Ga掺杂ZnO透明导电薄膜的制备与光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是II-VI族直接带隙(3.3eV)半导体氧化物,由于其优良的光电特性等,在发光器件、紫外探测器、太阳能电池、气敏元件以及声表面波器件等领域得到了广泛的应用。与现在常用的透明导电(TCO)薄膜ITO和SnO2:F薄膜相比,ZnO薄膜具有价格便宜,在活性氢和氢等离子体环境下稳定性高等优点而备受青睐。为提高ZnO的导电性能,常采用Al、In、Ga等元素掺杂,由于Ga的离子半径和共价键长度(0.62 ?和1.26 ?)与Zn非常相近(0.74 ?和1.34 ?),高掺杂浓度下导致ZnO的晶格畸也较小,因此,有必要研究Ga掺杂ZnO(GZO)薄膜,以期获得质量更优的TCO膜。
     本文采用射频磁控溅射法在玻璃衬底上制备了高质量的GZO透明导电膜,研究了衬底温度、Ga掺杂浓度、薄膜厚度等对薄膜性能的影响;用XRD、AFM、SEM、XPS和紫外-可见双光束分光光度计等测试手段对沉积的薄膜进行了表征和分析;研究了薄膜的结构、电学、光学、热电性能。通过实验和研究分析,得出以下主要结果:
     1.制备的GZO薄膜为六角纤锌矿多晶结构,具有(002)择优取向,晶粒大小为10~30nm,适量的Ga掺杂浓度及衬底温度能够提高结晶质量,增大晶粒尺寸,使薄膜表面更加致密。
     2. XPS分析表明:Zn和Ga元素分别以Zn2+和Ga3+形式存在,未发现其它价态的Zn和Ga元素,薄膜中Ga含量比靶中Ga含量稍高。
     3.膜厚、掺杂浓度、衬底温度对GZO薄膜的电阻率有较大影响,增大厚度、中等掺杂浓度、中等衬底温度,利于获得高导电性能。
     4. GZO薄膜的可见光透射率平均值均在80%以上,随着掺杂浓度的提高,薄膜的光吸收边会向短波方向移动,发生“蓝移”现象,重掺杂又会导致“红移”产生,这与“B-M”效应和多体效应的联合作用有关。
     5. GZO薄膜具有较强的热电效应,温差电动势为负,表明GZO为n型导电;随着膜厚增加,赛贝克系数增大;1at.%Ga掺杂时,Seebcek系数绝对值为最大值74.77μV/K。
     6. GZO薄膜具有较强的磁阻效应,磁阻随磁场强度和薄膜迁移率的增大而增大。磁场强度为2.15T时,3at%Ga掺杂GZO薄膜的磁阻率为最大值0.77%。
     7.综合光、电性能,提出沉积GZO薄膜的优化工艺条件为:掺杂浓度3at.%,衬底温度300℃,工作压强2Pa,靶基距7cm,功率160W。在此条件下制备的ZnO:Ga薄膜电阻率为1.44×10-3?.cm,平均透光率在80%以上,达到了透明导电膜的性能要求。
As a sort of optic-electrical information materials, transparent conductive oxide take up an extremely position. It can be widely used in many fields such as light-emitting device (LED, LD), solar cells, ultraviolet detectors, sensors, surface acoustic wave devices, flat panel liquid crystal displays, transparent electrodes and received extensive attention. Zinc oxide (ZnO) is a II-VI oxides with wide bandgap,which is n-type semiconductor material with hexagonal crystal structure. Defects and were easy to dope in ZnO, Compared to tin oxide (ITO) and SnO2, the abundant raw materials, low cost, relatively low deposition temperature and stability in hydrogen plasma environment are all the advantages it has, Ga doped ZnO films (GZO) have excellent optical properties comparable to the ITO thin films (high visible light transmittance and low resistivity), which has become one of the hot area of research.
     The surface morphology and structural properties were studied by XRD, SEM, AFM, UV-visible, spectrophotometer was used to detect transmission, reflectance and other optical properties of film in all the spectral region.
     Van der Pauw method was applied to measure the electrical properties and analyze the conduction mechanism of thin films. This paper also studied the thermal characteristics and the magnetoresistive characteristics of GZOthin film. Through experiments and analysis, the following conclusions were shown as follows:
     1. GZO films are polycrystalline with hexagonal structure and (002) preferred orientation. The grain size is 10 ~ 30nm. the appropriate amount of Ga doping concentration and substrate temperature can improve the crystalline quality, increase the grain size and make the surface of films more dense.
     2. XPS analysis shows that: Zn and Ga elements existed in Zn2+ and Ga3+ form, respectively. No other valence can be found. The Ga content of the films is higher than the target.
     3. Thickness, doping concentration, and substrate temperature have greater impacts on the resistivity of the GZO films, increasing the thickness, appropriate amount of doping concentration, substrate temperature can obtain a high conductivity.
     4. The average visible light transmittance of thin film samples were above 80%, with the doping concentration increased, the optical absorption edge shifted to the shortwave, which is called "blue shift". Heavily doped level would lead to emergence of "red-shift".
     5. GZO film has strong thermal effect, the EMF of GZO film is negative, indicating that GZO film is n-type conductor; as the film thickness increases, Seebeck coefficient increases; 1at.% Ga-doped sample has the maximum absolute value of Seebcek coefficient for 74.77μV / K.
     6. GZO film has strong magnetoresistance. The reluctance increased with the increases of magnetic field strength and Hall mobility. When the magnetic field strength of 2.15T, the maximum reluctance was 0.77%, which can be obtained for the 3at% Ga doped GZO films.
     7. Take optical, electrical properties into consideration, the optimum conditions for the preparation of GZO film are: Doping concentration of 3at.%, working pressure of 2Pa, power of 160W, target distance of 7cm, on the Substrate temperature of 300℃. The lowest resistivity is 1.44×10-3?.cm, the average light transmission rate is beyond 80%, met the performance requirements of transparent conductive film.The sample with doping concentration of 1at.% has the highest thermoelectric power of 74.77.μV / K.
引文
[1]韩雪,夏慧.透明导电膜及靶材. [J].电子元件与材料,1998,17(1):30-35.
    [2]王岚,包崇林.Cd2SnO4四种半导体薄膜制备及性能研究,[J].太阳能学报,1997,17(1):56-60.
    [3]王万录,高锦应.薄膜光致发光某些性质的研究,[J].发光学报1992, 13(4):341-345.
    [4] H. Ma,D. Zhang. Proceedings of SPIE- the International Society for Optical Engineering,2897(1996) l04.
    [5] TH. Fang,W.J. Chang. Development of metal oxide nanoparticles by soft chemical method Appl.Surf.Sci 252(2005):1863.
    [6] M.I.B. Bemardi,L.E. Soledade,I.A. Santos,E.R. Leite,E. Longo,J.A. Varela. Effect of Thickness on the Electrical and Optical Properties of Sb Doped SnO2 (ATO) Thin Films Thin Solid Films 405 (2002): 228.
    [7] S.Shanthi,C. Subramanian, P. Ramasamy. Investigations on the Optical Properties of Undoped, Fluorine Doped and Antimony Doped Tin Oxide Films. J. Cryst. Growth 197(1999)858.
    [8] F.O.Adurodija, H.Izumi,Ishihara,H. Yoshioka,K. Yamada, H. Matsuiand, M.Motoyalna. Thin Solid Films 350(1999):79.
    [9] J.Ederth, P.Heszler, A.Hultaker, GA. Niklassonand, C.G. Granqvist. Proceedings of the 3rd International Symposium on Transparent Oxide Thin films for Electronics and Optics, Thin Solid Films 445 (2003):199.
    [10] M J. Alma,D.C. Cameron. Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol-gel process, Surf. Coat. Tech. 142~144 (2001) 776.
    [11] J. George,C.S.Menon. Electrical and optical properties of electron beam evaporated ITO thin films, Sur Coat Tech 132 (2000): 45.
    [12] Y.Meng,X.L. Yang. Molybdenum-doped indium oxide transparent conductive thin films,Thin Solid Films 394 (2001): 219.
    [13] Y. Yoshida, T. Gessert,C.Perkins,T.Coutts. Thin-Film Indium Oxide Doped with Refractory Metals, J. Vac.Sci.Technol 421(2003):1092.
    [14] Subrahmanyam,U.K. Barik. Electrical and optical properties of reactive dc magnetron sputtered silver-doped indium oxide thin films, J.Phys. Chem. Solids 66 (2005) :817.
    [15]常天海,江豪成.真空科学与技术.19(l999):139.
    [16]庄大明,张弓等.新材料产业. 25(2001)11.
    [17]陈汉鸿,叶志镇. ZnO薄膜的掺杂和转型的研究进展.半导体学报. 2001,38(2):37-39.
    [18] Kim H, Gilmore C M, Horwitz J S, et al. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Applied Physics Letters, 2000, 76(3): 259-261.
    [19] Aoki T, Hatanaka Y, Look D C, et al. ZnO diode fabricated by excimer-laser doping. Applied Physics Letter, 2000, 76(22): 3257-3258.
    [20] Ohta H, Kawamura K, Hirano M, et al. Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO. Applied Physics Letters, 2000, 77(4): 475-477.
    [21] Kim H, Gilmore C M, Horwitz J S, et al. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Applied Physics Letters, 2000, 76(3): 259-261.
    [22] Aoki T, Hatanaka Y, Look D C, et al. ZnO diode fabricated by excimer-laser doping. Applied Physics Letter, 2000, 76(22): 3257-3258.
    [23]刘彦松,王连卫,黄继颇等.利用ZnO缓冲层制备AlN薄膜. [J].压电与声光,2000,22(5):322-325.
    [24] Yu P, Tang Z K, Wong G K L, et al.23nd Int Conf on the Physics of Semiconductor. World Scientific, Singapore, 1996,1453.
    [25]吕建国,叶志镇.ZnO薄膜的最新研究进展. [J].功能材料,2002 ,33 (6):581-584.
    [26] Jin Z C, Hamberg I, Granqvist C G. Optical properties of sputter-deposited ZnO:Al thin films. J.Appl. Phys.1988,64(10):5117-5131.
    [27] Benramdane N, W.A.Murad, R.H.Misho,et al. A chemical method for the preparation of thin films of CdO and ZnO., Materials Chemistry and Physics. 1997 , 48(2) :119-123.
    [28] Silva, Rodrigo Ferreira; Darbello Zaniquelli, Maria Elisabete. Aluminium doped zinc oxide films: formation process and optical properties. Journal of Non-Crystalline solids,1999,247: 248-253
    [29] Baik D.G.; Cho S.M. Application of sol-gel derived films for ZnO/n-Si junction solar cells. Thin Solid Films. 1999,354: 227-231
    [30] T.Makino,Y.Segawa,M.Kawasaki,A.Ohtomo,R.Shiroki,K.Tamura,T.Yasuda,H·Koinuma. A comprehensive review of ZnO materials and devices. Appl.Phys.Lett.78(2001)1237.
    [31] E.C.Lee,Y.S.Kim,Y.G.. Jin,K.J. Chang. Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO. Phys. Rev. B 64(2001)085120.
    [32] C.H.Park,S.B.Zhang,S.H. Wei. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy.Phys.Rev.B66(2002)07320
    [33] Y.amamoto,KSaito,K.Takallashi,M.KOnagai. Atomic layer deposition and characterization of Ga-doped ZnO thin films. sol. Energy .Mater. sci. Cells 65(2001)125.
    [34] B.J.lokhande,P.S.Patil,M.D.UPlane. Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique. Physica B 302~303(2001)59.
    [35] H. Kim,C.M. Gillnore,J.S. Honvitz,A.Piqu,H.Murata,GP.Kushto,R.Sehlaf,Z.H.Kafafi,D.B.Chrisey. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Appl.PhyS.lett.76(2000)259.
    [36] K.C.Park,D.Y.Ma,and K.H.Kim. The physical properties of Al-doped zinc oxide thin film. Thin Solid Films 305(1997)20
    [37] K.T.Ramakrishna,H.GoPalaswamy, P.J.Reddy. p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations. J.Cryst.Growth 210(2000)516.
    [38] B.M.Ataev,A.M.Bagamadova,VV.Mamedov,A.Komaev,M.R.Rabadanov. Effect of In concentration in the starting solution on the structural and electrical properties of ZnO films prepared by the pyrosol process at 450°C. J.Cryst.Growth 198~199 (1999) 1222.
    [39] P.Nunes,E.Fortunato,R.Martins. Influence of the post-treatment on the properties of ZnO thin films. Thin.solid.Films383(2001)277.
    [40] B.Gil and A.V.Kavokin. .Giant exciton-light coupling in ZnO quantum dots. Appl. Phys. lett.81 (2002) 748.
    [41] Maldonado,S.T.Guerra,M.M.Lira,M.L.olvera. Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. sol. Energy. Mater. sol. Cells 90(2006)742.
    [42] S.Zafar,C.S.Ferekides,D.L.Morel. Advanced Processing of CdTe- and CuInxGa1-xSe2-Based Solar Cells. .J.Vac. sol. Technol. A 13 (1995) 2177.
    [43] K.H.Kim,KC.Park,D.YMa. .Dependence of electrical and optical properties of ZnO films on substrate temperature. J.Appl.Phys. 81 (1997) 7764
    [44]吕建国,叶志镇,ZnO薄膜的最新研究进展. [J].功能材料,2002 ,33 (6):581-584
    [45] T.L.Yang,D.H.Zhang,J.Ma,H.L.Ma,Y.Chen. Transparent Conducting ZnO:Al Films on Different Organic substrate by RF sputtering. ThinSolidFilms 326 (1998) 60
    [46] M.L.Addonizio,A.Antonaia,GCantele,C.Privato. Characterization of Zinc Oxide Thin Films Deposited by rf Magnetron Sputtering on Mylar Substrates. Thin solid Films349 (1999) 93.
    [47] D.H.Zhang,T.L.Yang,J.Ma,Q.P.Wang,R.W.Gao,H.L.Ma. Bias voltage dependence of properties for ZnO:Al films deposited on flexible substrate. Appl.Surf.Sci.158 (2000 )43.
    [48] T.Tsuji,M.Hirohashi. Preparation of Al doped ZnO thin films as a function of substrate temperature by facing target sputtering system. Appl.Surf.Sci.157 (2000) 47
    [49] J.F.Chang,H.L.Wang,M.H.Hon. Kinetics of Electrophoretic Deposition for Nanocrystalline Zinc Oxide Coatings. J.Cryst.Growth 211 (2000) 93.
    [50] Y.Igasaki , H.Kanma. Argon gas pressure dependence of the properties of transparentconducting ZnO:Al films on glass substrate. Appl. Surf Sci.169~170 (200l) 508.
    [51] J.Tsujino,N.Homma,T.Sugawara,I.Shimono,Y.Abe. Comparison of Electrical, Optical, and Structural Properties of RF-Sputtered ZnO Thin Films Deposited Under Different Gas Ambients. Thin Solid Films 407 (2002) 86.
    [52] E.Fortunato,P.Nunes,D.Costa,D.Brida,I.Ferreira,R.Martins. Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering. Vaeuum 64(2002) 233.
    [53] S.S.Lin,J.L.Huang,P.sajgalik. Conductivity enhancement and semiconductor-metal transition in Ti-doped ZnO films. surf coat.Tech.155(2004)254.
    [54] W.W.Wang,X.G.Diao,Z.Wang, M.Yang,T.M,Wang,Z.WU. Preparation and characterization of high-performance direct current magnetron sputtered ZnO:Al films. Thin Solid Films 491 (2005) 54.
    [55] Bamiduro,H.Mustafa,R.Mundle,R.B.Konda,A.K.Pradhan. The functional sequence of hydrogen in electronic conduction of sol-gel derived Al-doped ZnO films as determined via impedance spectroscopy. Appl.Phys.Lett.90 (2007) 252108.
    [56] N.Ito,Y.Sato,P.KSong,A.Kaijio,K Inoue,Y. Shigesato. Properties of Gallium-Doped Zinc-Oxide Films Deposited by RF or DC Magnetron Sputtering with Various GZO Targets. Thin Solid Films496 (2006) 99.
    [57] V.Assuneoo,E.Fodunato,A.Marques,H.Aguas,1.Ferreira,M.E.V.Costa,R.Martins. Influence of the deposition pressure on the properties of transparent and conductive ZnO: Ga thin-film produced by rf sputtering at room temperature. Thin solid films 427 (2003) 401.
    [58] M.Nakagawa,H.Mitsudo. Anomalous temperature dependence of the electrical conductivity of zinc oxide thin films. Surf.Sci.175 (1986) 157.
    [59] B.M.Ataev, A.M.Bagamadova,A.M.Djabrailov,V.V.Mamedov,R.A.Rabadanov. On exciton luminescence of ZnO/Al2O3 epitaxial thin films. Thin Solid Films 260 (1995) 19.
    [60] Tiburcio-Silver,A.Sanchez-Juarez,A.Avila-Gareia.. Effect of different dopant elements on the properties of ZnO thin films. sol.Energy.Mater.sol.Cells 55 (1998)3.
    [61] H.Hirasawa,M.Yoshida,S.Nakamura,Y.Suzuki,5.okada,K.Kondo. Electrical properties of transparent and conducting Ga doped ZnO film. sol. Energy. Mater. sol.Cells 67 (2001) 231.
    [62] K.T.RamakrishnaReddy, T.B.S.Reddy,I.Forbes,R.W.Miles. Highly oriented and conducting ZnO:Ga layers grown by chemical spray pyrolysis. Surf.Coat.Technol.151~152 (2002) 110.
    [63] V.KVranovskyy,U.Grossner,VLazorenko,GLashkarev,B.GSvensson,R.Yakimova. Structural and morphological properties of ZnO: Ga thin films. Super.latt.Microstruct. 39 (2006)275.
    [64] J.J.Robbins,C.Fry and C.A.Wblden. Transport phenomena in high performance nanocrystalline ZnO: Ga films deposited by plasma-enhanced chemical vapor deposition. J.Cryst.Growth 263(2004) 283.
    [65] J.J.Robbins,J.Harvey,J..Leaf,C.Fry,C.A.Wolden. Transport phenomena in high performance nanocrystalline ZnO: Ga films deposited by plasma-enhanced chemical vapor deposition. Thin.solid.Films 473 (2005) 35.
    [66] KIwata,T.Sakemi,A.Ymada,P.Fons,K.Awai,T.Yamamoto,S.Shirakata,K.Matsubara,H.Tampo, K.Sakurai,S.Ishizuka,S.Niki. Improvement of ZnO TCO film growth for photovoltaic devices by reactive plasma deposition (RPD). Thin.solid.Films 480~481 (2005) 199.
    [67]方俊鑫,陆栋.固体物理学(上),上海科技出版社,1981.
    [68] B.D. Cullity, Elements of X-ray Diffractions, Addition-Wesley, Reading, MA, 1978, 102.
    [69] Oh, S.J., Jung, M.N., Ha, S.Y., Choi, S.G., Kim, J.J., Kobayashi, Microstructure evolution of highly Ga-doped ZnO nanocrystals, Physica E 31-35 (2008) 41.
    [70] X.Yu,J.Ma,F.Ji,Y.Wang,C.Cheng,H.Ma.Thickness dependence of properties of ZnO: Ga films deposited by rf magnetron sputtering. Appl.Surf.Sci.245 (2005) 310.
    [71] B.D. Cullity, Elements of X-ray Diffractions, Addition-Wesley, Reading, MA, 1978, 102.
    [72] Y.Li,GS.Tompa,S.Liang,C.Goria,Y.Lu,J.Doyle.Effect of high-density plasma etching on the optical properties and surface stoichiometry of ZnO. J.Vac. Technol.A15 (1997)1063.
    [73]张德恒.透明导电膜中光吸收边的移动[J].半导体杂志,1998, 23(3):34-43.
    [74] B.E. Sernelius, K-F. Berggren, Z.-C. Jin, et al. Band-gap tailoring of ZnO by means of heavy Al doping [J]. Phys. Rev. B, 1988, 37 (17):10244-10248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700