芒果品质构成及其发育规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芒果(Mangifera indica L.)系漆树科芒果属热带果树,与柑橘、香蕉、葡萄、苹果并称世界五大水果,素有“热带果王”之美誉。我国已引进和培育了200余个芒果品种和品系,但我国芒果产业相对落后,存在着品种混乱、产量不稳定、品质较差等问题,造成商品果产量低,严重制约了我国芒果产业在国内外贸易中的竞争力,但我国尚未见有关芒果品质系统研究的报道。因此,深入研究芒果品质构成及其形成规律,在此基础上提出改良果实品质的技术措施,是我国芒果产业快速健康发展的需要,期望为将来的芒果育种及品质调控提供理论依据。主要结果如下:
     1、芒果果实含有3种糖、11种有机酸和4种类胡萝卜素组分,即果糖、葡萄糖和蔗糖;草酸、酒石酸、奎尼酸、苹果酸、抗坏血酸、乳酸、α-酮戊二酸、柠檬酸、富马酸、琥珀酸和没食子酸;堇菜黄素、β-胡萝卜素、叶黄素和番茄红素。其中,蔗糖、苹果酸和堇菜黄素分别为芒果的主要糖、有机酸和类胡萝卜素种类。不同品种芒果果实中糖、有机酸和类胡萝卜素各组分含量存在显著差异,但各组分及总糖、总类胡萝卜素和总有机酸含量无显著差异。
     2、不同品种果实品质存在显著差异。灰色关联度分析表明,57个芒果品种的综合品质以留香杧最佳。完熟时绿色果皮品种果实可溶性糖含量显著高于红色果皮品种,且糖酸比和固酸比显著高于红色与黄色果皮品种。多胚品种的可溶性糖含量显著高于单胚品种。相关分析表明芒果可溶性糖与可溶性固形物及类胡萝卜素极显著或显著正相关,可滴定酸与糖酸比、固酸比均呈极显著负相关。果糖和蔗糖与总糖;堇菜黄素和β-胡萝卜素与总类胡萝卜素;苹果酸和柠檬酸与总酸之间均呈极显著正相关,酒石酸和α-酮戊二酸与总酸呈负相关。
     3、不同产区金煌果实品质以云南保山较好,福建晋宁较差;贵妃以海南乐东较好,三亚较差;台农1号以广西南宁较好,湛江较差。
     4、采用多肽和套袋处理对芒果果实品质均有改善,能显著提高果实中可溶性总糖、可溶性固形物和类胡萝卜素含量、糖酸比,降低可滴定酸、苹果酸、柠檬酸和总有机酸含量。
     5、芒果果实各糖及总糖含量均呈先增加后下降的变化趋势,果实发育过程中以积累果糖为主,后熟过程中以积累蔗糖为主,果实发育大多数阶段及后熟过程中,金煌果糖、葡萄糖及总糖含量高于其它品种。在成熟阶段,果糖与AI、NI达到极显著相关,蔗糖与SPS达到极显著相关,相关系数高达0.9574**,蔗糖与SS达到显著相关,葡萄糖相关性不显著。
     苹果酸与柠檬酸是芒果的主要有机酸种类,其中,果实发育及后熟过程中苹果酸含量始终高于柠檬酸。在果实发育阶段,贵妃总酸含量高于其它品种,在后熟阶段,红玉总酸含量高于其它品种。果实发育过程中,NAD-MDH、NADP-MH、CS和PEPC酶活性均呈现先增加后下降的变化趋势,活性高峰出现的时间及峰高因酶种类及品种而异。NAD-MDH活性变化与苹果酸含量变化基本一致,在芒果整个生长过程中,与苹果酸含量的相关性很大,相关系数最高可达0.8148**;CS活性与柠檬酸含量变化基本一致,在整个生长过程中都与柠檬酸含量呈显著相关性,相关系数达0.8334**,NADP-ME和PEPC与苹果酸含量的相关性不显著。
     芒果果实中堇菜黄素和叶黄素含量在发育初期有降低的趋势,进入后熟期后堇菜黄素含量快速增加,叶黄素含量则快速降低,β-胡萝卜素和番茄红素含量呈先升高后降低。果实发育后期及后熟过程中总类胡萝卜素含量以金煌最高,贵妃次之,红玉最低。
Mango (Mangifera indica L.) is department of Anacardiaceae and is also tropical fruit trees,which is top five fruits with citrus, bananas, grapes, apples in the world and known as the "king of tropical fruit". While the mango industry in China is relatively backward than other countries,such as the confusion species varieties of chaos, production instability and poor quality etc,which seriously constraint international trade and lower the competitiveness of our mango industry. Moreover few reports about mango quality system research were seen in our country.Therefore, Studying of the quality of composition and formation rules and puting forward some technical measures based on the condition in order to improve fruit qualit is necessary for healthy development of China's mango industry.expectations for the Qiang Lai's mango breeding and Pinzhi control provide theoretical basis. The main results are as follows:
     1.Three kinds of carbohydrate, eleven kinds of organic acid and four kinds of carotenoid were detected in mango fruit. The compositions of the carbohydrates were fructose, glucose and sucrose. The compositions of organic acid were oxalic acid、tartaric acid、quinin acid、malic acid、ascorbic acid、lactic acid、α-ketoglutaric acid、citric acid、fumaric acid, succinic acid and gallic acid and the main carotenoid components were violaxanthin、β-carotene、lutein and lycopene. Sucrose, malic acid, and violaxanthin were the major compositions of carbohydrate, the sugars, organic acids and carotenoid content in different varieties of mango fruit were significantly different, but the contents of total sugar, total carotenoids and total organic acid showed no significant difference between them.
     2.There were significantly different from different fruit qualities. The gray relational analysis show that "Liuxiang" had the best comprehensive quality among the 57 mango varieties. Mango with green peel had higher SC content in their fruits than those with red skin, and had higher TSS/TA and SC/TA ratio than those with red or yellow skin during its ripening. Polyembryo varieties had higher SC content in ripening fruit than monoembryo types. Correlation analysis revealed that SC content had markedly or significantly positive correlation with TSS or carotenoid content, respecitvely. Content of TA had significantly negatively correlation with TSS/TA and SC/TA ratio. All of fructose,sucrose and total sugar; violaxanthin andβ-carotene and total carotenoids; malic acid and citric acid and total acid showed a significant positive correlation, respectively,tartaric acid and a-ketoglutarate acid and total acid are significantly negative related.
     3."jinhuang"Mango fruit quality from different producing areas are better in Yunnan Baoshan and Fujian Jinningian are poor; "guifei" of Ledong are better than Sanya in Hainan; "tainonglhao"of Guangxi Nanning are better than Zhanjiang.
     4.The quality were improved when use of peptides and bagging on fruit quality of mango and total soluble sugar, soluble solids, sugar acid ratio, violaxanthin, P-carotene, lutein, lycopene and total carotenoid content of Mango fruit are significantly increasing and titratable acid, malic acid, citric acid and total organic acid content are lower.
     5.The sugar and total sugar content of mango showed increased firstly and then decreased. Mango fruit mainly accumulate fructose in the fruit development process and accumulate sucrose during ripening of fruit, most of the stages of fruit development and ripening process, gold Huang fructose, glucose and total sugar content are higher than other varieties. At maturity, fructose and AI, NI are extremely significant correlation and sugar with the SPS was extremely significant correlation.The coefficients are as high as 0.9574 **;the sucroses are significantly correlated with SS, while glucose with SS had no significant correlation.
     Malic acid and citric acid are the main organic acids of mango and malic acid content is always higher than citric acid content during fruit development and ripening process.In the fruit development stage, total acid content of the concubine are higher than other varieties, in the post-mature stage, total acid content of the ruby are higher than other varieties. During fruit development, NAD-MDH, NADP-MH, CS, and PEPC activity increased firstly and then decreased and peak activity time and peak height are deffrent due to enzyme types and varieties. NAD-MDH activity is consistent with malic acid content during the growth process of mango and malic acid content with it has great relevance and the correlation coefficients are up to 0.8148**; CS activity is consistent with the citric acid content during the whole growth process and it is also significantly correlated with citric acid content and correlation coefficients are up to 0.8334**, the correlation of NADP-ME and PEPC and malic acid content was not significant.
     The lutein and violaxanthin content of mango fruit decreased in the early development and violaxanthin content increased rapidly,while the content of lutein decreased sharply.Theβ-carotene and lycopene content increased firstly and then decreased in the ripening period. the highest total carotenoid content of mango are "jinhuang "and concubine second and ruby minimum in fruit development and ripening process.
引文
[1]潘增光,辛培刚.不同套袋处理对苹果果实品质形成的影响及微域生境分析[J].北方园艺,1995(2):21-22.
    [2]陈俊伟,张上隆,张良诚.果实中糖的运输和代谢与积累及其调控[J].植物生理与分子生物学学报,2004,30(1):1-10.
    [3]赵智中,张上隆,陈俊伟,等.柑橘品种间糖积累差异的生理基础[J].中国农业科学,2002,35(5):541-545.
    [4]陈俊伟,张上隆,张良诚,等,温州蜜柑果实发育过程中光合产物运输分配己糖积累特性[J],植物生理学报,2001,27(2):186-192.
    [5]陈俊伟,张良诚,张上隆.果实中的糖分积累机理[J].植物生理学通讯,2000,36(6):497-503.
    [6]陈美霞,陈学森,慈志娟,等.杏果实糖酸组成及其不同发育阶段的变化[J].园艺学报,2006,33(4)1:805-808.
    [7]王贵元,吴强盛,孙俊雄.红肉脐橙果实发育过程中主要糖含量的变化[J].长江大学学报:自然科学版,2007,4(1)12-13.
    [8]王永章,张大鹏.“红富士”苹果果实蔗糖代谢与酸性转化酶和蔗糖合酶关系的研究[J].园艺学报,2001,28(3):259-261.
    [9]王海波,陈学森,辛培刚,等.几个早熟苹果品种果实糖酸组分及风味品质的评价[J].果树学报,2007,24(4):513-516.
    [10]赵智中,张上隆,徐昌杰,等.蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用[J].园艺学报,2001,28(2):112-118.
    [11]王利芬,夏仁学,周开兵.纽荷尔脐橙果肉糖积累和蔗糖代谢相关酶活性的变化[J].果树学报,2004,21(3):20-22.
    [12]王忠主编.植物生理学.北京:中国农业出版社.2000.
    [13]王惠聪,黄辉白,黄旭明.荔枝果实的糖积累与相关酶活性.园艺学报[J].2003,30(1):1-5.
    [14]崔纪芳.糖代谢酶活性与西瓜坐果及糖分积累关系的研究河[D].2008.北农业大学.
    [15]曾攘.果树生理学.北京:农业出版社[M].1990.
    [16]龚荣高,张光伦,吕秀兰,等.脐橙果实糖积累与蔗糖代谢相关酶关系的研究[J].四川农业大学学报,2004,22(1):34-36.
    [17]侯丽霞,何启伟,赵双宜,等.甜瓜蔗糖磷酸合成酶基因全克隆及工程载体的构建.果树学报[J].2008,25(4):548-551.
    [18]魏长宾,武红霞,马蔚红,等.芒果成熟阶段蔗糖代谢及其相关酶类研究.西南农业学报[J].2008,21(4):972-974.
    [19]魏长宾.芒果成熟过程中糖分的积累及其芳香物质的组成研究[D].2006,华南热带农业大学.
    [20]王永章,等.果糖和葡萄糖参与诱导苹果果实酸性转化酶翻译后的抑制性调节[J].中国科学(C
    辑),2002,32(1):30-39.
    [21]安新民,等.柑桔酸性转化酶基因片断的克隆[J].果树学报,2001,18(4):189-192.
    [22]陈立松,陈发兴,刘星辉.果实有机酸代谢及其调控[M].见:张上隆,陈昆松主编.果实品质形成与调控的分子机理.中国农业出版社.2008,67-106.
    [23]陈发兴,刘星辉,陈立松.果实有机酸代谢研究进展.果树学报[J].2002,22(5):526-531.
    [24]陈发兴,刘星辉,林华影等.离子交换色谱法测定枇杷果实和叶片中的有机酸[J].福建农林大学学报(自然科学版),2004,33(2):195-199.
    [25]赵永红,李宪利,姜泽盛,等.设施油桃果实发育过程中有机酸代谢的研究[J].中国生态农业学报.2007,15(5):87-89.
    [26]高海燕,王善广,廖小军,等.不同品种梨汁中糖和有机酸含量测定及相关性分析.华北农学报,2004,19(2):104-107.
    [27]张秀梅,杜丽清,孙光明,等.菠萝果实发育过程中有机酸含量及相关代谢酶活性的变化[J].果树学报,2007,24(3):381-384.
    [28]李建国,罗诗,袁炜群.荔枝果实成熟期间糖积累和糖代谢相关酶活性变化.华南农业大学学报(自然科学版),2003,24(2):87-88.
    [29]姚玉新,翟衡,赵玲玲等.苹果果实酸低酸性状的SSR分析[J].园艺学报2006,33(2):244-248.
    [30]张小红,赵依杰,潘东明等.琯溪蜜柚果实成熟期有机酸代谢研究.江西农业学报.2009,21(3):50-53.
    [31]熊作明,周春华,陶俊.不同类型枇杷果实着色期间果肉类胡萝卜素含量的变化.农业科学[J].2007,40(12):2910-2914.
    [32]徐昌杰,张上隆.柑橘类胡萝卜素合成关键基因研究进展.园艺学报[J].2002,29(增):619-623.
    [33]陶俊,张上隆.类胡萝卜素合成的相关基因及其基因工程[J].生物工程学报,2002,18(3):276-281.
    [34]姜娜娜,李长生,王绛辉.番茄类胡萝卜素的研究.安徽农业科学[J].2007,35(34):10979-10980.
    [35]刘仲齐,薛俊,金凤媚.番茄果实中类胡萝卜素的合成及其调控.天津农业科学[J].2005,11(1):6-11.
    [36]程孙亮,周宝利,马迎杰.红果番茄果实成熟过程中类胡萝卜素含量动态变化研究.安徽农业科学[J].2007,35(22):672-675.
    [37]周玉蝉,唐友林,谭兴杰.紫花芒果后熟过程中主要类胡萝卜素含量的变化.热带亚热带植物学报[J].1994,2(2),77-79.
    [38]郝建军,康宗利,于洋.植物生理学实验技术.化学工业出版社[J].2006,(12):141-145.
    [39]刘良忠,彭光华,石嘉怿.天然红心鸭蛋中类胡萝卜素色素的提取及稳定性的研究.食品科学[J].2004,25(9):115-120.
    [40]张学杰,赵永彬,尹明安.胡萝卜渣干燥过程中水分、类胡萝卜素的变化规律及工艺比较.中国农业科学[J].2007,40(5):995-1001.
    [41]刘胜辉,魏长宾,孙光明.高效液相色谱法测定台农19号菠萝糖分[J].广东农业科学,2008,
    (12):133-139.
    [42]赵仁邦,刘孟军.高效液相色谱法测定枣果实中的糖分[J].食品科学,2004,25(8):138-141.
    [43]吉宏武,施兆鹏.HPLC分离测定红心薯中类胡萝卜素.无锡轻工大学学报[J].2001,2(3):299-301.
    [44]张上隆,陈昆松,等.果实品质形成于调控的分子生理[M].中国农业出版社,2007,74-75.
    [45]丁耐克.食品风味化学[M].北京:中国轻工业出版社.1996.9.
    [46]曾凯芳,姜微波,李新明.外源水杨酸对紫花芒果贮藏品质的影响.食品与发酵工业[J].2004,30(5):134-137.
    [47]房经贵,乔玉山,章镇,褚孟.我国果梅品种资源若干果实性状的数量分布及其评价标准探讨.果树学报,2002,19(3):175-179.
    [48]周秀艳,秦智伟,王新国.黄瓜品种资源商品性的评价.东北农业大学学报[J].2005,36(6):707-713.
    [49]张光伦.苹果生态适宜条件与四川阿坝州苹果生态适宜性研究.果树科学[J].1987,4(3):10-16,
    [50]张光伦,李大福.果树栽培学各论南方本苹果.北京农业出版社[M].1991,312-319.
    [51]张光伦.川西横断山脉区苹果生态调查.科技资料[J].1979,29(1):1-20.
    [52]宇都宫.果实温度对温州蜜柑果实成熟的影响.园艺学会杂[J].1992,51(2):135-141.
    [53]张学成,高阳华,易新民,等.海拔高度及气象条件对柑橘果实品质的影响.中国柑橘[J].1995,24(2):20-22
    [54]门敬菊.大豆多肽与植物生长调节剂对毛脉酸模生长及根中生物活性成分的影响[D].2006,黑龙江中医药大学.
    [55]严得胜,陈道茂,李方许,等.绿丰源在杨梅等四种果树上试验的效果.浙江柑桔[J].2004,(02)35-36.
    [56]吴英.氨基酸—多肽叶面肥料的研制与使用效果研究[D].2006,哈尔滨理工大学.
    [57]汤永玲.多肽尿素在花生上的肥效试验.安徽农学通报[J].2007,(06):105-123.
    [58]李松刚,陈业渊,杜中军,等.多肽在荔枝上的应用试验.福建果树[J].2008,(02):22-23.
    [59]杜中军,王康林,王炳.多聚半胱氨酸多肤提高甘蔗单产试验.中国热带农业[J].2008,(05):47-48.
    [60]李良活.南方纸质水果套袋技术参数探讨及套袋选择.广东农业科学[J].2007,38(4):440-442.
    [61]李贵利,杜邦,李桂珍.攀西地区晚熟芒果套袋技术.四川农业科技[J].种植技术,2008,(4):34
    [62]杨洪强.绿色无公害果品生产全编.北京:中国农业出版社[M].2003:1-5.
    [63]夏静,章镇,渠慎春,等.套袋对江苏红富士苹果生长发育过程中品质形成因子的影响.江苏农业学报[J].2009,25(2):351-356.
    [64]孙焕顷.套袋对黄冠梨品质影响的综合分析.黑龙江农业科学[J].2009,(2):82-83.
    [65]胡贵兵,陈大成,李平,等.套袋对荔枝果实光照及品质的影响[J].中国果树,2000,(3):27-29.
    [66]洪莉,江景勇,潘仙鹏.套袋对早熟油桃品种果实品质的影响[J].浙江农业科学,2008,(2).142-143.
    [67]曾凯芳,姜微波.套袋对芒果果实采后品质和后熟的影响[J].食品科学,2007,28(12):507-511.
    [68]武红霞,王松标,马蔚红.套袋对台农1号杧果耐贮性及品质的影响[J].中国南方果树,2005,34(6): 48-49.
    [69]武红霞,马蔚红,王标松,等.套袋对Irwin芒果实的影响[J].热带作物学报.2005,12(4):1-5.
    [70]李晓霞,李美聪,王富林,等.芒果果实套袋技术研究初报[J].热带农业科技[J],2003,6(1):8-40.
    [71]黄国弟,李日旺,莫永龙.芒果套袋综合比较试验[J].中国热带农业,2007,44-45.
    [72]刘德兵,范崇辉,魏军亚,等.不同套袋材料对红芒果实品质及贴字效果的影响[J].热带作物学报,2004,25(1):17-19.
    [73]李日旺,黄国弟,莫永龙,陶玉兰.芒果不同套袋材料比较[J].广西热带农业,2006,4:4-5.
    [74]李安妮,朱慧英,邓义才,等.芒果采后生理研究[J].热带亚热带植物学报,1994,2(1):64-69.
    [75]李雪梅.砂梨果实有机酸含量及代谢相关酶活性动态变化研究[D].2008,华中农业大学.
    [76]张小红.馆溪蜜袖(Citrus grandis(L.)Osbeck. cv. guanxi miyou)果实采后酸代谢研究[D].2005.农林大学.
    [77]罗安才,杨晓红,邓英毅等.柑橘果实发育过程中有机酸含量及相关代谢酶活性的变化.中国农业科学[J].2003,36:941-944.
    [78]唐启义,冯明光.DPS数据处理系统.北京:科学出版社[M].2001年第2版.
    [79]周兆禧,杜中军,陈业渊,赵家桔.多肽处理对芒果钙素营养吸收的影响研究.广东农业科学[J].2009,(2):21-22
    [80]牛景,赵建波,吴本宏,等.不同来源桃种质果实糖酸组分含量特点的研究[J].园艺学报;2006,33(1):6-11.
    [81]李日旺,黄国弟,莫永龙,陶玉兰.芒果不同套袋材料比较.广西热带农业[J],2006,4:4-5.
    [82]王少敏,高华君,刘嘉芬,等.套袋短枝红富士果实内含物及果皮色素的变化[J].果树科学,2000,17(1):76-77.
    [83]朱建华,欧世金,黄台明,等.套袋对玉文芒果皮光洁度和着色的影响.广西热带农业[J].2006,(3):1-2.
    [84]黄战威,岑贞革,陈显双.金煌芒果实套袋效果对比试验[J].广西热带农业,2004,90(1):8-9.
    [85]王利芬,沈珉,蔡平,等.不同套袋处理对白沙枇杷果实品质的影响.江苏农业科学[J].2008,(3):158-160.
    [86]张秋明,丁伟平,郑玉生,等.套袋对脐橙果实品质的影响.湖南农业大学学报(自然科学版)[J].2002,28(5):402-404.
    [87]黄桂香,盛玉萍.不同套袋材料对红象牙芒商品品质的影响试验[J].广西园艺,2002,42(3):4-5.
    [88]文颖强,马锋旺.我国苹果套袋技术应用与研究进展[J].西北农林科技大学学报:自然科学版,2006,34(2):100-104.
    [89]王春梅,张秋明,王红.套袋对果实品质的影响及形成机理研究进展.热带农业科学[J].2009,29(7):82-85.
    [90]赵红钰.套袋苹果果皮色素含量的变化[J].中国农学通报,1998,14(4):9-11.
    [91]Beruter J,Studer Feusi M E,Ruedi P.Sorbitoland sucrose partitioning in the growing apple fruit.Plant
    Physiol,1997,151:269-276.
    [92]Wayne HL, John DE. Sugar alcohol metabolismin sinksand sources.In plants and crops: Sources-sink Relations[M]. NewYork:Marcel DekkerInc,1996:185-207.
    [93]Yamaguchi H, Kanayama Y, Soejima J, Yamaki S. Changes in the amounts of the NAD-dependent sorbitol dehydrogenase and its involvement in the development of apple fruit[J].J Amer SocHor Sci, 1996,121(5):848-852.
    [94]Yamaki S. Isolation of vacuoles from immature apple fruit flesh and compartmentation of sugars, organic acids, phenolic compounds and aminacids[J]. Plant Cell Physiol,1984,25(1):151-166.
    [95]Davis C, Robinson S P. Sugar accumulation in grape berries[J]. Plant Physiol,1996,111:275-283.
    [96]Vizzoto G, Pinton R, Varanini Z. Sucrose accumulation in developing peach fruit[J]. Plant Physiol,1996,96:225-230.
    [97]Komatsu A, Moricguchi T, Koyama K. Analysis of sucrose synthasegenes in citrus suggests different role and phylogenetic relationships[J]. J Exp Bot,2002,53:61-67.
    [98]Echeverria E, Gonzalez P C, Brune A. Characteration of proton and sugar transport at the tonoplast of sweet lime juice cells[J]. Physiol Plant,1997,101:291-300.
    [99]Komatsu A, Moricguchi T, Koyama K. Analysis of sucrose synthasegenes in citrus suggests different role and phylogenetic relationships[J]. J Exp Bot,2002,53:61-67.
    [100]Lowell C A, Tomlison P T, Koch K E. Sucrose metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit [J]. Plant Physiol,1989,90:1394-1402.
    [101]Tadeo J L, Ortiz J M, Estelles A. Sugar changes in Clementine and orange fruit during ripening[J]. Hort Sci,1987,62:531-537.
    [102]Echeverria E, Burns J K. Vacuolar acid hydrolysis as a physiological mechanism for sucrose breakdown[J]. Plant Physiol,1989,90:530-533.
    [103]Echeverria E, Gonzalez P C, Brune A. Characteration of proton and sugar transport at the tonoplast of sweet lime juice cells[J]. Physiol Plant,1997,101:291-300.
    [104]Davis C. Robinson S P. Sugar accumulation in grape berries. Plant Pbysiol,1996,111: 275-283.
    [105]Hawker JS Changes in the activities concerned with sugar metabolism during development of grape berries. Phyto-them,1969,8:9~17.
    [106]Moriguchi T, et al. Polyuronides changes in Japanese and Chinese pear fruits during ripening on the tree[J]. Journal of theJapanese Society of Horticultural Science,1998,67:375-377.
    [107]Hubbard NL, Pharr DM, Huber SC. Role of sucrose phosphate in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric. Plant Physiol,1990,94:201~208.
    [108]Beruter J, et al. Sorbitol and sucrose partitioning in the growing apple fruit[J]. J Plant Physiol., 1997,151:269-276.
    [109]JOHNE L,VANESSA J G,ROBERT T F.Expression of a cyanobacterial sucrose phosphate
    synthasefromSynechocystisspPCC6803intransgenicplants[J].JoumalofExperimentalBotany,2003,54 (381):223-237.
    [110]HARBROND,FOYER C,WALKER D.The purification and properties of sucrose phosphate synthase from spinach leaves theinvolvementofthisenzymeandfructosebio-phosphateinthere Gulationofsucrosebiosynthesis[J].ArchBiochemBiophys,1981,212:237-246.
    [111]ZHANGMing-fang,JIANGYou-tiao,YUHang.Comparison ofsugar contents and its related metabolic enzyme activities in developing fruits ofCucumins molo.L[J].Acta Agriculture Zhejianggensis,1998,10(6):310-312.
    [112]HUBBARDAL,STEVENCH,MASONDP.Sucrose phosphate synthase and acid invertase as determinations of sucrose concentration in developing muskmelon(Cucumis melo L.)fruits[J].Plant Physiol,1989,91:1527-1534.
    [113]MACRAEEA,QUICKWP,BENDERC.Carbohydratemetabolismduringpostharvestripeninginkiwifr uit[J].Planta,1992,188:314-323.
    [114]ZHANG Ming-fang,LI Zhi-ling,CHEN Kun-song,QIAN Qiong-qiu,ZHANG Shang-long.The relationship between sugar accumulation and enzymes related tosucrose netabolismin developingFruits of muskmelon[J]. Journal Plant Physiology and Molecular Biology,2003,29(5):455-462.
    [115]Hubbard N L. Huber S C. Pbarr D M.Sucrose phosphate syntbase and acid invertase as developing of sucrose concentration in developing Muskmelon(Cucumis MeloL)fruits. Plant Physiol,1989,91(4):1527~1534
    [116]Lalonde S, Boles-E,Hellmann H, Barke I, Patrick JW, Fronner Wb,ward JM (1999). Thedual function of sugar carriers transport and sugar sensing, Plant Cell,11:707-726. Sheen J,Zhou 1, JangJ-C(1999). Sugarsas signal ingrmlecules.CurrOP in Plant Biol,2:410-418.
    [117]HohrrannS, WinderickxJ, WindeJHD, ValckxlaD,CobbaertP,LuytenK,MeirsrmanCD,RamosJ,Thevele inJM (1999).Novelalleles of yeas thexokinase PⅡwithdist incteffects oncatalytic activity and catabolite repress ionof SUC2. Microbiol,145:703-714.
    [118]Koch KE,Nolte KD, Duke EP, McCarty DR,Avigne WT(1992).Sugar level srrodulated ifferential expression of maize sucrose synthase genes. Plant Cell,4:59-69.
    [119]Xu J,Avigne WT, McCarty DR, Koch KE(1996).Asimilar dichotomy of sugar modulation and developmental expression affects both paths of sucrose metaboli sm Evidence fromamaize invertasegene family PlantCell,&1209-1220.
    [120]ChaubronF(1995).Partialpurification and characterization of fruct okinase from developing taproots of sugar beet (Beta vulgarise). PlantSci,110:181-186.
    [121]AtanassovaP,LeterrierM,GaillardC,AgasseA,SagotE,Coutos-ThevenotP,DelrotS(2003).Sugar-regula tedexpression of a putat ivehexose transport gene in grape.Plant Physiol,131:326-334
    [122]Komatsu A, et al. Cloning and molecular'analysis of cDNAs encoding three sucrose phosphate synthase isoforms from a citrus fruit[J]. Mol Genet.,1996,252(3):346-351.
    [123]Komatsu A, et al. Different expression of three sucrose-phosphate synthase isoforms during accumulation citrus fruit (Citrus unshiu Marc)[J]. Plant Sci.,1999,140:169-178.
    [124]Koch K E. Carbohydrate-modulated gene expression in plants[J]. Annu Rev Plant Physiol Plant Mol Biol.,1996,47:509-540.
    [125]Komatsu A, et al. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships[J]. J Exp Bot,2002,53(366):61-71.
    [126]QIN Qiao-ping, et al. Isolation and expression analysis of fructokinase genes from Citrus[J]. Acta Botanica Sinica,2004,46(12):1408-1415.
    [127]KochR,AlleweldtG.Gergaswechselreifender[J].vitis,1978,17:30-44.
    [128]Echeverria.debelopment altranstition from enzymatic to acid hydrolysis of sucrosein acid limes(Citrus aurantifolia)[J].plant physiol,1990,92:168-171.
    [129]Shaw PE,Wilson CW.Determination of organic acids and sugars in loqua(Erobotrya japonica lindl.) by high-pressure liquid chromatography[J].J Sci Food Agric,1981,32:1242-1246.
    [130]Gil AM,Durate IF,Delgadillo I,et al.Study of compositional changs of Mango during ripening by use of nuclear magnetic resonace spectroscopy [J]. J Agric Food Chem,2000,48:1524-1536.
    [131]Lamikanra O,Inyang ID,Leong S.Distrbution and effect of Grape maturity on organic acid content of red muscadine grapes[J].J Agric Food Chem,1995.43:3026-3028.
    [132]Echeverria E.1990.Developmental transition from enzymatic to acid hydrolysis of sucrosein acid limes(Citrus aurantifolia)[J].Plant Physiology,92:168-171.
    [133]Reuther W:Webber J,Batchelor LD.1968.The Citrus Industry[M],VOl.Ⅱ.University of Califomia,Berkeley.
    [134]Rouse AH,Knott LC.1 969.Maturity changes in pectic substances and citric acid of Florida lemons[J].Proceedings of the Florida State Horticultural Society,82:208-212.
    [135]Notton BA,Blanke MM.Phosphoenolpyruvate Carboxylase in avocado fruit:parification and poroperties[J].Phytochemistry,1993,33:1333-1337.
    [136]Haffaker RC,Wallace A.Dark fixation of CO2 in homogenates from citrus leaves,fruits,and roots [J].Pro Amer Soc Hort Sci,1959.74:348-357.
    [137]Notton BA,Blanke MM.Phosphoenolpyruvate Carboxylase in avocado fruit:parification and poroperties[J].Phytochemistry,1993,33:1333-1337.
    [138]Moing A,Svanella L, Gaudillere M,el al. Organic acid concentration is litter controlled by phosphoenolpyruvate carboxylase activity in peach fruit[J].Aust J Plant Physiol,1999,26:579-585.
    [139]LawRD,Plaxton WC.Purification and characterization of a novel Phosphoenolpyruvate carboxylase from banana fruit [J].Biochemical J,1995,307:807-816.
    [140]Diakou P,Svanella L,Raymond P,et al.Phesphoenolpysruvate carboxylase during grape berry development:protein level,enzyme activity and regulation[J].Aust J Plant Physiol 2000,27:221-229.
    [141]Popova T N, Pinheiro de Carvalho M A. Citrate and isocitrate in plant metabolism. Biochem Biophys Actal,1998,364:307-325.
    [142]Sadka A, Dahan E, Cohen L, et al. Aconitase activity and expression during the development of lemon fruit. Plat Physiol,2000,108:255-262.
    [143]Yamaki Y T. Effect of lead arsenate on citrate synthase activity in fruit pμLp of Satsuma mandarin. JJap Soc Hort Sci,1990a,58:899-905.
    [144]Canel L, Batley-Serres J N, Roose M L. MolecμLar characterization of the mitochondrial citrate synthase gene of an acidless pummelo(Citrus maxima).Plant MolecuLar Biology,1996, 31:143-147.
    [145]Bogin E, Wallace A. C02 Fixaliun in preparation from Tunisian swell Lemon and Eureka Lemon fruils[J]. ProAmer Soe For Hort Sei,1966,88:298-307.
    [146]Ruffer HP, Possner K,Brem S,et al.The physiological role of enzyme in grape ripening[J]. Planta,1984,160:444-448.
    [147]Miller SS, Driscull BT, Gregersun RG,et al. Alfalfa malate dehydrogenase(MDH):molecular cloning and characterization of five different froms reveals a unique noduleenhance MDH[J].Plant J, 1998,15:173-184.
    [148]Christelle E, Annick M, Elisabeth D. Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation:involvement in regulating peach fruit acidity [J]. Physiologia Plantarum 2002,114:259-270.
    [149]Canel C, et al. Molecular characterization of the mitochondrial citrate synthase gene of an acidless pummelo (Citrus maxima)[J]. Plant Molecular Biology (Historical Archive),1996,31(1):143-147.
    [150]Pietro P M, et al. Identification, cloning and expression analysis of strawberry (Fragaria ananassa) mitochondrial citrate synthase and mitochondrial malate dehydrogenase[J]. Physiologia Plantarum, 2004,121(1):15-26.
    [151]Claudia Uhde-Stone, et al. Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism[J]. Plant and Soil,2003,248:99-116.
    [152]Moinga A, et al. Role of phosphoenolpyruvate carboxylase in organic acid accumulation during peach fruit development[J]. Physiologia Plantarum,2000,108(1):1-10.
    [153]Fraser P D, Bramley P M. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research,2004,43:228-265.
    [154]Mcghie T K, Ainge G D.Color in fruit of the genus Actinidia:Carotenoid and chlorophyll compositions. Journal of Agricultural andFood Chemistry,2002,50:117-121.
    [155]Bartley G E, Scolnik P A. Plant carotenoids:pigments for photoprotection, visual attraction, and human health. The Plant Cell,1995,7:1027-1038.
    [156]Moehs C P, Tian L, Osteryoung K W, DellaPenna D. Analysis of carotenoids biosynthetic gene expression during marigold petal development. Plant Molecular Biology,2001,45:281-293.
    [157]Fraser P D, Truesdale M R, Bird C R, Schuch W, Bramley P M.Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiology,1994, 105(1):405-413.
    [158]Ruiz D, Egea J, Tomas-Barberan F A, Gil M I. Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. Journal of Agricultural and Food Chemistry,2005,53:6368-6374.
    [159]Gil M I, Tomas-Barberan F A, Hess-Pierce B, Kader A A.Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. Journal of Agricultural and Food Chemistry,2002,50(17):4976-4982.
    [160]Chen J P, Tai C Y, Chen B H. Effects of different drying treatments on the stability of carotenoids in Taiwanese mango (Mangifera indicaL.). Food Chemistry,2007,100,1005-1010.
    [161]Ikoma Y, Komatsu A, Kita M, Ogawa K, Omura M, Yano M,Moriguchi T. Expression of a phytoene synthase gene and characteristic carotenoid accumulation during citrus fruit development.Physiologia Plantarum,2001,111(2):232-238.
    [162]Cunningha,Jr F X, Gantt E.Genes and enzymes of carotenoid biosvnthesis in plants[J].Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:557-583.
    [163]Okada K, Saito T, Nakagawa T, et al.F'ive different GGDP synthase expresses in different organs are localized into three subcellular compartmeuts[J].Plant Physiology,2000,122:1045-1050
    [164]Fraser P D, Kiauo,JW,Truesdale M R, et al. Phytoeue syuthase-2 enzymes activity in tomato does not coutribute to carotenoid synthesis in ripening fruit[J] Plant Molecular Biology, 1999,40:687-697.
    [165]WalterM H,FesterT,Strack D.Arbuscuarmycorthizal fungi induce the non-mevalonate methylery thritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the'yellow pimnet' and other apocarotenoids PlanL,2000,21:571-578.
    [166]DelVillarMarti nez A A,Garci a-Saucedo P A,Carabez-Trejo A,etal Carotenogenic gene expression and ultrastructural changes during development inmarigold J. Plant PhysioJ,2005,162:1046-1056.
    [167]Palaisa K A,Morgante M, Williams M, et al Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci Plant Cell 2003,15:1795-1806.
    [168]Bartley G E, Scolnik PA.Plant carotenoids pigments for photoprutection visual attraction and human health Plant Cell,1995:1027:1038.
    [169]RonenG, CamelGoren L,Zamir D,et al alternative path way to?carotene fomation in plant
    chromoplasts discovered by map-based cloning of Beta and old-gold colormutaLion in tomato Proc Natl.Acad Sci USA..2000,97:111002-11107.
    [170]Schledz M,al-BabiliS,von LintigJ,et al Phytoene synthase from Narcissus Pseudonarcissus functional expression galactolipid requirement topological distribution in chromoplasts and induction during flowering PlantJ1996,10:781-792.
    [171]AggelisA, JohnJ KarvouniZ, et al Characterization of two cDNA clonesfor mRNA sexpressed during ripening of meton CucumismeioL fruits PlantMol Biol.1997,33:313-322
    [172]KatoM, IkomaY,MatsumotoH, et al Accumualation o f carotenoids and expression of carotenoid biosynthetic genes duringm maturation in citcus fruit Plant Physio 1,2004,34:824-837.
    [173]Nielsen TH, SkiarbekHC, Karlsen P. Carbohydrate metabolism during fruit development in sweet pepper (Capsicum annuum) plants. Physiol. Plant,1991,82:311~319.
    [174]Andrew P.Medlicott and Anthony'K.Thompson.Analysis of Sugars and Organic Acids in Ripening Mango Fruits (Mangifera indica L.var Keitt) By High Performance Liquid Chromatography [J]. Journal.Science.Food Agric.1985,36,561-566.
    [175]Aser P.D., Truesdale M.R., Bird C,R., Schuch W., Bramley P.M. Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiology,1994,105(1):405-413.
    [176]Omer S., Hugueney P., Bouvier F., Camara B., Kuntz M,. Expression of the genes encoding the early carotenoid biosynthetic enzymes in Capsicum annuum. Biochemical and Biophysical Research Communications,1993,196(3):1414-1421.
    [177]Tai C.Y., Chen J.P., Chen B.H. Effects of different drying treatments on the stability of carotenoids in Taiwanese mango(Mangifera indica L.)[J]. Food Chemistry,2007,100,1005-1010.
    [178]Godoy H.T.,Rodriguez-Amaya D.B. Carotenoid composition of commercial mangoes from Brazil[J]. Lebens.-Wiss.u.Technol,1989,22,100-103.
    [179]Mercadante A. Z., Rodriguez-Amaya D.B., Britton G. HPLC and mass spectormetric analysis of Carotenoid from mango[J]. Journal. Agric.Food Chemistry.1997,45,120-123.
    [180]Pott i., Marx M,, Neidhart S., Muhlbauer W., Carle R. Quantitative determination of β-carotene stereoisomers in fresh,dried and solar dried mangos (Mangifera indica L.)[J]. Journal.Agric.Food Chemistry.2003,51,4527-4531.
    [181]Chen J.P.,Tai C.Y., Chen B.H. Improved liquid chromatography method for determination of carotenoids in Taiwanese mango (Mangifera indica L)[J]. Jouranl of chromatography A 2004,1054,261-268.
    [182]HubbardN L, PharrDM, HuberS C. Sucrose-phosphate synthaseand other sucrose metabolizing enzymes in fruit of various species[J]. PhysiolPlant,1991,82:191-196.
    [183]Vizzotto G, Pinton R, Varanini Z, et a.l Sucrose accumulation in developing peach fruit[J]. PhysiolPlant,1996,96:225-230.
    [184]Gil AM, Durate IF, Delgadillo I, Colquhoun IJ, Gasuscrlli F,Humpfer E,Spraul M.Study of compositional changes of mango during ripening by use of nuclear magnetic resonance spectroscopy.Joural of Agricultural and Food Chemistry,2000,48:1524~1536.
    [185]Ito T, Sasaki K, Yoshida Y. Changes in respiration rate, saccharide and organic acid content during the development and ripening of mango fruit (Mangifera indica L.Irwin) cultured in a plastic house. Journal of the Japanese Society for Horticultural Science,1997,66:629~635.
    [186]Hirai M, Ueno I. Development of citrus fruits:Fruit development and enzymatic changes in juice. vesicle tissue.Plant and Cell Physiology,1977,18:791-799.
    [187]Pangborn R M.Relative taste of selected sugars and organic acids. Journal of Food Science,1963,28:726-733.
    [188]Doty T E.Fructose sweetness:a new dimension.Cereal Foods World,1976,21(2):62-63.
    [189]Wei-Hai Yang, Xiao-Chuan Zhu, Jian-Hua Bu, Gui-Bing Hua, Hui-Cong Wanga, Xu-Ming Huang.Effects of bagging on fruit development and quality in cross-winter off-season longan, Scientia Horticulturae[J].2008,120(2009):194-200.
    [190]Giuliano G, Bartley GE, Scolnik PA. Regulation ofcarotenoid biosynthesis during tomato fruit development.Plant Cell,1993(5):379-387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700