硒蛋白S对内皮细胞的保护作用及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内皮细胞功能障碍(Endothelial cell dysfunction,ECD)在糖尿病(Diabetesmellitus,DM)血管并发症的发生和发展中起着重要作用,探求有效的内皮保护策略已受到学术界普遍关注。本研究旨在(1)探讨中国人脂肪组织中硒蛋白S(Selenoprotein S,SelS)基因的表达及其与血清淀粉样蛋白(Serum Amyloid A,SAA)和胰岛素抵抗(Insulin resistance,IR)的相关性,为2型糖尿病(Type 2Diabetes Mellitus,T2DM)及其大血管并发症发病机制和防治研究提供新的方向;(2)应用分子生物学技术分离SelS基因,构建SelS真核表达载体——pLNCX2-SelS,并将其转染至人脐静脉内皮细胞(HUVECs,ECV_(304)细胞),通过DNA序列分析、mRNA及蛋白水平检测进行鉴定,获得高表达SelS的细胞株,为研究SelS的功能提供可靠的技术支持;(3)建立外源性过氧化氢(HydrogenPeroxide,H_2O_2)刺激诱导的细胞损伤模型,探讨高表达SelS对ECV_(304)细胞的抗氧化保护作用及机制,为T2DM血管并发症的防治建立新的策略和方法。
     应用RT-PCR技术,检测12例非糖尿病患者及10例T2DM患者大网膜脂肪组织中SelS基因的表达;计算胰岛素抵抗指数(Homa-IR),ELISA测定血清SAA的水平。结果显示,T2DM患者大网膜脂肪组织中SelS表达水平、Homa-IR及血清SAA水平均高于非糖尿病对照组;并且,在两组的大网膜组织中SelS表达水平与Homa-IR和血清SAA水平均呈正相关。提示中国T2DM患者大网膜脂肪组织表达SelS与IR有关,结合文献报告推测SelS可能是作为SAA的受体在T2DM和大血管并发症的发生发展中发挥作用。
     取皮下脂肪组织提取总RNA,RT-PCR扩增SelS基因,回收并命名为SelSInsert DNA1。SelS Insert DNA1被克隆至克隆载体pMD18-T,经DNA序列分析鉴定结果无误;将pMD18-SelS质粒进行大量扩增酶切,切胶回收目的基因片段,命名为SelS Insert DNA2。SelS Insert DNA2亚克隆至真核表达载体pLNCX2,经PCR反应以及DNA序列分析鉴定结果,证实真核表达载体pLNCX2-SelS构建正确。将pLNCX2-SelS转染至ECV_(304)细胞,RT-PCR和Western blot检测进一步证实重组SelS真核表达载体pLNCX2-SelS成功表达;同时发现,SelS基因在pLNCX2-SelS转染组的表达水平是ECV_(304)细胞内源性表达水平的1.76倍(mRNA表达)和1.56倍(蛋白表达)。
     应用不同浓度的H_2O_2损伤ECV_(304)细胞后,高表达SelS组能显著增加细胞活性、减少H_2O_2诱导ECV_(304)细胞丙二醛(MDA)的产生、增加超氧化物歧化酶(SOD)的活性、抑制H_2O_2诱导的窖蛋白-1(Caveolin-1)上调;提示SelS可通过抗氧化作用保护内皮细胞免于H_2O_2介导的细胞损伤,其保护机制可能与SelS抑制Caveolin-1的上调有关。
     上述研究表明,内脏脂肪组织SelS高表达与T2DM患者的IR有关,并可能是作为SAA的受体在T2DM和大血管并发症的发生发展中发挥一定的作用;将从人脂肪组织中克隆出的SelS基因片段插入到逆转录病毒载体pLNCX2中,成功构建pLNCX2-SelS重组真核表达载体,并获得SelS高表达细胞株;ECV_(304)细胞中有内源性SelS表达,高表达SelS可以明显减弱H_2O_2诱导的ECV_(304)细胞的损伤;高表达SelS抗氧化保护ECV_(304)细胞的作用与抑制Caveolin-1上调有关。
Endothelial cell dysfunction(ECD) plays an important role in development of diabetic vascular complications.More and more researchers are interested in how to pretect endothelial cell effectively.The purposes of this study are shown as the followings:(1) To study on correlation between SelS mRNA expression in Chinese adipose tissue,Insulin resistance(IR) and Serum Amyloid A(SAA),which provides a new direction for preventing the development of type 2 diabetes mellitus(T2DM) and atherosclerosis.(2) To construct the Eukaryotic expression vector of Selenoprotein S(SelS) and transfect into human umbilical vein endothelium cells (HUVECs,ECV_(304) Cells) by using molecular biological technology and identify the DNA sequence analysis,mRNA and protein level of SelS,which provides a reliable technique support for SelS study.(3) To establish the cellular damage model induce by exogenous hydrogen peroxide(H_2O_2) and study the over-expression of SelS in the protective function and mechanism of ECV_(304) cell,which provides a new strategy for preventing the development of T2DM and atherosclerosis.
     The following studies of human omental adipose tissues from ten cases of type 2 diabetic patients and twelve cases of non-diabetic individuals were carried on to examine the expression level of Tanis/SelS mRNA by semi-quantitative PCR, calculate Homa-IR by standard formula and detect SAA level by ELISA.Tanis/SelS mRNA expression,Homa-IR and serum SAA were higher in T2DM than in control group.Tanis/SelS mRNA level was positively correlated with Homa-IR and SAA level in two groups.SelS protein might involve in insulin resistance in Chinese with T2DM,possibly acting as the SAA receptor,thus play an important role in the development of T2DM and atherosclerosis.
     After total RNA was isolated from human subcutaneous adipose tissue,SelS gene segment,which was called SelS Insert DNA1,was amplified by RT-PCR and then cloned into the vector of pMD18-T.Recombinant plasmid of pMD18-SelS was confirmed by DNA sequence analysis.SelS Insert DNA2,which was purified successively by plasmid amplified,restrictive digestion and gel extraction,was subcloned into Eukaryotic expression vector of pLNCX2.After identified by PCR and DNA sequence analysis,the recombinant plasmid of pLNCX2-SelS was transfected into ECV_(304) cell and SelS were expressed successfully both in mRNA and protein levels.Moreover,the gene expression level of SelS was 1.76 fold in transfection group compared to endogenous gene expression and the protein expression level was 1.56 fold.
     After ECV_(304) cells were damaged by different concentration of H_2O_2,both of the activity of cellular proliferation and SOD were increased in the group of over-expressed SelS gene compared with control one.Furthermore,elevated SelS gene expression in ECV_(304) cells could attenuate the production of MDA and inhibit the up-regulation of Caveolin-1 induced by H_2O_2.It is suggested that SelS might protect endothelial cells from H_2O_2-induced impairment through anti-oxidative pathway and this protective mechanism might related to the depressing the elevation of Caveolin-1 by SelS.
     Therefore,up-regulated SelS in adipose might involve in insulin resistance, possibly acting as the SAA receptor,thus play an important role in the development of T2DM and atherosclerosis.SelS gene fragment isolated from human subcutaneous adipose was inserted into retrovirus vector of pLNCX2 and recombinant Eukaryotic expression vector of pLNCX2-SelS was successfully constructed.Elevated SelS, which was also expressed endogenously in ECV_(304) cells,could attenuate the damage induced by H_2O_2 and play a role in ECV_(304) cellular anti-oxidative protection through preventing the elevation of Caveolin-1.
引文
[1]Wild S,Roglic G,Green A,et al.Global prevalence of diabetes:estimates for the year 2000 and projections for 2030.Diabetes Care.2004,27(5):1047-1053.
    [2]胡善联,刘国恩,许樟荣,等.我国糖尿病流行病学和疾病经济负担研究现状.中国卫生经济,2008,27(8):5-8.
    [3]Snow V,Aronson MD,Hombake ER,et al.Lipid control in the management of type 2 diabetes mellitus:A clinical practice guideline from the American college of physicians.Ann Intern Med,2004,140(8):644-649.
    [4]Mazzone T,Chait A,Plutzky J.Cardiovascular disease risk in type 2 diabetes mellitus:insights from mechanistic studies.Lancet.2008,371(9626):1800-1809.
    [5]Rader DJ,Daugherty A.Translating molecular discoveries into new therapies for atherosclerosis.Nature.2008,451(7181):904-913.
    [6]Brownlee M.Biochemistry and molecular cell biology of diabetic complications.Nature,2001,414(6865):813-820.
    [7]Li G W,Zhang P,Wang J,et al.The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study:a 20-year follow-up study.Lancet.2008,371(9626):1783-1789.
    [8]Furchgott RF,Zawadzki JV.The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.Nature,1980,288(5789):373-376.
    [9]Behrendt D,Ganz P,Endothelial function:from vascular biology to clinical applications.Am J Cardiol.2002,90(10C):40L-48L.
    [10]Verma S,Buchanan MR.,Anderson TJ.Endothelial function testing as a biomarker of vascular disease.Circulation,2003,108(17):2054-2059.
    [11]Balletshofer BM,Rittig K,Enderle MD,et al.Endothelial dysfunction is detectable in young normotensive first degree relatives of subjects with type 2 diabetes in association with insulin resistance.Circulation,2000,101(15):1780-1784.
    [12]Hogikyan RV,Galecki AT,Pitt B,et al.Specific impairement of endothelium dependent vasodilation in subjects with type 2 diabetes independent of obesity. J Clin Endocrinol Metab, 1998, 83(6): 1946-1952.
    [13] Steinberg HO, Chaker H, Learning R, et al. Obesity/insulin resistance is associated with endothelial dysfunction. J Clin Invest, 1996, 97(11): 2601-2610.
    [14] Mather KJ, Mirzamohammadi B, Lteif A, et al. Endothelin contributes to basal vascular tone and endothelial dysfunction in human obesity and type 2 diabetes. Diabetes, 2002,51 (12): 3517-3523.
    [15] Bagg W, Ferric, Desideri G, et al. The influences of obesity and glycemic control on endothelial activation in patients with type 2 diabetes. J Clin Endocrinol Metab, 2001, 86(11): 5491-5497.
    [16] Ceriello A, Quagliaro L, Piconi L,et al. Effect of postprandial hypertriglyceridema and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes, 2004,53(3): 701-710.
    [17] Lip GY, Blann A. Von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res, 1997,34(2): 255-265.
    [18] Sidhu JS, Cowan D, Kaski JC. Effects of rosiglitazone on endothelial function in men with coronary artery disease without diabetes mellitus. Am J Cardiol, 2004,94(2): 151-156.
    [19] Kawano H, Motoyama T, Hirashima O, et al. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol, 1999,34(1): 146-154.
    [20] De Vriese AS, Verbeuren TJ, Van de Voorde J, et al. Endothelial dysfunction in diabetes. Br J Pharmacol, 2000,130(5): 963-974.
    [21] Cosention F, Eto M, De Paolis P, et al. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells:role of protein kinase C and reactive oxygen species. Circulation, 2003,107(7): 1017-1023.
    [22] Li GL, Barrett EJ, Barrett MO, et al. Tumor necrosis factor-alpha induces insulin resistance in endothelial cells via a p38 mitogen-activated protein kinase-dependent pathway. Endocrinology. 2007, 148(7): 3356-3363.
    [23] Kankova K, Kalousova M, Hertlova M, et al. Soluble RAGE, diabetic nephropathy and genetic variability in the AGER gene. Arch Physiol Biochem. 2008, 114(2): 111-119.
    [24] Barile GR, Schmidt AM. RAGE and its ligands in retinal disease. Curr Mol Med. 2007, 7(8): 758-765.
    [25] Yan SF, Ramasamy R, Schmidt AM. Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat Clin Pract Endocrinol Metab. 2008, 4(5): 285-293.
    [26] Yan SF, Ramasamy R, Naka Y, et al. Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res, 2003, 93( 12): 1159-1169.
    [27] Garcia SF, Virag L, Jagtap P, et al. Diabetic endothelial dysfunction: the role of poly (ADP-ribose) polymerase activation. Nat Med, 2001,7(1): 108-113.
    [28] Jooke JE, Hannemann MM. Adverse endothelial function and the insulin resistance syndrome. J Intern Med, 2000,247(4): 425-431.
    
    [29] Kuboki K, Jiang ZY, Takahara N, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation, 2000, 101(6): 676-681.
    [30] Tripathy D, Mohanty P, Dhindsa S, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes, 2003,52(12): 2882-2887.
    [31] Yu CL, Chen Y, Cline GW, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem, 2002,277(52): 50230-50236.
    [32] Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988,37 (12): 1595-1607.
    [33] Stern MR Diabetes and cardiovascular disease. The "common soil" hypothesis. Diabetes, 1995,44 (4): 369 -374.
    [34] Kusterer K, Pohl T, Fortmeyer HP, et al. Chronic selective hypertriglyceridemia impairs endothelium-dependent vasdilation in rats. Cardiovasc Res, 1999,42(3): 783-793.
    [35] Boulanger CM, Tanner FC, Bea ML, et al. Oxidized low density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium. Circulation Research, 1992,70(6): 1191-1197.
    [36] Zhang C. The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol. 2008, 103(5): 398-406.
    
    [37] Tan KC, Chow WS, Tarn SC, et al. Atorvastatin lowers C-reactive protein and improves endothelium-dependent vasodilation in type 2 diabetes mellitus. J Clin Endocrinol Metab, 2002, 87(2): 563-568.
    [38] Evans JL, Goldfine ID, Maddux BA, et al. Oxidative stress and stress-activated signaling pathways: a unifying of type 2 diabetes. Endocrine Reviews, 2002,23(5): 599-622.
    
    [39] Aljada A, Ghanim H, Assian E, et al. Tumor necrosis factor-α inhibits insulin-induced increase in endothelial nitric oxide synthase and reduces insulin receptor content and phosphorylation in human aortic endothelial cell. Metabolism, 2002, 51(4): 487-491.
    [40] Corrado E. Novo S. High sensitivity of C-reactive protein in primary prevention. G Ital Cardiol (Rome), 2007, 8(6): 327-334.
    [41] Ford ES. Body mass index, diabetes, and C-creactive proteion among US adults. Diabetes Care, 1999,22(12): 1971-1977.
    [42] Barzilay JI, Abraham L, Heckbert SR, et al. The relation of markers of inflammation to the development of glucose disorders in the elderly: the cardiovascular health study. Diabetes, 2001, 50(10): 2384-2389.
    [43] Arroyo-Espliguero R, Avanzas P, Quiles J , et al. Predictive value of coronary artery stenoses and C-reactive protein levels in patients with stable coronary artery disease. Atherosclerosis. 2008 Aug 15. [Epub ahead of print]
    [44] Johnson BD, Kip KE, Marroquin OC, et al. Serum amyloid A as a predictor of coronary artery disease and cardiovascular outcome in women: The National Heart, Lung, and Blood Institute-Sponsored Women's Ischemia Syndrome Evaluation (WISE). Circulation, 2004, 109(6): 726-732.
    [45] Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells:implications for the metabolic syndrome and atherothrombosis. Circulation, 2003,107(3): 398-404.
    [46] Fukuchi Y, Miura Y, Nabeno Y, et al. Immunohistochemical detection of oxidative stress biomarkers, dityrosine and N(epsilon)-(hexanoyl)lysine, and C-reactive protein in rabbit atherosclerotic lesions. J Atheroscler Thromb. 2008,15(4): 185-192.
    [47] Nagaoka T, Kuo L, Ren Y, et al. C-reactive protein inhibits endothelium-dependent nitric oxide-mediated dilation of retinal arterioles via enhanced superoxide production. Invest Ophthalmol Vis Sci. 2008,49(5): 2053-2060.
    [48] Devaraj S, Dasu MR, Singh U, et al. C-reactive protein stimulates superoxide anion release and tissue factor activity in vivo. Atherosclerosis. 2008 Jun 13. [Epub ahead of print]
    [49] Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med, 2000,342(12): 836-843.
    [50] Yang RZ, Lee MJ, Hu H, et al. Acute-phase serum amyloid A: an inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med, 2006,3(6): 884-894.
    [51] Sjoholm K, Palming J, Olofsson LE, et al. A microarray search for genes predominantly expressed in human omental adipocytes: adipose tissue as a major production site of serum amyloid A. J Clin Endocernol Metab, 2005,90(4): 2233-2239.
    [52] Furlaneto CJ, Campa A. A novel function of serum amyloid A: A potent stimulus for the release of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-8 by human blood neutrophil. Biochem Biophys Res Commun, 2000, 268(2): 405-408.
    [53] Hatanaka E, Furlancto CJ, Ribciro FP, et al. Serum anyloid A-induced mRNA expression and release of tumor necrosis factor-alpha (TNF-alpha) in human neutrophils. Immunol Lett, 2004, 9(1): 33-37.
    [54] Uhlar CM, Whitehead AS. Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem, 1999,265(2): 501-523.
    [55] Schkllinger M, Exner M, Mlekusch W, et al. Inflammation and carotid artery-risk for atherosclerosis study (ICARAS). Circulation, 2005,111(17): 2203-2209.
    [56] O'Brien KD, McDonald TO, Kunjathoor V, et al. Serum amyloid A and lipoprotein retention in murine models of atherosclerosis. Arterioscler Thromb Vasc Biol, 2005,25(4): 785-790.
    [57] Hamano M, Saito M, Eto M, et al. Serum amyloid A, C-reactive protein and remnant-like lipoprotein particle cholesterol in type 2 diabetic patients with coronary heart disease. Ann Clin Biochem, 2004,41(Pt 2): 125-129.
    [58] Devaraj S, Chan AV Jr, Jialal I. Alpha-tocopherol supplementation decreases plasminogen activator inhibitor-1 and P-slectin levels in type 2 diabetic patients. Diabetes Care, 2002,25(3): 524-529.
    [59] Luo HL, Zang WJ, Lu J, et al. The protective effect of captopril on nicotine-induced endothelial dysfunction in rat. Basic Clin Pharmacol Toxicol, 2006,99(3): 237-245.
    [60] Chlopicki S, Gryglewski RJ. Angiotensin converting enzyme (ACE) and Hydroxy Methyl Glutaryl-CoA (HMG-CoA) reductase inhibitors in the forefront of pharmacology of endothelium. Pharmacol Rep, 2005, 57Suppl: 86-96.
    [61] Tesfamariam B. The effects of HMG-CoA reductase inhibitors on endothelial function. Am J Cardiovasc Drugs, 2006,6(2): 115-20.
    [62] Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther, 2006, 80(6): 565-581.
    [63] Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet, 2005,366(9493): 1279-89.
    [64] Patel CB, De Lemos JA, Wyne KL, et al. Thiazolidinediones and risk for atherosclerosis: pleiotropic effects of PPAR gamma agonism. Diab Vasc Dis Res, 2006, 3(2): 65-71.
    [65] Tousoulis D, Boger RH, Antoniades C, et al. Mechanisms of disease: L-arginine in coronary atherosclerosis-a clinical perspective. Nat Clin Pract Cardiovasc Med, 2007, 4(5): 274-83.
    [66] Chen YH, Lin SJ, Chen YL, et al. Anti-inflammatory effects of different drugs/agents with antioxidant property on endothelial expression of adhesion molecules. Cardiovasc Hematol Disord Drug Targets, 2006, 6(4): 279-304.
    [67] Nan B, Lin P, Lumsden AB, et al. Effects of TNF-alpha and curcumine on the expression of thrombomodulin and endothelial protein kinase C receptor in human endothelial cells. Thromb Res, 2005, 115(5): 417-426.
    [68] Balasubramanyam M, Koteswari AA, Kumar RS, et al. Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J Biosci, 2003, 28(6): 715-721.
    [69] Smith AR, Shenvi SV, Widlansky M, et al. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr Med Chem, 2004,11(9): 1135-1146.
    [70] Head KA. Peripheral neuropathy: pathogenic mechanisms and alternative therapies. Altern Med Rev, 2006, 11(4): 294-329.
    [71] Pershadsingh HA. Alpha-lipoic acid: physiologic mechanisms and indications for the treatment of metabolic syndrome. Expert Opin Investig Drugs, 2007,16(3): 291-302.
    [72] Johnson F, Giulivi C. Superoxide dismutases and their impact upon human health. Mol Aspects Med, 2005, 26(4-5): 340-352.
    [73] Idris I, Donnelly R. Protein kinase C beta inhibition: A novel therapeutic strategy for diabetic microangiopathy. Diab Vasc Dis Res, 2006,3(3): 172-178.
    [74] Hatfield DL, Gladyshev VN. How selenium has altered our understanding of the genetic code. Mol Cell Biol, 2002, 22(11): 3565-3576.
    [75] Gao Y, Feng HC, Walder K, et al. Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress SelS is a novel glucose-regulated protein. FEBS Letters, 2004, 563(1-3): 185-190.
    [76] Du JL, An LJ, Sun CK, et al. Overexpressing SelS may protect human umbilical vein endothelial cells from injuring by H_2O_2. Prog Biochem Biophys, 2007,34(4): 425-430.
    [77] Walder K, Kantham L, McMillan JS, et al. Tanis: a link between type 2 diabetesand inflammation? Diabetes, 2002,51(6): 1859-1866.
    [78] Karlsson H, Tsuchida H, Lake S, et al. Relationship between serum amyloid A level and Tanis/SelS mRNA expression in skeletal muscle and adipose tissue from healthy and type 2 diabetic subjects. Diabetes, 2004, 53(6): 1424-1428.
    [79] Eizrrik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev, 2008, 29(1): 42-61.
    [80] Kryukov GV, Castellano S, Novoselov SV, et al. Characterization of mammalian selenoproteomes. Science, 2003,300(5624): 1439-1443.
    [81] Ye Y, Shibata Y, Chi Y, et al. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature, 2004,429(6994): 841-847.
    [82] Gao Y, Walder K, Sunderland T, et al. Elevation in Tanis Expression Alters Glucose Metabolism and Insulin Sensitivity in H4IIE Cells. Diabetes, 2003, 52(4): 929-934.
    [83] Windmill K, Brown JT, Bayles R, et al. Localization and expression of selenoprotein S in the testis of Psammomys obesus. J Mol Histol, 2007, 38(1): 97-101 .
    [84] Gao Y, Pagnon J, Feng HC, et al. Secretion of the glucose-regulated selenoprotein SEPS1 from hepatoma cells. Biochem Biophys Res Commun, 2007, 356(3): 636-641.
    [85] Du JL, Sun CK, Lu B. Association of SelS mRNA expression in omental adipose tissue with Homa-IR and serum amyloid A in patients with type 2 diabetes mellitus. Chin Med J (Engl), 2008, 121(13): 1165-1168.
    [86] Mostert V. Selenoprotein P: properties, functions, and regulation. Arch Biochem Biophys, 2000, 376(2): 433-438.
    [87] Jeong D, Kim TS, Chung YW, et al. Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett, 2002,517(1-3): 225-228.
    [88] Curran JE, Jowett JB, Elliott KS, et al. Genetic variation in selenoprotein S influences inflammatory response. Nat Genet, 2005,37(11): 1234-1241.
    [89] Gao Y, Hannan NRF, Wanyonyi S, et al. Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells. Cytokine, 2006,33(5): 246-251.
    [90] Seiderer J, Dambacher J, Kuhnlein B, et al. The role of the selenoprotein S (SELS) gene -105G>A promoter polymorphism in inflammatory bowel disease and regulation of SELS gene expression in intestinal inflammation. Tissue Antigens, 2007,70(3): 238-246.
    [91] Pradhan AD, Ridker PM. Do atherosclerosis and type 2 diabetes share a common inflammatory basis? Eur Heart J, 2002,23(11): 831-834.
    [92] Wu A, Hinds CJ, Thiemermann C. High-density lipoproteins in sepsis and septic shock: Mctabolism, actions, and therapeutic applications. Shock, 2004,21(3): 210-221.
    [93] Furlaneto CJ, Campa A, et al. A novel function of serum amyloid A: A potent stimulus for the release of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-8 by human blood neutrophil. Biochem Biophys Rcs Commun, 2000,268(2): 405-408.
    [94] Hatanaka E, Furlaneto CJ, Ribciro FP, et al. Serum anyloid A-induced mRNA expression and release of tumor necrosis factor-alpha (TNF-alpha) in human neutrophils. Immunol Lett, 2004, 91(1): 33-37.
    [95] Moses EK, Johnson MP, T(?)mmerdal L, et al. Genetic association of preeclampsia to the inflammatory response gene SEPS1. Am J Obstet Gynecol, 2008,198(3): 336.e1-5.
    [96] Hyrenbach S, Pezzini A, del Zotto E, et al. No association of the -105 promoter polymorphism of the selenoprotein S encoding gene SEPS1 with cerebrovascular disease. Eur J Neurol, 2007, 14( 10): 1173-1175.
    [97] Martinez A, Santiago JL, Varade J, et al. Polymorphisms in the selenoprotein S gene: lack of association with autoimmune inflammatory diseases. BMC Genomics, 2008, 9: 329-335.
    [98] Alanne M, Kristiansson K, Auro K, et al. Variation in the selenoprotein S gene locus is associated with coronary heart disease and ischemic stroke in two independent Finnish cohorts. Hum Genet, 2007, 122:355-365.
    [99] Ye Y, Shibata Y, Kikkert M, et al. Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc Nat Acad Sci USA, 2005, 102(40): 14132-14138.
    [100] Kim KM, Gao Y, Walder K, et al. SEPS1 protects RAW264.7 cells from pharmacological ER stress agent-induced apoptosis. Biochem Biophys Res Commun, 2007, 354(1): 127-132.
    [101] Yoshida H. ER stress and diseases. FEBS Journal, 2007,274(3): 630-658.
    [102] Pirot P, Ortis F, Cnop M, et al. Transcriptional regulation of the endoplasmic reticulum stress gene chop in pancreatic insulin-producing cells. Diabetes, 2007,56(4): 1069-1077.
    [103] Fisher HM, Aitken RJ. Comparative analysis of the ability of precursor germ cells and epididymal spermatozoa to generate reactive oxygen metabolites. J Exp Zool, 1997,277(5): 390-400.
    [104] Lysiak JJ. The role of tumor necrosis factor-alpha and interleukin-1 in the mammalian testis and their involvement in testicular torsion and autoimmune orchitis. Reprod Biol Endocrinol, 2004, 2: 9-19.
    [105] Minshall RD, Sessa WC, Stan RV, et al. Caveolin regulation of endothelial function. AJP-Lung. Cell Mol Physiol, 2003,285(6): L1179-L1183.
    [106] Liu P, Rudick M, Anderson RG. Multiple functions of caveolin-1. Biol Chem, 2002, 277(44): 41295-41298.
    [107] Glenney JR. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. Biol Chem, 1989, 264(34): 20163-20166.
    [108] Cohen AW, Hnasko R, Schubert W, et al. Role of caveolae and caveolins in health and disease. Physiol Rev, 2004, 84(4): 1341-1379.
    [109] Head BP, Insel PA. Do caveolins regulate cells by actions outside of Caveolae? . Trends in Cell Biology, 2006, 17(2): 51-57.
    [110] Spisni E, Tomasi V, Cestaro A, et al. Structural insights into the function of human caveolin-1. Biochemical and Biophysical Research Communications, 2005,338(3): 1383-1390.
    [111] Cao H, Courchesne WE, Mastick CC. A phosphotyrosine dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. Biol Chem, 2002,277(11): 8771-8774.
    [112] Santilman V, Baran J, Anand-Apte B, et al. Caveolin-1 polarization in transmigrating endothelial cells requires binding to intermediate filaments. Angiogenesis, 2007, 10(4): 297-305.
    [113] del Pozo MA, Balasubramanian N, Alderson NB, et al. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol, 2005, 7(9): 901-908.
    [114] Gaus K, Le LS, Balasubramanian N, et al. Integrin-mediated adhesion regulates membrane order. Cell Biol, 2006, 174(5): 725-734.
    
    [115] Sun XH, Flynn DC, Castranova V, et al. Identification of a novel domain at the N terminus of Caveolin-1 that controls rear polarization of the protein and caveolae formation. The Journal of Biological Chemistry, 2007, 282(10): 7232-7241.
    
    [116] Couet J, Li S, Okamoto T, et al. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. Biol Chem, 1997,272(10): 6525-6533.
    [117] Lin YC, Ma C, Hsu WC, et al. Molecular interaction between caveolin-1 and ABCA1 on high-density lipoprotein-mediated cholesterol efflux in aortic endothelial cells. Cardiovascular Research, 2007, 75(3): 575-583.
    [118] Couet J, Belanger MM, Roussel E, et al. Cell biology of caveolae and Caveolin. Adv Drug Deliv Rev, 2001,49 (3): 223-235.
    [119] Williams TM, Medina F, Badano I, et al. Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. Biol Chem, 2004, 279(49): 51630-51646.
    [120] Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Physiol Cell Physiol, 2005,288(3): C494-C506.
    [121] Fruhbeck G, Lo' pez L, Die'guez C. Role of caveolins in body weight and insulin resistance regulation. Trends Endocrinol. Metab, 2007,18(5): 177-182.
    [122] Pe'russe L, Rankinen T, Zuberi A, et al. The human obesity gene map: the 2004 update. Obes Res, 2005, 13(3): 381-490.
    [123] (o|¨) rtegren U, Aboulaich N, (o|¨) st A, et al. A new role for caveolae as metabolic platforms. Trends in Endocrinology and Metabolism, 2007,18(9): 344-349.
    [124] Gaudreault SB, Blain JF, Gratton JP, et al. A role for caveolin-1 in post-injury reactive neuronal plasticity. Neurochem, 2005,92(4): 831-839.
    [125] Millan J, Hewlett L, Glyn M, et al. Lymphocyte transcellular migration occurs through recruitment of endothelial 1CAM-1 to caveola- and F-actinrich domains. Nat Cell Biol, 2006,8(2): 113-123
    [126] Khan EM, Heidinger JM, Levy M, et al. Epidermal growth factor receptor exposed to oxidative stress undergoes Src- and caveolin-1-dependent perinuclear trafficking. Biol Chem, 2006, 281(20): 14486-14493.
    [127] Drab M, Verkade P, Elger M, et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science, 2001,293(5539): 2449-2452.
    [128] Christopher JF, Phoebe EF. Caveolae and intracellular trafficking of cholesterol. Advanced Drug Delivery Rewiews, 2001,49(3): 251-264.
    [129] Wang T, Chen Z, Wang X, et al. Cholesterol loading increases the translocation of ATP synthase β chain into membrane caveolae in vascular endothelial cells. Biochim Biophys Acta, 2006, 1761(10): 1182-1190.
    [130] Fukumura D, Gohongi T, Kadambi A, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA, 2001, 98(5): 2604-2609.
    [131] Barakat S, Demeule M, Pilorget A, et al. Modulation of p-glycoprotein function by caveolin-1 phosphorylation. J Neurochem, 2007,101(1): 1-8.
    
    [132] Pascariu M, Bendayan M, Ghitescu L. Correlated Endothelial Caveolin Overexpression and Increased Transcyctosis in Experimental Diabetes. Histochemistry&Cytochemistry, 2004, 52(1): 65-76.
    
    [133] Brandes RP, Fleming I, Busse R. Endothelial aging.Cardiovasc Res, 2005,66(2): 286-294.
    [134] Li C, Ruan L, Sood SG, et al. Role of eNOS phosphorylation at Ser-116 in regulation activity in endothelial cells. Vascular Pharmacology, 2007,47(5-6): 257-264.
    
    [135] Repetto S, Salani B, Maggi D, et al. Insulin and IGF-I phosphorylate eNOS in HUVECs by a caveolin-1 dependent mechanism. Biochemical and Biophysical Research Communications, 2005, 337(3): 849-852.
    [136] Fulton D, Gratton JP, Sessa WC. Post-translational control of endothelial nitric oxide synthase: Why isn't calcium/calmodulin enough? Pharmacol Exp Ther, 2001,299(3): 818-824.
    [137] Maniatis NA, Brovkovych V, Allen SE, et al. Novel Mechanism of Endothelial Nitric Oxide Synthase Activation Mediated by Caveolae Internalization in Endothelial Cells. Circ Res, 2006, 99(8): 870-877.
    [138] Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation, 2004, 109(23): III39-III43.
    
    [139] Feron O, Dessy C, Desager JP, et al. Hydroxy-methylglutaryl-coenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in Caveolin abundance. Circulation, 2001,103(1): 113-118.
    
    [140] Pelat M, Dessy C, Massion P, et al. Rosuvastatin decreases caveolin-1 and improves nitric oxide-dependent heart rate and blood pressure variability in apolipopro-tein E-/- nice in vivo. Circulation , 2003, 107(19): 2480-2486.
    [141] Liu J, Wang XB, Park DS, et al. Caveolin-1 expression enhances endothelial capillary tubule formation. Biol Chem, 2002,277(12): 10661-10668.
    [142] Griffoni C, Spisni E, Santi S, et al. Knockdown of caveolin-1 by antisense oligonucleotides impairs angiogenesis in vitro and in vivo. Biochem Biophys Res Common, 2000, 276(2): 756-761.
    [143] Galvagni F, Anselmi F, Salameh A, et al. Vascular Endothelial Growth Factor Receptor-3 Activity Is Modulated by Its Association with Caveolin-1 on Endothelial Membrane. Biochemistry, 2007, 46(13): 3998-4005.
    
    [144] Impagnatiello MA, Weitzer S, Gannon G, et al. Mammalian sprouty-1 and -2 are membrance-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. Cell Biol, 2001, 152(5): 1087-1098.
    
    [145] Huo Y, Ley K. Adhesion molecules and atherogenesis. Acta Pgysiol Scand, 2001,173(1): 35-43.
    [146] Takahashi M, Ikeda U, Masuyama J, et al. Nitric oxide attenuates adhesion molecule expression in human endothelial ceils.Cytokine,1996,8(11):817-821.
    [147]Frank PG,Lee H,Park DS,et al.Genetic ablation of caveolin-1 confers protection against atherosclerosis.Arterioscler Thromb Vasc Biol,2004,24(1):98-105.
    [148]周慧敏,刘煜,张嘉宁.窖蛋白的生物学功能及其在疾病中的作用.生命的化学,2005,25(2):150-152.
    [149]Shajahan AN,Tiruppathi C,Smrcka AV,et al.Gβγ Activation of Src Induces Caveolae-mediated Endocytosis in Endothelial Cells.The Journal of Biological Chemistry,2004,279(46):48055-48062.
    [150]Gratton JP,Bernatchez P,Sessa WC.Caveolae and Caveolins in the Cardiovascular System.Circ Res,2004,94(11):1408-1417.
    [151]Head BP,Patel IHH,Roth DM,et al.Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components.Biol Chem,2006,281(36):26391-26399.
    [152]Dingbo Lin,Dolores J.Oxidative Activation of Protein Kinase Cγ,through the C1 Domain Effects on Gap Junctions.Bilogical Chemistry,2005,280(14):13682-13693.
    [153]Shahid S,Siddiqui,Zeba K,et al.p38 MAPK activation coupled to endocytosis is a determinant of endothelial monolayer integrity.Physiol Lung Cell Mol Physiol,2007,292(1):L114-L124.
    [154]Chen DB,Li SM,Qian XX,et al.Tyrosine Phosphorylation of Caveolin-1 by Oxidative Stress Is Reversible and Dependent on the c-src Tyrosine Kinase but Not Mitogen-Activated Protein Kinase Pathways in Placental Artery Endothelial Cells.Biology Of Reproduction,2005,73(4):761-772.
    [155]yon Wichert G,Jiang G,Kostic A,et al.RPTP-α acts as a transduction of mechanical force on αv/β3-integrin-cytoskeleton linkages.Cell Biol,2003,161(1):143-153.
    [156]Labrecque L,Royal 1,Suprenant DS.Regulation of vascular endothelial growth factor receptor-2activity by Caveolin-1 and Plasma membrance cholesterol.Mol Biol Cell,2003,I4(1):334-349.
    [1]Tan KC,Chow WS,Tam SC,et al.Atorvastatin lowers C-reactive protein and improves endothelium-dependent vasodilation in type 2 diabetes mellitus.J Ciin Endocrinol Metab,2002,87(2):563-568.
    [2]Evans JL,Goldfine ID,Maddux BA,et al.Oxidative stress and stress-activated signaling pathways:a unifying of type 2 diabetes.Endocrine Reviews,2002,23(5):599-622.
    [3]Aljada A,Ghanim H,Assian E,et al.Tumor necrosis factor-α inhibits insulin-induced increase in endothelial nitric oxide synthase and reduces insulin receptor content and phosphorylation in human aortic endothelial cell.Metabolism,2002,51(4):487-491.
    [4]Corrado E,Novo S.High sensitivity of C-reactive protein in primary prevention.G Ital Cardiol (Rome),2007,8(6):327-334.
    [5]Ford ES.Body mass index,diabetes,and C-creactive proteion among US adults.Diabetes Care,1999,22(12):1971-1977.
    [6]Barzilay JI,Abraham L,Heckbert SR,et al.The relation of markers of inflammation to the development of glucose disorders in the elderly:the cardiovascular health study.Diabetes,2001,50(10):2384-2389.
    [7]Arroyo-Espliguero R,Avanzas P,Quiles J,et al.Predictive value of coronary artery stenoses and C-reactive protein levels in patients with stable coronary artery disease.Atherosclerosis.2008 Aug 15. [Epub ahead of print]
    [8] Johnson BD, Kip KE, Marroquin OC, et al. Serum amyloid A as a predictor of coronary artery disease and cardiovascular outcome in women: The National Heart, Lung, and Blood Institute-Sponsored Women's Ischemia Syndrome Evaluation (WISE). Circulation, 2004, 109(6): 726-732.
    [9] Walder K, Kantham L, Mcmillan JS, et al. Tanis: a link between type 2 diabetes and inflammation? Diabetes, 2002,51(6): 1859-1866.
    [10] Wakabayashi I, Masuda H. Association of acute-phase reactants with arterial stiffness in patients with type 2 diabetes mellitus. Clin Chim Acta, 2006,365(1-2): 230-235.
    [11] O'Brien KD, Chait A. Serum amyloid A: the "other" inflammatory protein. Curr Atheroscler Rep, 2006, 8(1): 62-68.
    [12] Karlsson H, Tsuchida H, Lake S, et al. Relationship between serum amyloid A level and Tanis/SelS mRNA expression in skeletal muscle and adipose tissue from healthy and type 2 diabetic subjects. Diabetes, 2004,53(6): 1424-1428.
    [13] Kryukov GV, Castellano S, Novoselov SV, et al. Characterization of mammalian selenoproteomes. Science, 2003, 300(5624): 1439-1443.
    [14] Gao Y, Feng HC, Walder K, et al. Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress SelS is a novel glucose-regulated protein. FEBS Letters, 2004, 563(1-3): 185-190.
    [15] Festa A, D'Agostino RJr, Howard G, et al. Chronic subclinical inflammation as part of the insulin resistance syndrome: the insulin resistance atherosclerosis study (IRAS). Circulation, 2000, 102(1): 42-47.
    [16] Pradhan AD, Ridker PM. Do atherosclerosis and type 2 diabetes share a common inflammatory basis? Eur Heart J, 2002, 23(11): 831-834
    [17] Gao Y, Walder K, Sunderland T, et al. Elevation in Tanis expression alters glucose metabolism and insulin sensitivity in H4IIE cells. Diabetes, 2003, 52(4): 929-934.
    [18] Sjoholm K, Palming J, Olofsson LE, et al. A microarray search for genes predominantly expressed in human omental adipocytes: adipose tissue as a major production site of serum amyloid A. Clin Endocrinol Metab, 2005, 90(4): 2233-2239.
    [19] Lewis KE, Kirt EA, McDonald TO, et al. Increase in serum amyloid A evoked by dietary cholesterol is associated with increased atherosclerosis in mice. Circulation, 2004, 110(5): 540-545.
    [20] O'Brien KD, McDonald TO, Kunjathoor V, et al. Serum amyloid A and lipoprotein retention in murine models of atherosclerosis. Arterioscler Thromb Vasc Biol, 2005, 25(4): 785-790.
    [21] Meek RL, Urieli-Shoval S, Benditt EP. Expression of apolipoprotein serum amyloid A mRNA in human atherosclerotic lesions and cultured vascular cells: implications for serum amyloid A function.Proc Natl Acad Sci USA,1994,91(8):3186-3190.
    [22]Badolato R,Wang JM,Murphy WJ,et ai.Serum amyloid A is a chemoattractant:induction of migration,adhesion,and tissue infiltration of monocytes and polymorphonuclear leukocytes.Exp Meal,1994,180(1):203-209.
    [23]Lewis KE,Kirt EA,McDonald TO,et al.Increase in serum amyloid A evoked by dietary cholesterol is associated with increased atherosclerosis in mice.Circulation,2004,3110(5):540-545.
    [24]Uhlar CM,Whitehead AS.Serum amyloid A,the major vertebrate acute-phase reactant.Eur J Biochem,1999,265(2):501-523.
    [25]Kumon Y,Hosokawa T,Suehiro T,et al.Acute-phase,but not constitutive serum amyloid A(SAA)is chemotactic for cultured human aortic smooth muscle cells.Amyloid,2002,9(4):237-241.
    [26]Artl A,Marsche G,Lestavel S,et al.Role of serum arnyloid A during metabolism of acute-phase HDL by macrophages.Arterioscler Thromb Vase Biol,2000,20(3):763-772.
    [27]Cai L,de Beer MC,de Beer FC,et al.Serum amyloid A is a ligand for scavenger receptor class B type Ⅰ and inhibits high density lipoprotein binding and selective lipid uptake.Biol Chem,2005,280(4):2954-2961.
    [28]Le L,Chi K,Tyldesley S,et al.Identification of serum amyloid A as a biomarker to distinguish prostate cancer patients with bone lesions.Clin Chem,2005,51(4):695-707.
    [29]Katayama T,Nakashima H,Takaqi C,et al.Serum amyloid A protein as a predictor of cardiac rupture in acute myocardial infarction patients following primary coronary angiop lasty.Circ J,2006,70(5):530-535.
    [30]Tolson J,Bogumil R,Brunst E,et al.Serum protein profiling by SELDI mass spectrometry:Detection of multiple variants of serum amyloid alpha in renal cancer patients.Lab Invest,2004,84(7):845-856.
    [31]杨郁,杜建玲,张秀娟,等.2型糖尿病血清淀粉样蛋白A水平与颈总动脉内中膜厚度相关.中华内分泌代谢杂志,2008,24(2):188-189.
    [32]Du Jian Ling,An Li Jia,Sun Chang Kai,et al.Overexpressing SelS May Protect Human Umbilical Vein Endothelial Cells from Injuring by H_2O_2.Progress In Biochemistry and Biophysics,2007,30(1):18-20.
    [33]Yang YM,Sun TY,Liu XM.The role of serum leptin and tumor necrosis factor-α in malnutrition of male chronic obstructive pulmonary disease patients.Chin Med J(Engl),2006,119(8):628-633.
    [34]Trayhum P,Beattie JH.Physiological role of adipose tissue:white adipose tissue as an endocrine and secretory organ.Proc Nutr Soc,2001,60(3):329-339.
    [35]Schkllinger M,Exner M,Mlekusch W,et al.Inflammation and carotid artery-risk for atherosclerosis study(ICARAS).Circulation,2005,111(17):2203-2209.
    [36] O'Brien KD, McDonald TO, Kunjathoor V, et al. Serum amyloid A and lipoprotein retention in murine models of atherosclerosis. Arterioscler Thromb Vasc Biol, 2005,25(4): 785-790.
    [37] Hamano M, Saito M, Eto M, et al. Serum amyloid A, C-reactive protein and remnant-like lipoprotein particle cholesterol in type 2 diabetic patients with coronary heart disease. Ann Clin Biochem, 2004,41(Pt 2): 125-129.
    [38] Yang RZ, Lee MJ, Hu H, et al. Acute-phase serum amyloid A: an inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med, 2006,3(6): 884-894.
    [39] Curran JE, Jowett JB, Elliott KS, et al. Genetic variation in selenoprotein S influences inflammatory response. Nat Genet, 2005,37(11): 1234-1241.
    [40] Gao Y, Hannan NRF, Wanyonyi S, et al. Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells. Cytokine, 2006, 33(5):246-251.
    [41] Seiderer J, Dambacher J, Kuhnlein B, et al. The role of the selenoprotein S (SELS) gene -105G> A promoter polymorphism in inflammatory bowel disease and regulation of SELS gene expression in intestinal inflammation. Tissue Antigens, 2007,70(3): 238-246.
    [42] Moses EK, Johnson MP, T0mmerdal L, et al. Genetic association of preeclampsia to the inflammatory response gene SEPSl. Am J Obstet Gynecol, 2008,198(3): 336.el-5.
    [43] Alanne M, Kristiansson K, Auro K, et al. Variation in the selenoprotein S gene locus is associated with coronary heart disease and ischemic stroke in two independent Finnish cohorts. Hum Genet, 2007,122(3-4):355-365.
    [1]Avogaro A,Fadini GP,Gallo A,et al.Endothelial dysfunction in type 2 diabetes mellitus.Nutr Metab Cardiovasc Dis.2006,1:39-45.
    [2]Walder K,Kantham L,McMillan.IS,et al.Tanis:A Link Between Type 2 Diabetes and Inflammation? Diabetes,2002,51(6):1859-1866.
    [3]Gao Y,Feng HC,Walder K,et al.Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress SelS is a novel glucose-regulated protein.FEBS Letters,2004,563(1-3):185-190.
    [4]Curran JE,Jowett JB,Elliott KS,et al.Genetic variation in selenoprotein S influences inflammatory response.Nat Genet,2005,37(11):1234-1241.
    [5]Gao Y,Hannan NRF,Wanyonyi S,et al.Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 ceils.Cytokine,2006,33(5):246-251.
    [6]Seiderer J,Dambacher J,K(u|¨)hnlein B,et al.The role of the selenoprotein S(SELS) gene-105G>A promoter polymorphism in inflammatory bowel disease and regulation of SELS gene expression in intestinal inflammation.Tissue Antigens,2007,70(3):238-246.
    [7]Moses EK,Johnson MP,Tφmmerdal L,et al.Genetic association of preeclampsia to the inflammatory response gene SEPS1.Am J Obstet Gynecol,2008,198(3):336.el-5.
    [8]Alanne M,Kristiansson K,Auro K,et al.Variation in the selenoprotein S gene locus is associated with coronary heart disease and ischemie stroke in two independent Finnish cohorts.Hum Genet,2007,122(3-4):355-365.
    [1]Brownlee M.Anita,Jack Salz.The pathobiology of diabetic complications:a unifying mechanism.Diabetes,2005,54(6):1615-1625.
    [2]Gao Y,Feng HC,Walder K,et al.Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress SelS is a novel glucose-regulated protein.FEBS Letters,2004,563(1-3):185-190.
    [3](o|¨)rtegren U,Aboulaich N,(o|¨) st A,et al.A new role for caveolae as metabolic platforms.Trends in Endocrinology and Metabolism,2007,18(9):344-349.
    [4]Schalkwijk CG,Stehouwer CD.Vascular complications in diabetes mellitus:the role of endothelial dysfunction.Clin Sci(Lond),2005,109(2):143-159.
    [5]Brownlee M.Biochemistry and molecular cell biology of diabetic complications.Nature,2001,414(6865):813-820.
    [6]Johansen JS,Harris AK,Rychly DJ,et al.Oxidative stress and the use of antioxidants in diabetes:Linking basic science to clinical practice.Cardiovascular Diabetology,2005,4(1):1-39.
    [7]Halliwell B,Whiteman M.Measuring reactive species and oxidative damage in vivo and in cell culture:how should you do it and what do the results mean? British Journal of Pharmacology,2004,142(2):231-255.
    [8]Johnson F,Giulivi C.Superoxide dismutases and their impact upon human health.Mol Aspects Med,2005,26(4-5):340-352.
    [9]Gao Y,Pagnon J,Feng HC,et al.Secretion of the glucose-regulated selenoprotein SEPS1 from hepatoma cells.Biochemical and Biophysical Research Communications,2007,356(3):636-641.
    [10]Smart EJ,Ying YS,Conrad PA,et al.Caveolin moves from Caveolae to the Golgi apparatus in response to cholesterol oxidation.Cell Biol,1994,127(1):185-197.
    [11]Marie-Odile.Parat,Rafal ZS,Paul LF.Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells.Biochem,2002,361(3):681-688.
    [12]Pascariu M,Bendayan M,Ghitescu L.Correlated endothelial caveolin overexpression and Increased Transcyctosis in Experimental Diabetes.J Histochem Cytochem,2004,52(1):65-76.
    [13]Zhu Y,Liao HL,Wang N,et al.Lipoprotein promotes Caveolin-1 and Ras translocation to Caveolae:role of cholesterol in endothelial signaling.Arterioscler Thromb Vasc Biol,2000,20(11):2465-2470.
    [14] Dingbo Lin, Dolores J. Oxidative activation of protein kinase Cγ through the C1 domain effects on gap junctions. Bilogical Chemistry, 2005,280(14): 13682-13693.
    [15] Gopalakrishna R, Gundimeda U, Chen ZH. Cancer-preventive selenocompounds induce a specific redox modification of cysteine-rich regions in Ca~(2+)-dependent isoenzymes of protein kinase C. Arch Biochem Biophys, 1997,348(1): 25-36.
    [16] Wang L, Lim EJ, Toborek M, et al. The role of fatty acids and caveolin-1 in tumor necrosis factor alpha-induced endothelial cell activation. Metabolism. 2008, 57(10): 1328-1339.
    [17] Dumasia R, Eagle KA, Kline-Rogers E, et al. Role of PPAR-gamma agonist thiazolidinediones in treatment of pre-diabetic and diabetic individuals: a cardiovascular perspective. Curr Drug Targets Cardiovasc Haematol Disord, 2005,5(5): 377-386.
    
    [18] Consoli A, Devangelio E. Thiazolidinediones and inflammation. Lupus, 2005, 14(9): 794-797.
    [19] Da Ros R, Assaloni R, Ceriello A. Molecular targets of diabetic vascular complications and potential new drugs. Curr Drug Targets, 2005,6(4): 503-509.
    [20] Nedeljkovic ZS, Gokce N, Loscalzo J. Mechanisms of oxidative stress and vascular dysfunction. Postgrad Med J, 2003, 79(930): 195-199.
    [21] Chlopicki S, Gryglewski RJ. Angiotensin converting enzyme (ACE) and Hydroxy Methyl Glutaryl -CoA (HMG-CoA) reductase inhibitors in the forefront of pharmacology of endothelium. Pharmacol Rep, 2005, 57(Suppl): 86-96.
    [22] Ilieva I, Ohgami K, Shiratori K, et al. The effects of Ginkgo biloba extract on lipopolysaccharide-induced inflammation in vitro and in vivo. Experimental Eye Research, 2004, 79(2): 181-187.
    [23] Wollin SD, Jones PJ. Alpha-lipoic acid and cardiovascular disease. J Nutr, 2003, 133(11): 3327-3330.
    [24] Smith AR, Shenvi SV, Widlansky M, et al. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr Med Chem, 2004,11(9): 1135-1146.
    [25] Rask-Madsen C, King GL. Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arterioscler Thromb Vasc Biol, 2005,25(3): 487-496.
    [26] Way KJ, Chou E, King GL. Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci, 2000, 21(5): 181-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700