the engine can have sufficient fatigue strength,stiffness,dynamic properties and static mechanical properties during the designing of diesel engine. As the most critical components of diesel,how to ensure the safe and stability of the crankshaft is always the point of diesel engine research. This paper aims to explore a more precise way to analysis the dynamic response of the crankshaft.
     This paper selects a 16-cylinder diesel as research object and builds the virtual prototype of the diesel using software ADAMS and ANSYS(including the full rigid body model and two rigid flexible coupling models).The comparative study of the loading curve of the crankshaft journals and crank pins of the three models can prove that the flexibility of the crankshaft and block causes great influence. Further this paper studys the torsional vibration characteristics of the crankshaft. The rigid flexible coupling dynamic model of the engine is used to calculate the vibration angle curve changing with time and the harmonic analysis is done.The conclusion is that the first torsional vibration frequency is so high that only the frequency of high-order harmonic can approach it.The torsional vibration amplitude of the working condition cann't effect the safety of the diesel.
     Through the work mentioned before and its results it can be seen that virtual prototyping technology can really be convenient and accurate to predict the dynamic performance of the actual engine. It can save development costs, improve efficiency and enhance product performance during the engine designing.
引文
[1]汪长民.车辆发动机动力学.国防工业出版社,1981:2-5
    [2]王棋.内燃机轴系扭转振动.国防工业出版社,1985:1-2
    [3]杨礌.汽车发动机曲轴扭振分析及控制.重庆大学硕士论文.2005:1-3
    [4]徐敏,骆振黄,严济宽等.船舶动力机械的振动、冲击与测量.国防工业出版社,1981
    [5]S.Doughty,G.Vafaee.Transfer Matrix Eigensolutions for Damped Torsional System.ASME Journal of Vibration,Acoustics.Stress,and Reliability in Design,1985,107:128-132
    [6]S.Doughty,Steady-State.Torsional Response With Viscous Damping.ASME Journal of Vibration,Acoustics,Stress.and Reliability in Design,1985,107:123-127
    [7]Yuan Mao Huang,C.D.Horong.Analysis of Torsional Vibration Systems by the Extended Transfer Matrix Method. ASME Journal of Vibration and Acoustics,121:250-252
    [8]张洪田,汤儒涛.船舶轴系扭转振动计算的Riccati传递矩阵法.船舶工程,1994(1):31-35
    [9]Nagamatsu,Vibration Analysis of Engine Parts used Reduced Impedance Methods.Bulletin of JSME,48:1380-1388
    [10]H.-H.Priebsch,J.Affenzeller,S.Gran.Prediction Technique for Stress and Vibration of Nonlinear Supported Rotating Crankshafts.ASME Journal of Engineering for Gas Turbines and Power.1993,115:711-720
    [11]Kazuomi Ochiai,Mituso Nakano. Relation Between Crankshaft Torsional Vibration and Engine Noise. SAE,1979,Paper 790365
    [12]Bagci C.A.Computer Method for Computing Torsional Nature Frequencies of Nonuniform Shafts Geared System.and Curved Assemblies.Proceedings of the 3rd OSU MechanicalConference,Oklahoma,1973
    [13]Carrato P J,Fu C C.Model Analysis Techniques for Torsional Vibration of Diesel Crankshaft.SAE,1986,Paper 861225
    [14]程金林.一种车用高速柴油机曲柄连杆机构的动力学仿真分析.汽车技术,2001(12):5-8
    [15]覃文洁.内燃机曲轴系振动响应的多体系统动力学分析方法.安全与环境学报,2002,2(2):51-53
    [16]郝志勇.柴油机曲轴轴系的柔性多体动力学仿真分析.铁道机车车辆,2003(11):86-89
    [17]尤小梅.发动机曲轴动力学仿真研究.沈阳工业学院学报,2004,23(4):4-6
    [18]程颖.曲轴系柔性多体动力学与动力润滑耦合仿真.北京理工大学学报,2006,26(4):314-317
    [19]杨万里.发动机曲轴系统动力学数值模拟研究.内燃机工程,2006,27(1):45-47
    [20]郭磊.柴油机曲轴与气缸体系统动力学仿真研究.浙江大学学报,2007,41(5):780-784
    [21]靳晓雄,张立军,江浩.汽车振动分析.同济大学出版社,2000:25-26
    [22]余成波,何怀波,石晓辉.内燃机振动控制及应用.国防工业出版社,1997:7-10
    [23]李渤仲,陈之炎,应启光.内燃机轴系扭转振动.北京国防工业出版社,1984:15-18
    [24]李惠珍,张德平.用有限元法进行曲轴扭振计算.内燃机学报,1991,9(2):157-162
    [25]王勖成.有限单元法.清华大学出版社,2003:77-80
    [26]李震,桂长林,孙军.内燃机曲轴轴系振动分析研究的现状、讨论与展望.内燃机学报,2002,20(5):469-474
    [27]Athavale S M,Sajanpawar P R.Analytical studies on influence of crankshaft vibrations on engine noise using integrated parametric finite elment model:Quick assessment tool.SAE,1999,paper 99-01-1796
    [28]Raub J, Jones J D, Kley P. Analytical investigation of crankshaft dynamics as a virtual engine module.S AE,1999,paper 99-01-1750
    [29]Szczupal,DBrunson D,Carling J.The Jaguar AJV8 engine.1997,SAE,paper 970941
    [30]洪嘉振.计算多体系统动力学.高等教育出版社,1999:9
    [31]Magunus K.Dynamics of multibody system.Springer-Verlag,1978
    [32]Haug E J.Computer aided analysis and optimization of mechanical system dynamics. Springer-Verlag,1984
    [33]Bianch G,Schiehlen W.Dynamics of multibody system. Springer-Verlag,1986
    [34]Schielen W.Multibody system handbook. Springer-Verlag,1990
    [35]宋培林,孙序粱.树形带球铰的多刚体系统动力学方程的建立方法.力学学报,1990,22(1):95-98
    [36]刘延柱.多刚体系统动力学的旋量-矩阵方法.力学学报,1988,20(4):335-344
    [37]章定国.“分路”方法在树系统动力学分析中的应用.力学学报,1994,26(3):341-347
    [38]郭吉丰,童忠钫.多挠体系统运动学和动力学模型的线性化方法.宇航学报,1992(4):17-26
    [39]水小平.黎曼位移空间中约束多体系统的动力学分析.力学学报,1997,29(6):755-759
    [40]李晶,李明瑞,黄文彬.刚柔耦合约束多体系统的动力学.力学学报,1994,26(3): 333-340
    [41]齐朝晖,唐立民,陆佑方.一种建立多体系统计算模型的新方法.力学学报,1994,26(5):593-598
    [42]王琪,黄克磊,陆启韶.树形多体系统动力学的隐式算法.力学学报,1996,28(6):717-725
    [43]洪嘉振,蒋丽忠.柔性多体系统刚-柔耦合动力学.力学进展,2000,30(1):15-20
    [44]Turcic D A,Midha A.Dynamic analysis of elastic mechanism systems,Part Ⅰ:applications. ASME J of Dynamic systems, Measurements and Control,1984,106: 243-248
    [45]LinkinsPW.Finite element appendage equations for hybrid coordinate dynamic analysis.Journal of solids& structures,1972,8:709-731
    [46]Kane T R,Ryan R R,Banerjee A K.Dynamics of cantilever beam attached to a moving base.Journal of Guidance,Control and Dynamics,1987,10(2):139-151
    [47]Banerjee A K,Kane T R.Dynamics of a plate in large over all motion. Journal of Applied Mechanics,1989.56:887-892
    [48]Haering W J,Ryan R R.New formulation for flexible beams undergoing large overall motions. Journal of Guidance,Control and Dynamics,1994,17(1):76-83
    [49]刘锦阳,洪嘉振.闭环柔性多体系统的多点撞击问题.中国机械工程.2000,11(6):619-623
    [50]刘锦阳,洪嘉振.研究柔性体撞击问题的子结构离散方法.计算力学学报,2001,18(1):28-32
    [51]王才峄.内燃机曲轴轴系扭振的多体动力学分析.浙江大学硕士学位论文.2006:39-40
    [52]李人宪.16V280ZJH强化柴油机主轴承轴心轨迹计算报告.西南交通大学机械工程学院.2005:10-22
    [53]陈笃,腾雷昌,薛良军.16V280ZJB型柴油机的开发与研制.内燃机车.2003(9):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700