聚合物基均相离子交换膜的制备、表征及离子传导特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从上个世纪以来,离子交换膜及其相关的技术迅速发展,在水处理、环境保护、能源及清洁生产中得到了广泛的应用。目前,为了针对苛刻的化工应用条件,研制具有优异离子选择渗透性、低电阻、高机械、化学稳定性的离子交换膜的成了当务之急。对于强碱性的阴离子交换膜的制备,由于传统路线中的卤甲基化步骤中不可避免的采用强致癌物质二氯甲醚,因此无论是从经济成本还是环境保护方面,开发不采用氯甲基化步骤的阴离子交换膜制备方法是目前的一个迫切要求。至于阳离子交换膜,目前工业应用最广的是以全氟结构的膜为代表,这种特殊的碳氟结构赋予了膜独特的物理和化学的稳定性,但是其复杂的生产路线,高昂的成本严重阻碍了其广泛应用。所以对于阳离子交换膜的研发的重点主要放在以成本低廉的膜材料为基础制备耐高温、抗氧化性、耐腐蚀、耐有机溶剂的阳离子交换膜。另外,除了注重评估离子交换膜的经济性外,我们不能忽视离子交换膜的基础理论的研究,特别要重视膜结构与性能的关系,这样才能为制备性能更加优异的膜提供理论基础。
     基于以上的考虑,我们首先制备出一种质优价廉的高分子膜材料,开发出一种基于此材料的新型的不采用卤甲基化步骤的阴离子交换膜的绿色制备路线,该方法简单、高效、价廉,有潜在的应用前景。以此高分子膜材料为基础,共混其他现有高分子材料,开发出一种无需外加交联剂,通过控制两种高分子的自带基团的交联制备出含有特殊交联结构的离子交换膜,该交联结构不但能增强膜的物理化学性能,还能使膜内功能基团有序排列,有利于离子传导。此外,参照该交联方法同样不需要外加交联剂,以半晶态的全氟聚合物和非晶态的二氮杂萘酮型聚醚砜酮为原料制备出一种具有特殊微观结构的离子交换膜,兼具全氟离子膜和芳香离子膜的优点,表现出与Nafion~(?)膜相当的物理化学稳定性,和相同条件下比其优异的质子传导性。最后,针对这种优异的性能,提出了一种新的质子传导机理,为进一步开发低含水率下高质子电导效率的离子交换膜提供了理论依据。本研究的主要结论如下:
     (1)通过Friedel-Crafts反应可以取代氯甲基化,实现从聚苯醚(PPO)制备氯乙酰化聚苯醚(CPPO)阴离子交换膜。就PPO的成膜性而言,氯乙酰化程度在50%左右时最适宜;就其电化学性能而言,胺化时间在48~50小时,胺化浓度在0.91mol/L,胺化温度在35~45℃最为适宜。在这些优化条件下,该膜表现出优异的性能:离子交换容量(IEC)为1.15mmol/g,含水率为40%~60%,膜电阻~0.2Ω·cm~2。
     (2)以CPPO为材料,共混溴甲基化聚苯醚(BPPO),并根据氯乙酰基基团和溴甲基基团不同的反应活性,通过控制反应条件以氯乙酰基基团作为交联基团,则无需外加交联剂制备出具有特殊交联结构的CPPO/BPPO阴离子交换膜。该交联结构不同于常规的三维互穿网络交联结构,由于交联反应发生在固态,分子链不能自由运动,交联键均匀分散在膜内部,能明显增强膜的韧性和稳定性,并且该交联键的分布方式能促进膜内部功能基团有序分布,故最终的膜表现出优异的OH~-离子传导性:25℃下OH~-电导高达0.032Scm~(-1),完全可以作为碱性燃料电池隔膜进行工业应用。
     (3)以含有特殊基团的半晶态的全氟磺酸树脂(FSP)和非晶态的磺化聚醚酮(SPPESK)为原料,通过酸碱反应,可以制备出具有特殊微观结构的离子交换膜。该膜综合了全氟离子膜和芳香离子膜的优点,表现出与Nafion~(?)膜相当的物理化学稳定性,和相同条件下比其优异的质子传导性。
     (4)含有酸碱对的FSP/SPPESK膜存在一种微观的三相结构:分散相SPPESK均匀分布在连续相FSP内部,两相间通过一种以静电连接的酸碱对聚集相紧密结合。由于这些酸碱对的存在,该膜表现出良好的组分相容性,优异的热稳定性、耐溶胀性能等等。同时,在这个低含水率的酸碱对聚集相内部存在一些有利于单个质子传导结构,质子通过氢键的不断断裂和生成在这种含水率极低的环境内实现了快速的传导。
     (5)含有酸碱对的FSP/SPPESK膜在退火后会导致膜中的三相不同的微观形态的改变。对于FSP相区,退火能改变该相区中结晶度的变化,而在另外两个相区,高温退火能引发额外的酸碱反应,导致这两相内微观结构发生变化。由退火所引起的重结晶过程和酸碱反应过程具有温度依赖性,完全可以通过控制条件来制备出综合性能优异的离子交换膜。
Ever since last century,ion exchange membranes and related technologies have found many applications in water treatment,environmental protection,fuel cells,and cleaner production.To meet the requirements for application in rigorous environment,ion exchange membranes with desired properties,such as high permselectivity,low electrical resistance,good mechanical and chemical stability, need exploring.With regard to anion exchange membranes,the traditional preparation method involves a much complicated process—chloromethylation,in which the commonly used chloromethyl methyl ether(CME) and bis-chloromethylether(BCME) are now considered carcinogens.Therefore,it is necessary to develop new routes to prepare anion exchange membranes without such chloromethylation process.As for cation exchange membranes, mostly-perfluorinated sulfonic acid ionomers,such as Nafion~(?) series,have been wildly used due to their high proton conductivity and substantial durability. Nonetheless,the extremely high manufacturing cost,large fuel permeability,and poor proton conductivity at elevated temperature restricts perfluorinated membranes from wide industrialization.Therefore,the development of alternatives from inexpensive materials is urgent,and these cation exchange membranes should resist high temperature,oxidants,solvents,and degradation.Apart from the manufacture cost,fundamental research on the construction of ion exchange membranes should not be ignored.Only upon a better understanding of the relationships between membrane structure and properties,membranes with better performances can be developed.
     In view of those considerations above,a high-quality and low-cost polymer material was prepared through Friedel-Crafts reaction,and a route without traditional chloromethylation process was developed for preparation of anion exchange membrane from such polymer material.The superior performance of such membrane indicates its potential industrial applications.When this polymer material was blended with another functional material,a new membrane with special inter-molecular crosslinking structure was obtained.During the membrane preparation,no additional crosslinking agent was needed but self crosslinking occurred.Such special crosslinked structure imparted the final membrane excellent physical and chemical stability and led to an orderly arrangement of functional groups for OH~- transfer.Taking use of this inter-molecular crosslinking,a new cation exchange membrane was successfully prepared from a semi-crystalline perfluorosulfonic polymer and amorphous poly(ether-ketone).This membrane has a multi-phase structure and combines the advantages of perfluorosulfonic polymers and aromatic ion-exchange membranes;moreover,this membrane exhibited physicochemical stability comparable to that of Nafion~(?)-112 membranes and higher proton conductivity than the latter.Upon this excellent performance,a unique transfer mechanism was proposed,which can provide theoretical guidance for development of ion exchange membranes with high proton conductivity at low water contents.
     The main conclusions based on this research are as follows:
     (1) Friedel-Crafts chloroacetylation,instead of chloromethylation,can be used to prepare anion exchange membranes from a linear engineering plastics polymer, Poly(2,6-dimethyl-1,4-phenylene oxide)(PPO).According to the membrane forming of PPO,the chloroacetylation degree should be control around 50%.To achieve the best electrochemical properties,the optimum reaction conditions are as follows: amination time=48-50 hours,amination concentration=0.91mol/l,and amination temperature=35-45℃.Under these conditions,the membrane exhibited an ion exchange capacity[IEC]of 1.15mmol/g dried membrane,water content of 0.4-0.6 g/g wet membrane,and area resistance up to 0.2Ωcm~2.
     (2) An anion exchange membrane with partially inter-crosslinked network was prepared from the blend of chloroacetylated poly(2, 6-dimethyl-1,4-phenyleneoxide)(CPPO)/bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide)(BPPO) by a Friedel-Crafts reaction without addition of any crosslinking reagent or catalyst.The inter-crosslinking structure is different from conventional 3-dimension interpenetrating network,and the crosslinkages are immobilized and dispersed uniformly inside membrane. Consequently,it could enhance the membrane's flexibility and stability significantly; moreover,the membrane exhibited excellent hydroxyl conductivity:0.032 S cm~(-1) at 25℃.Hence,the membrane is qualified for application in low temperature direct methanol alkaline fuel cells(DMAFCs)application.
     (3) A novel cation exchange membrane was prepared from the blend of sulfonated poly(phthalazinone ether sulfone kentone)(SPPESK) and perfluorosulfonic polymer(FSP) via acid-base interactions.This membrane exhibited physicochemical stability comparable to that of Nafion~(?)-112 membranes and higher proton conductivity than the latter.
     (4) Inside the FSP/SPPESK blend membrane,there exists a multi-phase structure:hydrophobic electrostatically-interacted acid-base pairs constitute the interlayers between two hydrophilic phases(FSP and SPPESK).The multi-phase membrane,due to these acid-base pairs,exhibited good phase compatibility,and excellent thermal and dimensional stability.Notably,a channel is constructed throughout the interlayer,and protons transport directly through these hydrophobic zones by hydrogen bonds forming and breaking between acid-base pairs and water molecules.
     (5) The morphology of different phases in the membrane changed significantly after annealing treatment.In FSP phase,crystalline degree increased significantly after annealing treatment;meanwhile,acid-base reaction occurred in the SPPESK phase.The recrystalization and acid base reaction induced by annealing are both dependent on temperature.Therefore,it is feasible to prepare desired membranes by controlling the annealing conditions.
引文
Strathmann H.1995.Electrodialysis and related processes,in the Membrane separation technology—principles and applications[M],ed.Nobe R D and Stem S A,Elesevier Science BV Press,214-278.
    葛道才.1989 IM-2型强碱性阴离子交换膜的制备及其在苦咸水脱盐中的应用[J].膜科学与技术,9(1):26-30.
    Sunaga K,Kim M,Saito K,Sugita K,Sugo T.1999.Characteristics of Porous Anion-Exchange Membranes Prepared by Cografting of Glycidyl Methacrylate with Divinylbenzene[J].Chemstry of Materials,11:1986-1989.
    Lin M C,Takai N.1994.Fundamental study of noncross-linking anion exchange membranes[J].Journal of Membrane Science,88(1994) 77-83.
    Xu T W,Yang W H.2001.Sulfuric acid recovery from titanium white(pigment) waste liquor using diffusion dialysis with a new kind of homogenous anion exchange membrane—Static runs[J].Journal of Membrane Science,183:193-200.
    Xu T W,Liu Z M,Yang W H.2005.Fundamental studies of a new series of anion exchange membranes:membranes prepared from poly(2,6-dimethyl-1,4-phenylene oxide)(PPO) and triethylamine[J].Journal of Membrane Science,249:183-191.
    Li Y,Xu T W,Gong M.2006.Fundamental studies of a new series of anion exchange membranes:membrane prepared from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide)(BPPO)and pyridine[J].Journal of Membrane Science,279:151-159.
    Lin Z,Xu T W,Zhang L.2006.Irradiation-induced grafting of N-isopropylacrylamide onto the brominated poly(2,6'-dimethyl-1,4-phenylene oxide) membranes[J].Radiation Physics and Chemistry,75:532-540.
    Warshawsky,A,Deshe A.1985.Halomethyl octyl ethers:convenient halomethylation reagents[J].Journal of Polymer Science Part A:Polymer Chemistry,23:1839-1841.
    Michaelis L and Fujita A.1925.The electric phenomen and ion permeability of membranes[J].Biochemische Zeitsehrift,158:28.
    Sollner K.1932.Uber Mosaikmembrane[J].Biochemisehe Zeitschrift,244:390.
    Juda M and McRac W A.1950.Coherent ion exchange gels and membranes[J].Journal of the American Chemical Society.72:1044.
    Winger A G and Bodamer G W.1953.Some electrochemical properties of new synthetic ion exchange membranes[J].Journal of Electrochemical Society.100:178.
    张维润主编.1995.电渗析工程学[M].第一版.北京:解放出版社,44-46.
    莫剑雄、刘淑敏,1986.电导电极测定离子交换膜的电阻,水处理技术,12:84-88.
    Warshawsky A,Deshe A,Gutman R.1984.Safe halomethylation of aromatic polymers via BCME-free long chain haloalkylethers[J].British Polymer Journal.16:234-238.
    Warshawsky A,Kedem O.1990.Polysulfone-based interpolymer anion exchange membrane[J],Journal of Membrane Science.53:37-44.
    Nudelman A,Patchornik A.1981.U.S.Patent,4,244,885.
    Kreuer K D,Rabenau A and Weppner W.1982.Vehicle mechanism,a new model for the interpretation of the conductivity of fast proton conductors[J].Angewandte Chemie International Edition.21:208-209.
    Jung M E,Mazurek M A,Lim R M.1978.A New Efficient Synthesis of Iodomethyl Methyl Ether[J].Synthesis 8:588-589.
    Kim I T,Choi J,Kim S C.2007.Blend membranes of Nafion/sulfonated poly(aryl ether ketone)for direct methanol fuel cell[J].Journal of Membrane Science,300:28-35.
    Mokrini A,Huneault,M.A.2006.Proton exchange membranes based on PVDF/SEBS blends[J].Jouornal of Power Sources.154:51-58.
    Bai Z W,Price G E,Yoonessi M,Juhl S B,Durstock M F,Dang T D.2007.Journal of Membrane Science.305:69-76.
    Wycisk R,Chisholm J,Lee J,Lin J,Pintauro PN.2006.Jouornal of Power Sources.163:9-17.
    Wright M E,Toplikar E G,Svejda S A.1991.Details concerning the chloromethylation of soluble high-molecular-weight polystyrene using dimethoxymethane,thionyl chloride,and a lewis acid-a full analysis.Macromolecules.24:5879-5880.
    Olah G A,Beal D A,Yu S H,Olah J A.1974.Synthetic Methods and Reactions.X~1.1-Chloro-4-chloro(bromo)methoxybutane and,4-Bis-[chloro(bromo)methoxy]butane:New Convenient Halomethylating Agents[J].Synthesis.8:560-561.
    Olah G A,Beal D A,Olah J A.1976.Aromatic substitution.ⅩⅩⅩⅧ.Chloromethylation of benzene and alkylbenzenes with bis(chloromethyl)ether,1,4-bis(chloromethoxy)butane,1-chloro-4-chloromethoxybutane and formaldehyde derivative[J].Journal of Organic Chemistry.41:1627-1631.
    Warshawsky A,Shoef N.1985.Novel polymeric halomethylating reagents[J].Journal of Polymer Science Part A:Polymer Chemistry,23:1843-1846
    申东升.1999.芳香烃氯甲基化的综述[J].化学研究与应用,11(3):229-234.
    王振坤编.离子交换膜—制备、性能及应用[M].北京:化学工业出版社,1985.
    Xu T W,Fu Y X,Yang W H.2004.Preparation of a novel semi-homogenous cation permeable membranes from blends of sulfonated poly(phenylene sulfide)(SPPS)and sulfonated phenolphthalein poly(ether ether ketone)(SPEEK-C)[J].Journal of Applied Polymer Science,92:1478-1485.
    Haubold H G et al.2001.Nano structure of NAFION:a SAXS study[J].Electrochimica Acta,46;1559-1563
    William Y H,Timthy D G.1983.Ion transport and clustering in Nafion perfluorinated membranes[J].Journal of membrane science,13:307-326.
    Kreuer K D.2000.On the complexity of proton conduction phenomena[J].Solid State Ionics,149:136-137.
    Eigen M.1963.Proton transfer,acid-base catalysis,and enzymatic hydrolysis.Part 1:elementary processes[J].Angewandte Chemie,75:489-508.
    Dippel T,Kreuer K D.1991.Proton transport mechanism in concentrated aqueous solutions and solid hydrates of acids[J].Solid State Ionics,46:3-9.
    Paddison S J,Paul R,Kreuer K D.2002.A Theoretically computed proton diffusion coefficients in hydrated PEEKK membranes[J].Physical Chemistry Chemical Physics.4:1151-1157.
    Wu L,Xu T W,Yang W H.2006.Fundamental studies of a new series of anion exchange membranes:membranes prepared through chloroacetylation of poly(2,6-dimethyl-1,4-phenylene oxide)(PPO)followed by quaternary amination[J].Journal of Membrane Science,286:185.
    Sone Y,Ekdunge P,Simonsson D.1996.Proton conductivity of Nafion 117 as measured by a four-electrode ac impedance method[J].Journal of the Electrochemical Society,143:1254.
    Woo Y,Oh S Y,Kang Y S,Jung B.2003.Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell[J].Journal of Membrane Science,220:31.
    Deimede V,Voyiatzis G A,Kallitsis J K,Qingfeng L and Bjerrum N J.2000.Miscibility Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell Applications[J],Macromolecules,33:7609.
    Hobbs S Y,Watkins V H,1999.in:Paul D R,Bucknall C B(Eds),John Wiley & Sons,Inc.New York,1:211.
    Kreuer K D.2001.On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells[J].Journal of Membrane Science,185:29-39.
    Heitner-Wirguin C.1996.Recent advances in perfluorinated ionomer membranes:structure,properties and applications[J].Journal of Membrane Science,120:1-33.
    Daletou M K,Gourdoupi N,Kallitsis J K.2005.Proton conducting membranes based on blends of PBI with aromatic polyethers containing pyridine units[J].Journal of Membrane Science,252:115-122.
    Mokrini A,Huneault M A.2006.Proton exchange membranes based on PVDF/SEBS blends.Journal of Power Sources,154:51-58.
    Anilkumar G M,Nakazawa S,Okubo T,Yamaguchi T.2006.Electrochemistry Communications,8:133.
    Wu S J,Tung N P,Lin T K,Shyu S S.2000.Thermal and mechanical properties of PPO filled epoxy resins compatibilized by triallylisocyanurate[J].Polymer International,49:1452.
    Yu E H,Scott K.2004.Development of direct methanol alkaline fuel cells using anion exchange membranes[J].Journal of Power Sources,137:248.
    Tsyurupa M P,Davankov V A.2002.Hypercrosslinked polymers:basic principle of preparing the new class of polymeric materials[J].Reactive and Functional Polymers,53:193.
    Pretsch E,Buhlmann P,Affolter C.2000.Structure Determination of Organic Compounds-Tables of Spectral Data[M].Springer-Verlag Press,pp.198-200.
    Yang C C.2007.Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC,Jounal of Membrane Science,288:51.
    Stoica D,Ogier L,Akrour L,Alloin F.2006.Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell:Synthesis,physical and electrochemical properties[J].Electrochimica Acta,53:1596.
    Gu S,He G H,Wu X M,Li C N,Liu H J,Lin C,Li X C.2006.Synthesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone)(SPPESK)for direct methanol fuel cell(DMFC)[J].Journal of Membrane Science 281:121-129.
    Okada T,Moller-Holst S,Gorseth O,Kjelstrup S.1998.Transport and equilibrium properties of Nation(R)membranes with H~+ and Na~+ ions[J].Journal of Electroanalytical Chemistry,442:137-143.
    Deimede V,Voyiatzis G A,Kallitsis J K,Qingfeng L,Bjerrum N J.2000.Miscibility Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell Applications[J].Macromolecules,33:7609-7617.
    Gieselman M B,Reynolds J R.1992.Water-Soluble Polybenzimidazole-Based Polyelectrolytes[J].Macromolecules.25:4832-4834.
    Eigen M,Kruse W,de Maeyer L.1964.Progress in Reaction Kinetics.2:285-318.
    Eigen M.1964.Proton Transfer Acid-Base Catalysis and Enzymatic Hydrolysis[J].Angewandte Chemie International Edition,3:1-19.
    Weller A.1961.Fast reactions of excited molecules[J].Progress in Reaction Kinetics,1:187-214.
    Hynes J T.1999.The Protean Proton in Water[J].Nature 397:565-569.
    Bradley J Siwick,Huib J Bakker.2007.On the role of water in intermolecular proton-transfer reactions[J].Journal of the American Chemical Society,129:13412-13420.
    Eigen M and De Maeyer L.1963.Angewandte Chemie,75:489.
    Paddison S J.2003.Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes[J].Annual Review of Materials Research,33:289.
    Kreuer K D.1997.On the Development of Proton Conducting Materials for Technological Applications[J].Solid State Ionics 97:1.
    Kreuer K D,Paddison S J,Spohr E,Schuster M.2004.Transport in Proton Conductors for Fuel-Cell Applications Simulations,Elementary Reactions,and Phenomenology.Chemical Reviews,104:4637-4678.
    Kreuer K D.1996.Proton Conductivity:Materials and Applications[J].Chemistry of Materials.8:610-641.
    Mohammed O F,Pines D,Dreyer J,Pines E,Nibbering E T J.2005.Sequential proton transfer through water bridges in acid-base reactions[J].Science,310:83-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700