缺血后处理抗大鼠缺血—再灌注肝损伤作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[背景与目的]
     肝脏缺血-再灌注(ischemia/reperfusion,I/R)损伤是临床常见的病理生理现象,也是许多肝缺血疾病预后不良的重要原因。因此,深入研究I/R肝损伤的病理生理机制及寻找各种抗I/R肝损伤策略一直是肝脏研究领域的重要方向。作为一种启动机体内源性保护机制的方法,缺血预处理(ischemic preconditioning,IpreC)对I/R肝的保护作用已得到普遍的认可。然而,由于IpreC必须在器官长久缺血前实施,这在一定程度上限制了其在临床的推广。最近,一种新的干预策略——缺血后处理(ischemic postconditioning,IpostC)因其能减轻I/R心脏损伤而引起了广泛的关注。IpostC是指通过在再灌注起始实施数个循环的短暂的血流灌注(on)/阻断(off),能够削弱随后再灌注引起的损伤。IpostC实施方法与IpreC相似,但其简便易行、实施时机合理的优点将使其在临床应用具有诱人的前景。当前大多数IpostC研究集中在心脏方面,其对其他I/R器官是否具有保护作用尚不确定,因此本研究首先探讨IpostC对SD大鼠I/R肝脏是否具有保护作用,随后进一步研究联合应用IpreC和IpostC是否能够提供相加的保护作用。同时,在此基础上我们探讨了抗氧化机制在IpostC抗I/R肝损伤中的作用。
     在肝I/R过程中,细胞的最终命运常常表现为细胞凋亡和坏死。长久以来这两种细胞死亡方式被认为具有截然不同的特征和发生过程,然而近年来研究认为两者的发生至少部分经过共同的信号传导途径,称之为necrapoptosis(死亡通路)。线粒体通透性转换(MPT)在细胞死亡发生过程中发挥关键作用。MPT一旦发生,细胞要么凋亡要么坏死。肝I/R损伤常被划分为两期,早期(再灌注<3 h内)主要以氧化应激引发的组织损伤为特征,晚期以募集在肝实质内的PMN引发的炎性损伤等为特征。另外,肝I/R损伤常常伴随有许多蛋白酶的激活,其中Calpain家族在引发I/R肝细胞死亡中发挥重要的作用。由于IpostC是再灌注起始采取的干预手段,其抗I/R肝损伤机制很可能与影响再灌注早期的分子事件有关。因此,本研究进一步探讨了IpostC对再灌注早期大鼠肝组织中与细胞死亡通路相关分子及其对细胞早期死亡特征的影响。
     细胞在遭受损伤刺激的作用下必然同时会启动自身的防御性机制,其中细胞周期的启动对于细胞自身结构修复和功能恢复尤为重要。与其他器官不同,肝脏是机体内具有极强再生能力的器官。通常,绝大多数肝细胞处于静息状态(G_0期),在接受外来刺激后可很快被启动进入细胞周期,发生增殖。从细胞启动到肝细胞分裂增殖的过程中涉及到许多重要分子的参与,其中细胞周期促进分子cyclin D_1和CDK4以及抑制分子p21相互协调并发挥着关键的作用。IpostC能否通过影响这些细胞周期分子的表达对I/R肝脏发挥保护作用尚不清楚,因此本研究着重研究了这些细胞周期相关分子的表达,以探讨IpostC对细胞周期的影响,为其未来研究和应用提供一定的理论基础。
     [方法]
     1.复制SD大鼠70%肝缺血-再灌注模型。在此基础上实验分两步进行。
     第一步实验实验动物分为6组:假手术(S)组、单纯60 min缺血组、缺血再灌注(I/R)组和3组采用不同方案的缺血后处理(IpostC)组,即再灌注起始采用3个循环30 s灌注/30 s阻断(30 s on/off)的IpostC 1组、3个循环1 minon/off的IpostC 2组和2 min on/off的IpostC 3组。采用全自动生化分析仪测定各组大鼠血清ALT和AST活性,同时观察各组大鼠肝组织的病理组织学改变,评价IpostC对I/R肝脏的抗损伤作用。
     第二步实验实验动物分为5组,即S组、I/R组、IpreC组(长时间缺血前应用2个循环的缺血5 min/再灌注5 min)、IpostC组(3周期1 min on/off方案)和联合应用IpreC组和IpostC组(IpreC/IpostC)。除了观察第一步实验的各项指标外,第二步实验采用70%肝缺血后全缺血肝再灌注模型来评价各组的术后7天生存率,用以评价联合IpreC和IpostC对I/R肝脏的抗损伤作用。
     2.采用分光光度比色法测定大鼠肝组织中MDA、GSH的含量和SOD、GSH-Px和MPO的活性,评价抗氧化机制在IpostC抗I/R肝损伤中的作用。
     3.采用ELISA法测定S组、UR组和IpostC组大鼠在再灌注1h和3h时肝组织和血清中TNF-α的含量。采用Western blot法测定各组大鼠在再灌注1h和3h肝组织中μ-Calpain、Talin、Bid、Cyt C和Caspase-3蛋白的表达。透射电镜观察各组大鼠在再灌注1h时的超微结构。应用流式细胞术Annexin V/PI双染色法鉴定各组大鼠再灌注1h和3h肝脏组织中生存的、早期凋亡的以及晚期凋亡和坏死的肝细胞生存率。评价IpostC对再灌注早期大鼠肝组织中与细胞死亡通路相关分子及其对细胞早期死亡特征的影响,
     4.分别采用quantitative real-time PCR和Western blot方法测定S组、I/R组和IpostC组大鼠在再灌注1h、3h和24h时肝组织中cyclin D_1、CDK4和p21 mRNA和蛋白的表达情况。应用流式细胞术PI染色法测定各组大鼠在再灌注1h、3h和24h时肝细胞细胞周期各时相的百分比。评价IpostC对细胞周期和细胞周期相关分子表达的影响。
     [结果]
     1.缺血后处理对缺血-再灌注损伤肝脏的保护作用研究
     1.1第一步实验结果显示,ALT和AST活性分别在S组(68.30±11.12 U/L和211.65±95.63 U/L)、缺血30 min(78.33±32.12 U/L和260.33+45.12 U/L)和缺血60min(210.85±75.75 U/L和340.93±108.52 U/L)大鼠血清中逐渐增高(P<0.05),伴随再灌注时间的延长,其酶活性进一步增加(P<0.05)。与I/R组相比,IpostC1和IpostC 2组在再灌注60 min和6h的ALT和AST活性明显降低,IpostC 2组降低更明显,差异非常显著(P<0.05);IpostC 3组ALT和AST活性无降低。同时,病理组织学显示IpostC 1和IpostC 2组损害明显减轻,而IpostC 3组病理学损害与I/R相当。结果提示IpostC 2组具有显著的抗I/R肝损伤作用。
     1.2第二步实验结果显示,与I/R组相比,IpreC、IpostC和IpreC/IpostC组ALT、AST活性均明显降低,差异显著(P<0.05)。与IpreC和IpostC相比,IpreC/IpostC组ALT和AST值无进一步降低,反而有增加趋势,但差异无显著性(P>0.05)。同样,与单独应用IpreC和IpostC相比,也不能使组织病理损害进一步减轻,反而有加重迹象。结果提示联合应用IpreC和IpostC不能提供相加的抗I/R肝损伤作用。
     2.缺血后处理抗氧化机制的研究
     与I/R组相比,IpostC 1和IpostC 2组在再灌注6h时肝组织中MDA含量减少、GSH含量增加、SOD和GSH-Px活性增高而MPO活性降低(P<0.05),以IpostC 2组各项指标变化更明显;IpostC 3组各项指标无明显改善。与单独应用IpreC和IpostC相比,联合应用IpreC和IpostC也不能进一步改善I/R肝组织中MDA、SOD、GSH-PX、GSH和MPO的水平。结果提示IpostC具有抗氧化损伤作用。
     3.缺血后处理对细胞死亡通路的干扰与调控
     与S组相比,再灌注1h和3h时大鼠肝组织和血清中TNF-α含量均明显增高,以3h时增高最明显(P<0.05);IpostC能够明显减轻再灌注1h和3h时大鼠肝组织和血清中TNF-α含量(P<0.05),但仍显著高于S组(P<0.05)。与I/R组相比,IpostC能使再灌注1h和3h时大鼠肝组织中μ-Calpain、Bid、Cyt C和Caspase-3的表达降低,Talin表达增高,细胞超微结构损害减轻。IpostC能够明显增加再灌注1h、3h的细胞生存率,降低早期凋亡细胞比例。
     4.缺血后处理对肝细胞周期调控机制的研究
     与I/R组相比,IpostC能够增加细胞周期相关分子cyclin D_1、CDK4和p21mRNA和蛋白的表达,而以CDK4表达增加更明显。与S组相比,I/R组和IpostC组中G_0/G_1期细胞百分比明显降低,而S期细胞百分比则明显增高。与I/R组相比时,IpostC能使G_0/G_1期细胞百分比进一步降低,S期细胞百分比进一步增高(P<0.05)。结果提示IpostC能够启动和促进细胞周期运转。
     [结论]
     1.缺血后处理能够保护肝功能、减轻肝组织病理损害和提高生存率,具有抗大鼠I/R肝损伤作用。
     2.联合应用缺血预处理和缺血后处理不能提供相加的保护作用,反而削弱了各自单独应用的保护效应。
     3.缺血后处理抗大鼠缺血-再灌注肝损伤作用与抗氧化作用机制有关,可能通过减轻I/R肝组织脂质过氧化作用,提高抗氧化物质SOD、GSH-PX和GSH水平,减少中性粒细胞浸润和聚集发挥作用。
     4.缺血后处理能够减轻肝细胞超微结构损害,增加肝细胞生存率,其作用机制可能与干扰再灌注早期死亡通路细胞因子TNF-α的产生和相关分子μ-Calpain、Bid、Cyt C、Caspase-3和Talin的蛋白表达有关。
     5.缺血后处理能够促进肝细胞周期运转,其作用机制可能与增加细胞周期相关分子cyclin D_1、CDK4和p21 mRNA和蛋白的表达有关。
     6.本研究不仅能为缺血后处理在肝脏外科的临床应用提供理论和实践依据,而且为开发新的模拟缺血后处理作用机制药物提供参考,还可为防治I/R肝损伤提供新靶点,具有广阔的应用前景以及重要的应用价值和意义。
Background and Objectives
     Hepatic ischemia and reperfusion (I/R) is a pathophysiological phenomenon that occurs very frequently in clinical practice. More importantly, I/R is also responsible for liver injuries that often lead to poor prognosis. Many efforts are being made to investigate the pathophysiological mechanism of I/R injury and to search for strategies that will protect liver against I/R induced damage. One of the approaches that have gained widespread recognition involves the use of ischemic preconditioning (IpreC), which has displayed significant protective effects in hepatic I/R injury through its abilities to stimulate endogenous protective mechanisms. However, since IpreC must be performed prior to the sustained ischemia, its usefulness is limited in clinical practices. Recently, a new and alternative strategy focusing on ischemic postconditioning (IpostC) has attracted extensive interest largely due to its remarkable success in protecting heart from I/R injuries. Unlike IpreC, the IpostC applies the brief episodes of ischemia at the onset of reperfusion following a prolonged ischemia. Since IpostC can be easily applied with precisely controlled timing, this approach appears to have greater potential for clinical application. However, most of the current studies are concentrated on the I/R of heart, and it remained to be determined whether IpostC can provide similar effective protection to other I/R organs. This study was therefore designed to first explore the protective activities of IpostC against hepatic I/R injury, followed by investigating whether combined IpreC and IpostC could provide additive or synergistic protections. At the same time, we are also endeavored to define the underlying antioxidative mechanisms with which IpostC protects liver from I/R injuries.
     Apoptosis and necrosis are the final outcome for hepatocytes during hepatic I/R process. Although they have long been believed as two distinct death modes, recent studies have revealed that the two processes partly employ a common signaling pathway, namely necrapoptosis, in which the mitochondrial permeability transition (MPT) is established to play a critical role. Formation of MPT can lead to cell apoptosis or necrosis. There are two distinct phases of liver injury after warm I/R. The initial phase (<3 h after reperfusion) is characterized by oxidative stress, where production and release of ROS appears to directly result in hepatocellular injury. The late phase of liver injury, which occurs 6 to 48 h after hepatic reperfusion, is an inflammatory disorder mediated by recruited neutrophils. In addition, many proteases will also be activated during I/R, and one particulary family of these proteases, calpain, is often responsible for cell death. Since IpostC is designed to apply in the early phase of reperfusion, it may exert protective effects through modulating the molecular alterations in the first 3 h after reperfusion. Therefore, we further explored whether IpostC could activate the protective molecular pathoways against necrapoptosis and reverse the cell death process, especially those occur in the early reperfusion phase.
     Cells can spontaneously respond to injury insults through activating its defensive mechanisms. Among them, cell cycle regulation plays a key role in cell structure and function recovery. Unlike many other organs, the liver possesses extreme ability of regeneration. Although the majority of hepatocytes stay in quiescent phase (GO phase), they can be quickly activated into cell cycle and start rapid proliferation upon proper stimulation. There are many critical molecules regulating the process from priming to proliferating. Amongst these molecules the cell cycle promoting factors, cyclin D_1 and CDK4, and suppressing factors, p21, play a critical role through dynamic coordination with each other. It is unclear whether the protection afforded by IpostC is related with any of these molecular alterations. This has prompted us to examine the expression of cyclin D_1, CDK4 and p21 so as to determine the impact of IpostC on cell cycle regulation and provide experimental evidences to guide future research and clinical application.
     Methods
     1. Establishment of 70% hepatic ischemia and reperfusion models in SD rats. This is accomplished through two phases of experiments. For phase one study, rats were divided into 6 experimental groups, i.e. (1) sham operation (S) group, (2) ischemia only (60 min) (I), (3) ischemia and reperfusion (I/R), and 3 IpostC groups that are subjected to 3 different cycles of reperfusion and occlusion at the onset of reperfusion, including (4) IpostC 1 (30 sec on/off), (5) IpostC 2 ( 1 min on/off) and (6) IpostC 3 group ( 2 min on/off). Changes of alanine aminotransferase (ALT) and Aspartate aminotransferase (AST) activities were measured with automatic biochemistry analyzer, together with the pathological evaluation of liver damages with microscopy in all groups.
     In the second phase of experiment we divided the rats into 5 groups, i.e. S group, I/R group, IpreC group, IpostC group (3 cycles of 1 min on/off) and combined IpreC and IpbstC (IpreC/IpostC ) group. In addition to the parameters detected in the first phase of experiment we have also evaluated the 7 days of survival rate in I/R、IpreC、IpostC and IpreC/IpostC groups by using the total hepatic ischemia/reperfusion after 70% liver ischemia.
     2. To explore the role of antioxidative mechanisms in protection of IpostC against hepatic I/R injury, the tissue levels of MDA, GSH, SOD, GSH-P_X and MPO at 6 hour after reperfusion were analyzed by colorimetric method.
     3. To examine the changes of apoptosis and genes involved in apoptosis, three experimental groups were set up, including S group, I/R group and IpostC group. Tissue and plasma levels of TNF-αat 1 h and 3 h after reperfusion were quantified using ELISA. Expressions ofμ-Calpain、Talin、Bid、Cyt C and Caspase-3 proteins were also detected using Western blot analysis. The hepatic ultrastructure at 1 h after reperfusion were observed using transmission electron microscope (TEM). The survival rate of hepatocytes at 1 h and 3 h after reperfusion were assessed by flow cytometry (FCM) using Annexin V/PI double-stained method.
     4. To determine the role of cell cycle regulators, three groups were set up, including S group, I/R group and IpostC group. Expressions of cyclin D_1, CDK4 and p21 proteins and messenger RNA were detected using Western blot analysis and real-time PCR respectively. The cell cycle percentage of hepatocytes were detected by FCM using PI stained method.
     Results
     1. Protective effects of ischemic postconditioning against hepatic ischemia/reperfusion injury.
     In the first phase of experiment, our results showed increased plasma activities of ALT and AST in S group (68.30±11.12 U/L vs. 211.65±95.63 U/L), 30 min of ischemia (78.33±32.12 U/L vs. 260.33±45.12 U/L) and 60 min of ischemia (210.85±75.75 U/L vs. 340.93±108.52 U/L). With prolonged reperfusion time the plasma activities of ALT and AST further increased (P<0.05) . Compared with I/R group, the plasma activities of ALT and AST at 60 min and 6 h after reperfusion were lowered in IpostC 1 and IpostC 2 groups, with the later being more significant. No significant changes of the plasma activities of ALT and AST was found in IpostC 3 group. Histopatholoical examination revealed evidences of descreased cellular injuries in rat livers of IpostC 1 and IpostC 2 group, while rats in IpostC 3 groups suffered damages similar to those in the I/R group.
     In the second phase of experiment, significantly decreased activities of ALT and AST were detected in IpreC、IpostC and IpreC/IpostC groups as compared with I/R group. When IpreC and IpostC group were compared, no further decrease was observed in IpreC/IpostC group. Instead, there appears to be a slight increase in IpreC/IpostC group, although the differences was not significant. Similarly, combined IpreC and IpostC failed to minimize pathologic injuries compared with either IpreC or IpostC group.
     2. The role of antioxidative mechanism in protection of IpostC against hepatic I/R injury
     Contrast to I/R group, decreased tissue MDA content and MPO activities, increased tissue GSH content and SOD and GSH-P_X activities at 6 h after reperfusion were found in IpostC 1 and IpostC 2 groups. The degree of alteration in IpostC 2 group was more pronounced than that in IpostC 1 group. No significant alteration was found in IpostC 3 group with the level comparable to I/R group. Similarly, combined IpreC and IpostC failed to produce improvement in the hepatic levels of MDA、SOD、GSH- PX、GSH and MPO.
     3. Effect of ischemic postconditioning on the necrapoptosis pathway against ischemia/reperfusion injury
     Compared with S group the contents of tissue and plasma TNF-αat 1 h and 3 h after reperfusion were higher in both I/R and IpostC groups. After ischemic postconditioning, decreased level of TNF-α, albeit higher than that in S group, was produced. Compared with I/R group, IpostC inhibited the expression ofμ-Calpain, Bid, Cyt C and Caspase-3, enhanced Talin expression and lessened the injury on cellular ultrastructure. IpostC promoted cell survive and suppressed cell death at 1 h and 3 h after reperfusion.
     4. Effect of ischemic postconditioning on cell cycle molecules cyclin D_1,CDK4 and p21
     Compared with I/R group, IpostC increased the expression of cyclin D_1、CDK4 and p21 both at proteins and mRNA levels, with highest expression level in CDK4. Compared with S group, although a shift of cell population from G_0/G_1 phases to S phase was observed in both I/R, a more pronounced changes were produced in the IpostC group.
     Conclusions
     1. Ischemic postconditiomng is effective in protecting against hepatic ischemia and reperfusion injuries, resulting in preservation of liver function, decrease of tissue pathologic injuries and significant improvement of 7 days survival rate.
     2. Combined ischemic preconditioning with ischemic postconditiomng can not offer additive protection, only produced a weakened protection that is less effective than those produced by them acting alone.
     3. The protective role of ischemic postconditiomng against hepatic ischemia and reperfusion injury are related to its antioxidative mechanisms that include reducing the activities of lipid peroxidation, increaseing tissue GSH content and SOD and GSH-P_X activities and suppressing polymorphonuclear neutrophils infiltration.
     4. Ischemic postconditiomng can decrease the cellular injuries and promote cell survival through suppressing cytokine production and disturbing the protein expressions ofμ-Calpain, Bid, Cyt C, Caspase-3 and talin.
     5. Ischemic postconditiomng can prime and promote the cell cycle entry through increasing the mRNA and protein expressions of cyclin D_1, CDK4 and p21.
     4. Our study provided experimental evidences to support further study of the protective mechanism of ischemic postconditiomng against ischemia and reperfusion injury, which should not only guide future development of novel drugs mimicking the mechanisms of ischemic postconditiomng, but also provide new therapeutic targets in hepatic anti-ischemia and reperfusion injury researches.
引文
1. Selzner N, Rudiger H, Graf R, et al. Protective strategies against ischemic injury of the liver. Gastroenterology. 2003; 125(3):917-36
    2. Banga NR, Homer-Vanniasinkam S, Graham A, et al. Ischaemic preconditioning in transplantation and major resection of the liver. Br J Surg. 2005; 92(5):528-38
    3. Carini R, Albano E. Recent insights on the mechanisms of liver preconditioning. Gastroenterology. 2003; 125(5):1480-91
    4. Peralta C, Serafin A, Fernandez-Zabalegui L, et al. Liver ischemic preconditioning: a new strategy for the prevention of ischemia-reperfusion injury. Transplant Proc. 2003; 35(5): 1800-2
    5. Jaeschke H. Role of reactive oxygen species in hepatic ischemia-reperfusion injury and preconditioning. J Invest Surg. 2003;16(3):127-40
    6. Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol. 2003; 284(1):G15-26
    7. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003; 285(2):H579-88
    8. Kin H, Zhao ZQ, Sun HY, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res. 2004; 62(1):74-85
    9. Halkos ME, Kerendi F, Corvera JS, et al. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg. 2004; 78(3) :961-9
    10. Sun HY, Wang NP, Kerendi F, et al. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol. 2005; 288(4):H1900-8
    11. Darling CE, Jiang R, Maynard M, et al. Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK1/2. Am J Physiol Heart Circ Physiol. 2005;289(4):H1618-26
    12. Kerendi F, Kin H, Halkos ME, et al. Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Re's Cardiol. 2005; 100(5):404-12
    13 Kohli V, Selzner M, Madden JF, et al. Endothelial cell and hepatocyte deaths occur by apoptosis after ischemia-reperfusion injury in the rat liver. Transplantation. 1999 27; 67(8): 1099-105
    14.Piper HM, Abdallah Y, Schafer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res. 2004; 61(3):365-71
    15. Valen G, Vaage J. Pre- and postconditioning during cardiac surgery. Basic Res Cardiol. 2005; 100(3): 179-86
    16. Tsang A, Hausenloy DJ, Yellon DM. Myocardial postconditioning: reperfusion injury revisited. Am J Physiol Heart Circ Physiol. 2005; 289(1):H2-7
    17. Heusch G . Postconditioning: old wine in a new bottle? J Am Coll Cardiol. 2004 Sep l;44(5):1111-2.Comment on: J Am Coll Cardiol. 2004; 44(5):1103-10
    18. Sun K, Liu ZS, Sun Q. Role of mitochondria in cell apoptosis during hepatic ischemia-reperfusion injury and protective effect of ischemic postconditioning. World J Gastroenterol. 2004; 10(13):1934-8
    19. Jaeschke H. Mechanisms of reperfusion injury after warm ischemia of the liver. J Hepatobiliary Pancreat Surg. 1998; 5(4):402-8
    20. Sato H, Jordan JE, Zhao ZQ, et al. Gradual reperfusion reduces infarct size and endothelial injury but augments neutrophil accumulation. Ann Thorac Surg. 1997 Oct; 64(4): 1099-107
    21. Tsang A, Hausenloy DJ, Mocanu MM, et al. Postconditioning: a form of "modified reperfusion" protects the myocardium by activating the phosphatedylinositol 3-kinase-Akt pathway. Circ Res. 2004; 95(3):230-2
    22. Yang XM, Proctor JB, Cui L, et al. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004; 44(5):1103-10
    23. Vinten-Johansen J, Zhao ZQ, Zatta AJ, et al. Postconditioning-A new link in nature's armor against myocardial ischemia-reperfusion injury. Basic Res Cardiol. 2005; 100(4):295-310
    24. Lemasters JJ. V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol. 1999; 276(1 Pt l):Gl-6
    25. Formigli L, Papucci L, Tani A, et al. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol. 2000; 182(1):41-9
    26. Lemasters JJ, Nieminen AL, Qian T, et al. The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol Cell Biochem. 1997; 174(1-2): 159-65
    27. Harwood SM, Yaqoob MM, Allen DA. Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem. 2005; 42(Pt 6):415-31
    28. Kohli V, Madden JF, Bentley RC, Clavien PA. Calpain mediates ischemic injury of the liver through modulation of apoptosis and necrosis. Gastroenterology. 1999 Jan; 116(1):168-78
    29. Kohli V, Gao W, Camargo CA Jr, et al. Calpain is a mediator of preservation-reperfusion injury in rat liver transplantation. Proc Natl Acad Sci U S A. 1997; 94(17):9354-9
    30. Aguilar HI, Steers JL, Wiesner RH, et al. Enhanced liver calpain protease activity is a risk factor for dysfunction of human liver allografts. Transplantation. 1997; 63(4):612-4
    31. Chen M, Won DJ, Krajewski S, et al. Calpain and mitochondria in ischemia/reperfusion injury. J Biol Chem. 2002; 277(32):29181-6
    32. Chen M, He H, Zhan S, et al. Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem. 2001; 276(33):30724-8
    33. Inserte J, Garcia-Dorado D, Ruiz-Meana M, et al. Ischemic preconditioning attenuates calpain-mediated degradation of structural proteins through a protein kinase A-dependent mechanism. Cardiovasc Res. 2004; 64(1): 105-14
    34. Inserte J, Garcia-Dorado D, Hernando V, et al. Ischemic preconditioning prevents calpain-mediated impairment of Na+/K+-ATPase activity during early reperfusion. Cardiovasc Res. 2006; 70(2):364-73
    35. Morin D, Pires F, Plin C, et al. Role of the permeability transition pore in cytochrome C release from mitochondria during ischemia-reperfusion in rat liver. Biochem Pharmacol. 2004; 68(10):2065-73 .
    36. Hirakawa A, Takeyama N, Nakatani T, et al. Mitochondrial permeability transition and cytochrome c release in ischemia-reperfusion injury of the rat liver. J Surg Res. 2003;111(2):240-7
    37. Scarabelli TM, Stephanou A, Pasini E, et al. Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ Res. 2002; 90(6):745-8
    38. Yin XM, Luo Y, Cao G, et al. Bid-mediated mitochondrial pathway is critical to ischemic neuronal apoptosis and focal cerebral ischemia. J Biol Chem. 2002; 277(44):42074-81
    39. Wu B, Iwakiri R, Ootani A, et al. Platelet-activating factor promotes mucosal apoptosis via FasL-mediating caspase-9 active pathway in rat small intestine after ischemia-reperfusion. FASEBJ. 2003;17(9):1156-8
    40. Wang X, Zhou Y, Kim HP, et al. Hepatocyte growth factor protects against hypoxia/reoxygenation-induced apoptosis in endothelial cells. J Biol Chem. 2004; 279(7):5237-43
    41. Wei Q, Alam MM, Wang MH, et al. Bid activation in kidney cells following ATP depletion in vitro and ischemia in vivo. Am J Physiol Renal Physiol. 2004; 286(4):F803-9
    42. Krajewska M, Rosenthal RE, Mikolajczyk J, et al. Early processing of Bid and caspase-6, -8, -10, -14 in the canine brain during cardiac arrest and resuscitation. Exp Neurol. 2004; 189(2):261-79
    43. Wei Q, Yin XM, Wang MH, et al. Bid deficiency ameliorates ischemic renal failure and delays animal death in C57BL/6 mice. Am J Physiol Renal Physiol. 2006; 290(1):F35-42
    44. Culmsee C, Zhu C, Landshamer S, et al. Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci. 2005; 25(44):10262-72
    45. Brady NR, Hamacher-Brady A, Gottlieb RA. Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors. Biochim Biophys Acta. 2006; 1757(5-6):667-78
    46. [No authors listed]. Mutations to bid cleavage sites protect hepatocytes from apoptosis in vitro and abrogates liver damage following ischemia/reperfusion injury. Transplantation. 2006; 82(1 Suppl 2):307
    47. Plin C, Haddad PS, Tillement JP, et al. Protection by Cyclosporin A of mitochondrial and cellular functions during a cold preservation-warm reperfusion of rat liver. Eur J Pharmacol. 2004; 495(2-3): 111-8
    48.Rudiger HA, Kang KJ, Sindram D, et al. Comparison of ischemic preconditioning and intermittent and continuous inflow occlusion in the murine liver. Ann Surg. 2002; 235(3):400-7
    49. Glanemann M, Strenziok R, Kuntze R, et al. Ischemic preconditioning and methylprednisolone both equally reduce hepatic ischemia/reperfusion injury. Surgery. 2004; 135(2):203-14
    50. Cavalieri B, Perrelli MG, Aragno M, et al. Ischemic preconditioning attenuates the oxidant-dependent mechanisms of reperfusion cell damage and death in rat liver. Liver Transpl. 2002 Nov;8(11):990-9
    51. Li SQ, Liang LJ, Huang JF, et al. Ischemic preconditioning protects liver from hepatectomy under hepatic inflow occlusion for hepatocellular carcinoma patients with cirrhosis. World J Gastroenterol. 2004; 10(17):2580-4
    52. Yin D, Ding JW, Shen J, et al. Liver ischemia contributes to early islet failure following intraportal transplantation: benefits of liver ischemic-preconditioning. Am J Transplant. 2006; 6(1):60-8
    53. Izuishi K, Tsung A, Hossain MA, et al. Ischemic preconditioning of the murine liver protects through the Akt kinase pathway. Hepatology. 2006; 44(3):573-80
    54. Wang M, Sakon M, Umeshita K, et al. Determination of a safe vascular clamping method for liver surgery: evaluation by measuring activation of calpain mu. Arch Surg. 1998; 133(9):983-7
    55. Sindram D, Kohli V, Madden JF, et al. Calpain inhibition prevents sinusoidal endothelial cell apoptosis in the cold ischemic rat liver. Transplantation. 1999; 68(1):136-40
    56. McDonald MC, Mota-Filipe H, Paul A, et al. Calpain inhibitor I reduces the activation of nuclear factor-kappaB and organ injury/dysfunction in hemorrhagic shock. FASEB J. 2001;15(1):171-186.
    57. Wang M, Sakon M, Umeshita K, et al. Prednisolone suppresses ischemia-reperfusion injury of the rat liver by reducing cytokine production and calpain mu activation. J Hepatol. 2001; 34(2):278-83
    58. Yadav SS, Sindram D, Perry DK, et al. Ischemic preconditioning protects the mouse liver by inhibition of apoptosis through a caspase-dependent pathway. Hepatology. 1999; 30(5): 1223-31
    59. Soeda J, Miyagawa S, Sano K, et al. Cytochrome c release into cytosol with subsequent caspase activation during warm ischemia in rat liver. Am J Physiol Gastrointest Liver Physiol. 2001; 281(4):G1115-23
    60. Okaya T, Lentsch AB. Cytokine cascades and the hepatic inflammatory response to ischemia and reperfusion. J Invest Surg. 2003; 16(3):141-7
    61. Giakoustidis DE, Iliadis S, Tsantilas D, et al. Blockade of Kupffer cells by gadolinium chloride reduces lipid peroxidation and protects liver from ischemia/reperfusion injury. Hepatogastroenterology. 2003; 50(53): 1587-92
    62. Kukan M, Vajdova K, Horecky J, et al. Effects of blockade of Kupffer cells by gadolinium chloride on hepatobiliary function in cold ischemia-reperfusion injury of rat liver. Hepatology. 1997; 26(5): 1250-7
    63. Zhang JX, Wu HS, Wang H, et al. Protection against hepatic ischemia/reperfusion injury via downregulation of toll-like receptor 2 expression by inhibition of Kupffer cell function. World J Gastroenterol. 2005; 11(28):4423-6
    64. Chen YX, Sato M, Kawachi K, et al. Neutrophil-mediated liver injury during hepatic ischemia-reperfusion in rats. Hepatobiliary Pancreat Dis Int. 2006; 5(3):436-42
    65. Jaeschke H. Mechanisms of Liver Injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am J Physiol Gastrointest Liver Physiol. 2006; 290(6):G1083-8
    66. Ding WX, Yin XM. Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J Cell Mol Med. 2004; 8(4):445-54
    67. Tashiro H, Itamoto T, Ohdan H, et al. Involvement of tumor necrosis factor-alpha receptor 1 and tumor necrosis factor-related apoptosis-inducing ligand-(TRAIL) receptor-2/DR-5, but not Fas, in graft injury in live-donor liver transplantation. Transpl Int. 2004; 17(10):626-33
    68. Rudiger HA, Clavien PA. Tumor necrosis factor alpha, but not Fas, mediates hepatocellular apoptosis in the murine ischemic liver. Gastroenterology. 2002; 122(1):202-10
    69.Wang C, Neff DA, Krolikowski JG, et al. The influence of B-cell lymphoma 2 protein, an antiapoptotic regulator of mitochondrial permeability transition, on isoflurane-induced and ischemic postconditioning in rabbits. Anesth Analg. 2006; 102(5):1355-60
    70. Bopassa JC, Ferrera R, Gateau-Roesch O, et al. PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res. 2006; 69(1):178-85
    71. Argaud L, Gateau-Roesch O, Raisky O, et al. Postconditioning inhibits mitochondrial permeability transition. Circulation. 2005; lll(2):194-7
    72. Gellerich FN, Trumbeckaite S, Opalka JR, et al. Function of the mitochondrial outer membrane as a diffusion barrier in health and diseases. Biochem Soc Trans. 2000; 28(2): 164-9
    73. Jaeschke H, Lemasters JJ. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology. 2003; 125(4): 1246-57
    74. Kim JS, He L, Qian T, et al. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr Mol Med. 2003 Sep;3(6):527-35
    75. Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology. 2006; 43(2 Suppl 1):S31-44
    76. Georgiev P, Dahm F, Graf R, et al. Blocking the path to death: anti-apoptotic molecules in ischemia/reperfusion injury of the liver. Curr Pharm Des. 2006; 12(23):2911 -21
    77. Crompton M. Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis. Curr Opin Cell Biol. 2000; 12(4):414-9
    78. Korsmeyer SJ, Wei MC, Saito M, et al. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 2000; 7(12):1166-73
    79. Yin XM. Bid, a critical mediator for apoptosis induced by the activation of Fas/TNF-R1 death receptors in hepatocytes. J Mol Med. 2000;78(4):203-11
    80.Yin XM. Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res. 2000; 10(3):161-7
    81. Waterhouse NJ, Sedelies KA, Trapani JA. Role of Bid-induced mitochondrial outer membrane permeabilization in granzyme B-induced apoptosis. Immunol Cell Biol. 2006; 84(1):72-8
    82. Iwamoto H, Miura T, Okamura T, et al. Calpain inhibitor-1 reduces infarct size and DNA fragmentation of myocardium in ischemic/reperfused rat heart. J Cardiovasc Pharmacol. 1999; 33(4):580-6
    83. Trumbeckaite S, Neuhof C, Zierz S, et al. Calpain inhibitor (BSF 409425) diminishes ischemia/reperfusion-induced damage of rabbit heart mitochondria. Biochem Pharmacol. 2003; 65(5):911-6
    84. Sato K, Kawashima S. Calpain function in the modulation of signal transduction molecules. Biol Chem. 2001; 382(5):743-51
    85. Goll DE, Thompson VF, Li H, et al. The calpain system. Physiol Rev. 2003; 83(3):731-801
    86. Demarchi F, Schneider C. The Calpain System as a Modulator of Stress/Damage Response. Cell Cycle. 2007; 6(2) [Epub ahead of print]
    87. Kim JS, Qian T, Lemasters JJ. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology. 2003; 124(2):494-503
    88. Nieminen AL. Apoptosis and necrosis in health and disease: role of mitochondria. Int Rev Cytol. 2003; 224:29-55
    89. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007; 87(1):99-163
    90. Kawai H, Suzuki T, Kobayashi T, et al. Caspase Cascade Proceeds Rapidly After Cytochrome c Release From Mitochondria in Tumor Necrosis Factor-alpha-Induced Cell Death. J Pharmacol Sci. 2007 Feb 8; [Epub ahead of print]
    91. Johnson BW, Cepero E, Boise LH. Bcl-xL inhibits cytochrome c release but not mitochondrial depolarization during the activation of multiple death pathways by tumor necrosis factor-alpha. J Biol Chem. 2000; 275(40):31546-53
    92. Tafani M, Schneider TG, Pastorino JG, et al. Cytochrome c-dependent activation of caspase-3 by tumor necrosis factor requires induction of the mitochondrial permeability transition. Am J Pathol. 2000; 156(6):2111-21
    93. Gross A, Yin XM, Wang K, et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem. 1999; 274(2):1156-63.
    94. Bradham CA, Qian T, Streetz K, et al. The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol Cell Biol. 1998; 18(11):6353-64.
    95. McMillin JB, Dowhan W. Cardiolipin and apoptosis. Biochim Biophys Acta. 2002; 1585(2-3):97-107.
    96. Piper HM, Meuter K, Schafer C. Cellular mechanisms of ischemia reperfusion injury. Ann Thorac Surg. 2003; 75:S644 -S6448.
    97. Di Lisa F, Menabo R, Canton M, et al. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem. 2001; 276:2571-2575
    98. Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia but open upon reperfusion. Biochem J. 1995; 307:93-98
    99. Colletti L, Kunkel S, Walz A, et al. The role of cytokine networks in the local liver injury following heptic ischemia/reperfusion in the rat. Hepatology 1996; 23:506-514
    100. Wanner G, Muller P, Ertel W, et al. Differential effect of anti-TNF-alpha antibody on proinflammatory cytokine release by Kupffer cells following liver ischemia and reperfusion. Shock 1999; 11:391-395
    101. Peng XX, Currin RT, Thurman RG, et al. Protection by pentoxifylline against normothermic liver ischemia/reperfusion in rats. Transplantation. 1995; 59(11):1537-41
    102. Fabia R, Travis DL, Levy MF, et al. Effect of pentoxifylline on hepatic ischemia and reperfusion injury. Surgery; 121(5):520-5
    103. Asian A, Karaguzel G, Celik M, et al. Pentoxifylline contributes to the hepatic cytoprotective process in rats undergoing hepatic ischemia and reperfusion injury. Eur Surg Res. 2001; 33(4):285-90.
    104. Teoh NC, Farrell GC. Hepatic ischemia reperfusion injury: Pathogenic mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol. 2003; 18(8):891-902.
    105. Yin XM. Bid, a BH3-only multi-functional molecule, is at the cross road of life and death. Gene. 2006; 369:7-19.
    106. Wang K, Yin XM, Chao DT, et al. BID: a novel BH3 domain-only death agonist. Genes Dev. 1996; 10(22):2859-69.
    107. Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998; 94(4):491-501.
    108. Luo X, Budihardjo I, Zou H, et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998; 94(4):481-90.
    109. Desagher, S., A. Osen-Sand, A. Nichols, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 1999; 144:891-901.
    110. Ding, W. X., H. M. Ni, et al. Bid-dependent generation of oxygen radicals promotes death receptor activation-induced apoptosis in murine hepatocytes. Hepatology. 2004; 40:403-413.
    111. Ding, W. X., and X. M. Yin. Dissection of the multiple mechanisms of TNF-α -induced apoptosis in liver injury. J. Cell. Mol. Med. 2004; 8:445-454
    112. Zhao, Y., W. X. Ding, T. Qian, et al. Bid activates multiple mitochondrial apoptotic mechanisms in primary hepatocytes after death receptor engagement. Gastroenterology 2003. 125:854-867
    113. Zhao, Y., S. Li, E. E. Childs, et al. Activation of Pro-death Bcl-2 family proteins and mitochondria apoptosis pathway in tumor necrosis factor-alpha-induced liver injury. J. Biol. Chem. 2001.276:27432-27440
    114. Guicciardi, M. E., S. F. Bronk, et al. Bid is upstream of lysosome-mediated caspase 2 activation in tumor necrosis factor alpha-induced hepatocyte apoptosis. Gastroenterology 2005. 129:269-284.
    115.Chen X, Ding WX, Ni HM, et al. Bid-independent mitochondrial activation in tumor necrosis factor alpha-induced apoptosis and liver injury. Mol Cell Biol. 2007; 27(2):541-53.
    116. Koniaris LG, McKillop EU, Schwartz SI, et al. Liver regeneration. J Am Coll Surg. 2003;197(4):634-59.
    117. Zimmermann A. Regulation of liver regeneration. Nephrol Dial Transplant. 2004; 19 Suppl 4:iv6-10.
    118. Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol. 2004;5(10):836-47.
    119. Schumacker, PT. Hypoxia-inducible factor-1 (HIF-1).Crit Care Med 2005;33(12) :S423-425
    120. Fausto N. Liver regeneration. J Hepatol. 2000;32(1 Suppl):19-31.
    121. Colletti LM, Cortis A, Lukacs N, et al. Tumor necrosis factor up-regulates intercellular adhesion molecule 1, which is important in the neutrophil-dependent lung and liver injury associated with hepatic ischemia and reperfusion in the rat. Shock. 1998; 10(3):182-91.
    122. Ben-Ari Z, Hochhauser E, Burstein I, et al. Role of anti-tumor necrosis factor-alpha in ischemia/reperfusion injury in isolated rat liver in a blood-free environment. Transplantation. 2002; 73(12): 1875-80.
    123. Shinoda M, Shimazu M, Wakabayashi G, et al, Tumor necrosis factor suppression and microcirculatory disturbance amelioration in ischemia/reperfusion injury of rat liver after ischemic preconditioning. J Gastroenterol Hepatol. 2002; 17(11):1211-9.
    124. Ishii T, Kim YI, Kawano K, et al. Amelioration of tumor necrosis factor release by cyclosporine in warm ischemia/reperfusion injury of the rat liver: with special reference to hepatic ultrastructure. J Hepatobiliary Pancreat Surg. 1999; 6(3):267-74.
    125. Yonezawa K, Yamamoto Y, Yamamoto H, et al. Suppression of tumor necrosis factor-alpha production and neutrophil infiltration during ischemia-reperfusion injury of the liver after heat shock preconditioning. J Hepatol. 2001; 35(5):619-27.
    126. Teoh N, Field J, Sutton J, et al. Dual role of tumor necrosis factor-alpha in hepatic ischemia-reperfusion injury: studies in tumor necrosis factor-alpha gene knockout mice. Hepatology. 2004; 39(2):412-21.
    127. Chen Q, Camara AK, Stowe DF, et al. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol. 2007; 292(1):C137-47.
    128. Serviddio G, Di Venosa N, Federici A, et al. Brief hypoxia before normoxic reperfusion (postconditioning) protects the heart against ischemia-reperfusion injury by preventing mitochondria peroxide production and glutathione depletion. FASEB J. 2005; 19(3):354-61.
    129. Ma XJ, Zhang XH, Li CM, et al. Effect of postconditioning on coronary blood flow velocity and endothelial function in patients with acute myocardial infarction. Scand Cardiovasc J. 2006; 40(6):327-33.
    130. Danielisova V, Nemethova M, Gottlieb M, et al. The changes in endogenous antioxidant enzyme activity after postconditioning. Cell Mol Neurobiol. 2006; 26(7-8):1179-89.
    131. Selzner M, Camargo CA, Clavien PA. Ischemia impairs liver regeneration after major tissue loss in rodents: protective effects of interleukin-6. Hepatology. 1999; 30(2):469-75.
    132. Kerem M, Bedirli A, Ofluoglu E, et al. Ischemic preconditioning improves liver regeneration by sustaining energy metabolism after partial hepatectomy under ischemia in rats. Liver Int. 2006; 26(8):994-9.
    133. Schwabe RF, Brenner DA. Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol. 2006 ; 290(4):G583-9.
    134. Rai RM, Lee FY, Rosen A, et al. Impaired liver regeneration in inducible nitric oxide synthasedeficient mice. Proc Natl Acad Sci U S A. 1998; 95(23):13829-34.
    135. Ronco MT, Alvarez Mde L, Monti JA, et al. Role of nitric oxide increase on induced programmed cell death during early stages of rat liver regeneration. Biochim Biophys Acta. 2004; 1690(1):70-6.
    136. Yang XM, Philipp S, Downey JM, et al. Postconditioning's protection is not dependent on circulation blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol. 2005; 100(1):57-63.
    137. Bilzer M, Paumgartner G, Gerbes AL. Glutathione protects the rat liver against reperfusion injury after hypothermic preservation. Gastroenterology. 1999; 117(1):200-10.
    138. Schauer RJ, Gerbes AL, Vonier D, et al. Glutathione protects the rat liver against reperfusion injury after prolonged warm ischemia. Ann Surg. 2004; 239(2):220-31.
    139. Schauer RJ, Kalmuk S, Gerbes AL, et al. Intravenous administration of glutathione protects parenchymal and non-parenchymal liver cells against reperfusion injury following rat liver transplantation. World J Gastroenterol. 2004; 10(6):864-70.
    140. Cesaratto L, Vascotto C, Calligaris S, et al. The importance of redox state in liver damage. Ann Hepatol. 2004; 3(3):86-92.
    141. Fantinelli JC, Mosca SM. Comparative effects of ischemic pre and postconditioning on ischemia-reperfusion injury in spontaneously hypertensive rats (SHR). Mol Cell Biochem. 2007; 296(1-2):45-51.
    142. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res. 2004; 61:448-460.
    143. Zhu M, Feng J, Lucchinetti E, et al. Ischemic postconditioning protects remodeled myocardium via the PBK-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res. 2006 ;72(1): 152-62.
    144. Philipp S, Yang XM, Cui L, et al. Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res. 2006; 70(2):308-14.
    145. Schwartz LM, Lagranha CJ. Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs.Am J Physiol Heart Circ Physiol. 2006; 290(3):H1011-8.
    146. Jeay S, Sonenshein GE, Postel-Vinay MC, et al. Growth hormone can act as a cytokine controlling survival and proliferation of immune cells: new insights into signaling pathways. Mol Cell Endocrinol. 2002; 188(1-2):1-7.
    147.Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2003; 2(4):339-45.
    148. Kim D, Chung J. Akt: versatile mediator of cell survival and beyond. J Biochem Mol Biol. 2002;35(1):106-15.
    149. Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006;24(1):21-44.
    150. Chuderland D, Seger R. Protein-protein interactions in the regulation of the extracellular signal-regulated kinase. Mol Biotechnol. 2005; 29(1):57-74.
    151. Svegliati-Baroni G, Ridolfi F, Caradonna Z, et al. Regulation of ERK/JNK/p70S6K in two rat models of liver injury and fibrosis. J Hepatol. 2003; 39(4):528-37.
    152. Casillas-Ramirez A, Mosbah IB, Ramalho F, et al. Past and future approaches to ischemia-reperfusion lesion associated with liver transplantation. Life Sci. 2006; 79(20):1881-94. Epub 2006 Jun 20.
    153. Carini R, Grazia De Cesaris M, Splendore R, et al. Role of phosphatidylinositol 3-kinase in the development of hepatocyte preconditioning. Gastroenterology. 2004; 127(3):914-23.
    154. Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 2005; 15(2):69-75.
    155. Yellon DM, Hausenloy DJ. Realizing the clinical potential of ischemic preconditioning and postconditioning. Nat Clin Pract Cardiovasc Med. 2005; 2(11):568-75.
    156. Gross GJ, Auchampach JA. Reperfusion injury: does it exist? J Mol Cell Cardiol, 2007 ;42(1):12-8. Epub 2006 Oct 27.
    157. Rozga J. Hepatocyte proliferation in health and in liver failure. Med Sci Monit, 2002; 8(2): RA32-38
    158. Eguchi S, Kamlot A, Ljubimova J et al. Fulminant hepatic failure in rats: survival and effect on blood chemistry and liver regeneration. Hepatology, 1996, 24: 1452-9
    159. Albrecht JH, Poon RY, Ahonen CL, et al. Involvement of p21 and p27 in the regulation of CDK activity and cell cycle progression in the regenerating liver. Oncogene, 1998; 16(16):2141-50.
    160. Li XN, Parikh S, Shu Q, et al. Phenylbutyrate and phenylacetate induce differentiation and inhibit proliferation of human medulloblastoma cells. Clin Cancer Res 2004; 10:1150-1159.
    161. Armstrong JS. Mitochondrial membrane permeabilization: the sine qua non for cell death. BioEssays 2006; 28: 253-260.
    162. Kim JS, Ohshima S, Pediaditakis P, et al. Nitric oxide protects rat hepatocytes against reperfusion injury mediated by the mitochondrial permeability transition. Hepatology 2004; 39: 1533-1543.
    163. Yamaguchi H, Wang HG. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene, 2001; 20(53):7779-86.
    164. Tsuruta F, Masuyama N, Gotoh Y. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J Biol Chem. 2002; 277(16): 14040-7.
    165. Weston CR, Balmanno K, Chalmers C, et al. Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways. Oncogene, 2003; 22(9):1281-93.
    166. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science, 1998; 282(5392):1318-21.
    167. Terada K, Kaziro Y, Satoh T. Analysis of Ras-dependent signals that prevent caspase-3 activation and apoptosis induced by cytokine deprivation in hematopoietic cells. Biochem Biophys Res Commun, 2000; 267(1):449-55.
    168. Duval M, Plin C, Elimadi A, et al. Implication of mitochondrial dysfunction and cell death in cold preservation—warm reperfusion-induced hepatocyte injury. Can J Physiol Pharmacol. 2006; 84(5): 547-54.
    169. Bai L, Ni HM, Chen X, et al. Deletion of Bid impedes cell proliferation and hepatic carcinogenesis. Am J Pathol, 2005; 166(5): 1523-32.
    170. Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006; 34(Pt 2): 232-7.
    171.王迪浔,金惠铭.人体病理生理学.第二版.人民卫生出版社,2002年.270-291
    172.贾战生,闻勤生,赵英仁,等.肝病细胞治疗基础与临床.第一版.人民卫生出版社,2005年.115-173
    173. Sakon M, Ariyoshi H, Umeshita K, et al. Ischemia-reperfusion injury of the liver with special reference to calcium-dependent mechanisms. Surg Today. 2002; 32 (1): 1-12
    174. Thelen M, Rosen A, Naim AC, et al. Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature, 1991; 351: 320-322
    175. Aguilar HI, Botla R, Arora AS, et al. Induction of mitochondrial permeability transition by protease activity in rats: a mechanism of hepatocyte necrosis. Gastroenterology, 1996; 110: 558-566
    176. Miyoshi H, Sakon M, Umeshita K, et al. Calpain-u is activated in hepatocyte mitochondria during ischemiareperfusion injury. Hepatology Res, 1998; 10:255-259
    177. Wang HC, Zhang HF, Guo W-Y, et al. Hypoxic postconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation. Apoptosis. 2006; 11 (8): 1453-1460.
    1. Murry CE, Jennings RB, and Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986, 74: 1124-1136.
    2. DeFily DV and Chilian WM. Preconditioning protects coronary arteriolar endothelium from ischemi-reperfusion injury. Am J Physiol Heart Circ Physiol. 1993, 265: H700-H706.
    3. Thourani VH, Nakamura M, Duarte IG, et al. Ischemic preconditioning attenuates postischemic coronary artery endothelial dysfunction in a model of minimally invasive direct coronary artery bypass. J Thorac Cardiovasc Surg. 1999, 117: 383-389.
    4. Nakamura M, Wang NP, Zhao ZQ, et al. Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart. Cardiovasc Res. 2000, 45: 661-670.
    5. Acar C, Partington MT, and Buckberg GD. Studies of controlled reperfusion after ischemia. XVII. Reperfusion conditions: controlled reperfusion through an internal mammary artery graft-a new technique emphasizing fixed pressure versus fixed flow. J Thorac Cardiovasc Surg. 1990, 100: 724-736.
    6. Acar C, Partington MT, and Buckberg GD. Studies of controlled reperfusion after ischemia. XIX. Reperfusate composition: benefits of blood cardioplegia over fluosol DA cardioplegia during regional reperfusion-importance of including blood components in the initial reperfusate. J Thorac Cardiovasc Surg. 1991,101: 284-293.
    7. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003; 285(2):H579-88.
    8. Tsang A, Hausenloy DJ, Mocanu MM.et al. Postconditioning: a form of "modified reperfusion" protects the myocardium by activating the phosphatedylinositol 3-kinase-Akt pathway. Circ Res. 2004; 95(3):230-2.
    9. Galagudza M, Kurapeev D, Minasian S, et al. Ischemic postconditioning: brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm. Eur J Cardiothorac Surg. 2004, 25(6):1006-10.
    10. Halkos ME, Kerendi F, Corvera JS, et al. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg. 2004; 78(3):961-9.
    11. Kin H, Zhao ZQ, Sun HY, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res. 2004; 62(1):74-85.
    12. Sun HY, Wang NP, Kerendi F, et al. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca~(2+) overload. Am J Physiol Heart Circ Physiol. 2005; 288(4):H1900-8.
    13. Yang XM, Proctor JB, Cui L,et al. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004; 44(5):1103-10.
    14. Yang XM, Philipp S, Downey JM, et al. Postconditioning's protection is not dependent on circulation blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol. 2005; 100(1):57-63.
    15. Argaud L, Gateau-Roesch O, Raisky O, et al. Postconditioning inhibits mitochondrial permeability transition. Circulation. 2005; 111(2): 194-7.
    16. Darling CE, Jiang R, Maynard M, et al. Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK1/2.Am J Physiol Heart Circ Physiol. 2005; 289(4):H1618-26.
    17. Chiari PC, Bienengraeber MW, Pagel PS, et al. Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction: evidence for anesthetic-induced postconditioning in rabbits. Anesthesiology. 2005; 102(1):102-9.
    18. Kin H, Zatta AJ, Lofye MT, et al. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine.Cardiovasc Res. 2005; 67(1):124-33.
    19. Dosenko VE, Nagibin VS, Tumanovskaya LV, et al. Postconditioning prevents apoptotic necrotic and autophagic cardiomyocyte cell death in culture. Fiziol Zh. 2005;51(3):12-7.
    20. Staat P, Rioufol G, Piot C, et al. Postconditioning the human heart. Circulation. 2005; 112(14):2143-8.
    21. Schwartz LM, Lagranha CJ. Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs. Am J Physiol Heart Circ Physiol. 2005 Oct 7; [Epub ahead of print]
    22. Bopassa JC, Ferrera R, Gateau-Roesch O, et al. PI3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res. 2005 Oct 6; [Epub ahead of print]
    23. Kerendi F, Kin H, Halkos ME, et al. Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res Cardiol. 2005; 100(5):404-12.
    24.Piper HM, Abdallah Y, Schafer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res. 2004; 61(3):365-71.
    25. Vinten-Johansen J, Zhao ZQ,Zatta AJ, et al. Postconditioning-A new link in nature's armor against myocardial ischemia-reperfusion injury. Basic Res Cardiol. 2005; 100(4):295-310.
    26. Valen G, Vaage J. Pre- and postconditioning during cardiac surgery. Basic Res Cardiol. 2005; 100(3):179-86.
    27. Tsang A, Hausenloy DJ, Yellon DM. Myocardial postconditioning: reperfusion injury revisited. Am J Physiol Heart Circ Physiol. 2005; 289(1):H2-7.
    28. Baxter GF. The neutrophil as a mediator of myocardial ischemia-reperfusion injury: time to move on. Basic Res Cardiol. 2002; 97(4):268-75.
    29. Sato H, Jordan JE, Zhao ZQ, et al. Gradual reperfusion reduces infarct size and endothelial injury but augments neutrophil accumulation. Ann Thorac Surg. 1997; 64(4): 1099-107.
    30. Piper HM, Meuter K, Schafer C. Cellular mechanisms of ischemia-reperfusion injury. Ann Thorac Surg. 2003; 75(2):S644-8.
    31.Nonami Y. The role of nitric oxide in cardiac ischemia-reperfusion injury. Jpn Circ J. 1997; 61(2):119-32.
    32. Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res. 2004; 61(3):402-13.
    33. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res. 2004; 61:448-460.
    34. Piper HM, Meuter K, Schafer C. Cellular mechanisms of ischemia reperfusion injury. Ann Thorac Surg. 2003;75:S644-S6448.
    35. Di Lisa F, Menabo R, Canton M, et al. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem. 2001; 276:2571-2575.
    36. Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia but open upon reperfusion. Biochem J. 1995;307:93-98.
    43. Hausenloy DJ, Maddock HL, Baxter GF, et al. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res. 2002; 55:534 -543.
    44. Heusch G. Postconditioning: old wine in a new bottle? J Am Coll Cardiol. 2004; 44(5):1111-2.Comment on: J Am Coll Cardiol. 2004 Sep l;44(5):1103-10.
    45. Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway, a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 2005; 15(2):69-75.
    46. Schlensak C, Doenst T, Kobba J, et al. Protection of acutely ischemic myocardium by controlled reperfusion. Ann Thorac Surg. 1999; 68(5): 1967-70.
    47. Heusch G, Buchert A, Feldhaus S, et al. No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol. 2006 Mar 27; [Epub ahead of print]
    48. Crisostomo PR, Wang M, Wairiuko GM, et al. Postconditioning in females depends on injury severity. J Surg Res. 2006 Mar 24; [Epub ahead of print]
    49. Dosenko VE, Nagibin VS, Tumanovskaya LV, et al. Proteasomal Proteolysis in anoxia-reoxygenation, preconditioning and postconditioning of isolated cardiomyocytes. Pathophysiology. 2006; 13(2): 119-25..
    50. Iliodromitis EK, Zoga A, Vrettou A, et al. The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits. Atherosclerosis. 2005 Dec 22; [Epub ahead of print]
    51. Zatta AJ, Kin H, Lee G, et al. Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signaling. Cardiovasc Res. 2006; 70(2):315-24.
    52. Loukogeorgakis SP, Panagiotidou AT, Yellon DM, et al. Postconditioning protects against endothelial ischemia-reperfusion injury in the human forearm. Circulation. 2006; 113(7):1015-9.
    53. Philipp S, Yang XM, Cui L, et al. Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res. 2006 May l;70(2):308-14.
    54. Couverur N, Lucats L, Tissier R, et al. Differential effects of postconditioning on myocardial stunning and infarction: a study in conscious dogs and anesthetized rabbits. Am J Physiol Heart Circ Physiol. 2006 Mar 24; [Epub ahead of print]
    55. Serviddio G., Di Venosa N, Federici A, et al. Brief hypoxia before normoxic reperfusion (postconditioning) protects the heart against ischemia-reperfusion injury by preventing mitochondria peroxyde production and glutathione depletion. FASEB J. 2005; 19: 354-361
    56. Sun K, Liu ZS, Sun Q. Role of mitochondria in cell apoptosis during hepatic ischemia-reperfusion injury and protective effect of ischemic postconditioning. World J Gastroenterol. 2004; 10(13):1934-8.
    57. Wang C, Neff DA, Krolikowski JG, et al. The influence of B-cell lymphoma 2 protein, an antiapoptotic regulator of mitochondrial permeability transition, on -induced and ischemic postconditioning in rabbits. Anesth Analg. 2006;102(5):1355-60.
    58. Tessier-Vetzel D, Tissier R, Waintraub X, et al. Isoflurane inhaled at the onset of reperfusion potentiates the cardioprotective effect of ischemic postconditioning through a NO-dependent mechanism. J Cardiovasc Pharmacol. 2006; 47(3):487-92.
    59. Burda J, Danielisova V, Nemethova M, et al. Delayed Postconditionig Initiates Additive Mechanism Necessary for Survival of Selectively Vulnerable Neurons After Transient Ischemia in Rat Brain. Cell Mol Neurobiol. 2006 Apr 13; [Epub ahead of print]
    60. Kloner RA, Dow J, Bhandari A. Postconditioning markedly attenuates ventricular arrhythmias after ischemia-reperfusion. J Cardiovasc Pharmacol Ther. 2006; 11(1):55-63.
    61. Zhao H, Sapolsky RM, Steinberg GK. Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab. 2006 May 31; [Epub ahead of print]
    62. Danielisova V, Nemethova M, Gottlieb M, et al. The Changes in Endogenous Antioxidant Enzyme Activity After Postconditioning. Cell Mol Neurobiol. 2006 May 31; [Epub ahead of print]
    63. Wang HC, Zhang HF, Guo WY, et al. Hypoxic postconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation. Apoptosis. 2006 Jun 5; [Epub ahead of print]
    64. Jiang X, Shi E, Nakajima Y, et al. Postconditioning, a Series of Brief Interruptions of Early Reperfusion, Prevents Neurologic Injury After Spinal Cord Ischemia. Ann Surg. 2006; 244(1):148-153.
    65. Tang XL, Sato H, Tiwari S, et al. Cardioprotection by postconditioning in conscious rats is limited to coronary occlusions <45 minutes. Am J Physiol Heart Circ Physiol. 2006 Jun 30; [Epub ahead of print]
    66. Krolikowski JG, Weihrauch D, Bienengraeber M, et al. Role of Erk1/2, p70s6K, and eNOS in isoflurane-induced cardioprotection during early reperfusion in vivo. Can J Anaesth. 2006; 53(2): 174-82.
    67. Feng J, Fischer G, Lucchinetti E, et al. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning: role of protein kinase B/Akt signaling. Anesthesiology. 2006; 104(5):1004-14.
    68. Jones SP, Bolli R. The ubiquitous role of nitric oxide in cardioprotection. J.Mol Cell Cardiol. 2006;40(1):16-23.
    69. Feng J, Lucchinetti E, Ahuja P, et al. Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3beta. Anesthesiology. 2005; 103(5):987-95.
    70. Weihrauch D, Krolikowski JG, Bienengraeber M, et al. Morphine enhances isoflurane-induced postconditioning against myocardial infarction: the role of phosphatidylinositol-3-kinase and opioid receptors in rabbits. Anesth Analg. 2005; 101(4):942-9.
    71. Pagel PS, Krolikowski JG, Neff DA, et al. Inhibition of glycogen synthase kinase enhances isoflurane-induced protection against myocardial infarction during early reperfusion in vivo. Anesth Analg. 2006 May;102(5):1348-54.
    72. Zhu M, Feng J, Lucchinetti E, et al. Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res. 2006; 72(1): 152-62.
    73. Iliodromitis EK, Georgiadis M, Cohen MV, et al. Protection from postconditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol. 2006 Jul 7; [Epub ahead of print]
    74. Sun HY, Wang NP, Halkos M, et al. Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis. 2006; 11l(9):1583-93.
    75. Mykytenko J, Kerendi F, Reeves JG, et al. Long-term inhibition of myocardial infarction by postconditioning during reperfusion. Basic Res Cardiol. 2006 Sep 29; [Epub ahead of print]
    76. Obal D, Dettwiler S, Favoccia C, et al. The influence of mitochondrial KATP-channels in the cardioprotection of preconditioning and postconditioning by sevoflurane in the rat in vivo. Anesth Analg. 2005 Nov;101(5):1252-60.
    77. Wang HC, Zhang HF, Guo WY, et al. Hypoxic postconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation. Apoptosis. 2006; 11(8): 1453-1460.
    78. Lu J, Zang WJ, Yu XJ, et al. Effects of postconditioning of adenosine and acetylcholine on the ischemic isolated rat ventricular myocytes. Eur J Pharmacol. 2006; 549(1-3): 133-9.
    79. Lucchinetti E, da Silva R, Pasch T, et al. Anaesthetic preconditioning but not postconditioning prevents early activation of the deleterious cardiac remodelling programme: evidence of opposing genomic responses in cardioprotection by pre- and postconditioning. Br J Anaesth. 2005; 95(2): 140-52.
    80. Fantinelli JC, Mosca SM. Comparative effects of ischemic pre and postconditioning on ischemia-reperfusion injury in spontaneously hypertensive rats (SHR). Mol Cell Biochem. 2006 Aug 25; [Epub ahead of print]
    81. Ma X, Zhang X, Li C, et al. Effect of Postconditioning on Coronary Blood Flow Velocity and Endothelial Function and LV Recovery After Myocardial Infarction. J Interv Cardiol. 2006;19(5):367-75.
    82. Li CM, Zhang XH, Ma XJ, et al. Limb ischemic postconditioning protects myocardium from ischemia-reperfusion injury. Scand Cardiovasc J. 2006;40(5):312-7.
    83. Wang N, Ma QJ, Lu JG, et al. Protective effect of ischemic postconditioning on ischemic reperfusion injury of rat liver graft. Zhonghua Wai Ke Za Zhi. 2005;43(23):1533-6.
    84. Cohen MV, Yang XM, Downey JM. The pH Hypothesis of Postconditioning: Staccato Reperfusion Reintroduces Oxygen and Perpetuates Myocardial Acidosis. Circulation. 2007; 115: 1-9.
    85. Penna C, Mancardi D, Rastaldo R, et al. Intermittent activation of bradykinin B(2) receptors and mitochondrial K(ATP) channels trigger cardiac postconditioning through redox signaling. Cardiovasc Res. 2007 Mar 12; [Epub ahead of print]
    86. Sasaki H, Shimizu M, Ogawa K, et al. Brief Ischemia-Reperfusion Performed After Prolonged Ischemia (Ischemic Postconditioning) Can Terminate Reperfusion Arrhythmias With no Reduction of Cardiac Function in Rats. Int Heart J. 2007; 48(2):205-13.
    87. Ma XJ, Zhang XH, Luo M, et al. [Effects of preconditioning and postconditioning on emergency percutaneous coronary intervention in patients with acute myocardial infarction]. Zhonghua Yi Xue Za Zhi. 2007 Jan 9;87(2): 114-7.
    88. Andreka G, Vertesaljai M, Szantho G, et al. Remote Ischemic Postconditioning Protects the Heart During Acute Myocardial Infarction of Pigs. Heart. 2007 Apr 20; [Epub ahead of print]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700