碳纳米管功能化分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来碳纳米管的功能化成为纳米领域一大研究热点。通过对碳纳米管进行功能化,使其在某些溶液环境或者纳米复合材料中的分散度得到明显改善,并且为碳纳米管的分离或提纯提供了更为有利的条件。
     碳纳米管的功能化研究已逐步发展成为制备具有某些特定功能的碳纳米管及其复合材料的手段。功能化后的碳纳米管不仅保持了原有的特异性质,而且还表现出修饰基团参加反应的活性,为碳纳米管的分散、组装及表面反应提供了可能,从而引起了科学家的极大兴趣,也使得碳纳米管在纳米材料的舞台上更加活跃。
     本文运用分子模拟的方法来研究手性分子非共价修饰单壁碳纳米管的微观结构、界面作用以及热学性能,主要研究内容包括以下三个部分:
     1.以联萘及其衍生物为核,以亚苯基为重复单元,1-3代的手性树状分子以及碳纳米管模型的建立与结构优化。研究了单壁碳纳米管与手性树状分子G0-G2之间的相互作用,通过能量分析,温度的影响和RDF分析得出以下结论:它们之间存在着强的非键作用能,这与G0-G2都具有数量不等的芳香环,发生包裹行为时可能与碳纳米管侧壁的π电子体系发生π–π作用有关,这种相互作用使得碳纳米管与树状分子之间的结合能增强。并且研究了温度的影响,温度对单壁碳纳米管和G0之间的相互作用影响较小,而单壁碳管和G1、G2之间的相互作用随着温度的升高有着明显的减小。分析了三个复合体系的径向分布函数,说明单壁碳纳米管和手性树状分子能通过非键相互作用而有效的结合。理论上用手性分子非共价功能化单壁碳纳米管,为制成高灵敏性的手性荧光传感器提供了理论依据。
     2.用分子动力学模拟L-色氨酸(Try)非共价修饰到单壁碳纳米管(SWNT),研究其相互作用,理论上实现L-色氨酸(Try)非共价功能化单壁碳纳米管。利用分子动力学计算了200ps内两组份之间的相互作用,发现复合体系在整个模拟时间内的过程是一个能量逐渐降低并且逐渐达到稳定结构的过程,也说明复合体系中单壁碳纳米管和L-色氨酸之间能通过相互作用而复合。单壁碳纳米管和L-色氨酸的结合能除了有π–π相互作用以外,还存在范德华力和静电作用能,在498K时结合能最低,复合体系相对稳定。
     3.将L-酪氨酸(Tyr)非共价修饰到单壁碳纳米管(SWNT)上,利用分子动力学计算了200ps内两组份之间的相互作用,发现复合体系在整个模拟时间内的过程是一个能量逐渐降低并且逐渐达到稳定结构的过程,也说明复合体系中单壁碳纳米管和L-酪氨酸之间能通过相互作用而复合。分析了从298K到598K之间复合体系的能量变化,发现不同温度下结合能均为负值,表明两者之间存在着强的相互作用能,说明单壁碳纳米管和L-酪氨酸的结合能除了有π–π相互作用以外,也存在较强的范德华能来相互作用,也存在一定的静电能。在373k时复合体系有相对稳定的结构。最后通过对L-色氨酸和L-酪氨酸功能化单壁碳纳米管模拟结果进行对比,发现L-色氨酸与单壁碳纳米管复合体系有更低的结合能,更稳定的结构,并且非键作用主要为范德华力,其次为静电力。预期利用氨基酸的手性特点再与碳纳米管的独特特性结合,应用到手性物质的分离、识别、测定等方面。这对于拓展碳纳米管在分离识别领域的研究具有重要的意义。
The functionlization of carbon nanotube(CNT) has become the study hotspot recently.The CNT distribution in the nanocomposites or some solution environment has beenimproved by the functionlization, and provide the favorable condition for CNT to separateor purify.
     The study of functionlization of the CNT has gradually developed the method toprepare the specified functional CNT and composite. The functional CNT not only keepthe original special nature, but aslo put up the adorn radical activity in the reaction, andprovide the possibility for CNT to disperse, assemble and surface reaction, and thereforeto arouse the enormous interest of the scientists, and made the CNT more active in thestage of the nanophase materials.
     The article studied the sub atomic structure, interface action and heat function of chiralmolecular nonfunctionlization of the CNT by the molecular simulation, the main contentcontains the three section:
     1. The simulated chiral dendrimers (G0,G1 and G2) were binaphthyl cored-basedchiral phenylene dendrimers and single wall carbon nanotube(SWNT), the the modelswere constructed and optimized. The interaction between the chiral dendrimers andSWNT were studied, the conclusion was obtained by the energy analysis, temperatureeffect and RDF analysis: strong nonbond energy was exist, which related to the differentphenylene rings of G0-G2, the interaction made the binding energy of SWNT anddendrimers increased, but the interaction of SWNT and G1 and G2 strongly decreased asthe temperature increase. By the analysis the RDF of the three composite, we know thatSWNT can effectively jion with G0-G2 by nonbond interaction. Theoreticallydemonstrated the possibility of nocovalent functionalization of SWNT with chiraldendrimers, which can be used to produce nanocomposites such as highly sensitive aswell as enantioselective fluorescent sensors.
     2. Molecular dynamic simulation was used to the noncovalent functionlization ofSWNT with the tryptophan, study their interaction, theoretically demonstrated thepossibility of nocovalent functionalization of SWNT. Calculate the two's interaction in200ps with molecular dynamics, and find that the whole simulation process was that theenergy gradually decreased and finally got the stable stucture,aslo demonstrated thatSWNT and tryptophan in the composite could combined with interaction, and the interaction was mainly theπ–πinteraction, beside the vdw and electrostatic, and thecomposite has the lowest interaction at 498K, the conposite absolutely stable.
     3. Select the tyrosine to nonfunctionlize SWNT, calculate the two componets'interaction with the molecular dynamics, the results was that the composites'energygradually decreased to get the stable structure in the process, aslo demonstrated they couldinteract with each other. By the analysis of the energy evolution from 298K to 598K in thecomposite, find that the interaction were all negative at different temperature,denmonstrated that the two have the stronginteraction, which was mainly theπ–πinteraction, the vdw and electrostatic, the composite has absolutely stable structure at373K. And finally, by the comparation of the simulated results, we find that the compositeof SWNT and the tryptophan has lower interaction to gain more stable structure, and theinteraction mainly caused by the vdw and electrostatic. We respected to use the chiralfunction of tryptophan and tyrosine join with SWNT's special function, may be used in thesepration, recognization and mesurement of the chiral substance, which was important todevelop SWNT in the seperation study.
引文
[1] S.Iijima, HeliealMierotubulesofGraPhitieCarbon, Nature, 1991, 354, 56-58.
    [2] S.Iijima, T.Iehihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature,1993, 363: 603-605.
    [3] Youngjin Kim, Seunghyun Hong, Sehun Jung, Michael S. Strano, Jaeboong Choi,and Seunghyun Baik, Dielectrophoresis of Surface Conductance ModulatedSingle-Walled Carbon Nanotubes Using Catanionic Surfactants, J. Phys. Chem.B, 2006, 110 (4): 1541-1545.
    [4] Reto Haggenmueller, Csaba Guthy, Jennifer R. Lukes, John E. Fischer, andKaren I. Winey, Single Wall Carbon Nanotube/Polyethylene Nanocomposites:Thermal and Electrical Conductivity, Macromolecules, 2007, 40 (7): 2417-2421.
    [5] Maxim N. Tchoul, Warren T. Ford, Mai L. P. Ha, Israel Chavez-Sumarriva, Brian P.Grady, Giulio Lolli, Daniel E. Resasco and Sivaram Arepalli, Composites ofSingle-Walled Carbon Nanotubes and Polystyrene: Preparation and ElectricalConductivity, Chem. Mater., 2008, 20 (9): 3120-3126.
    [6] Junhua Wu, Broad Microwave Dielectric Property of Single-walled CarbonNanotube Composites, Journal of Materials Science & Technology, 2008, 24(4).
    [7] Thomas Palacin, Hung Le Khanh, Bruno Jousselme, Pascale Jegou, AriannaFiloramo, Christian Ehli, Dirk M. Guldi and Stephane Campidelli, EfficientFunctionalization of Carbon Nanotubes with Porphyrin Dendrons via Click Chemistry, J.Am. Chem. Soc., 2009, 131 (42): 15394–15402
    [8] E. Durgun, S. Dag, S. Ciraci, and O. Gulseren, Energetics and ElectronicStructures of Individual Atoms Adsorbed on Carbon Nanotubes, J. Phys. Chem.B, 2004, 108(2): 575-582.
    [9] Teri Wang Odom, Jin-Lin Huang, Philip Kim, and Charles M. Lieber, Structureand Electronic Properties of Carbon Nanotubes, J. Phys. Chem. B, 2000, 104(13): 2794–2809.
    [10] Long Xie, Feng Xu, Feng Qiu, Hongbin Lu, and Yuliang Yang, Single-WalledCarbon Nanotubes Functionalized with High Bonding Density of PolymerLayers and Enhanced Mechanical Properties of Composites, Macromolecules,2007, 40 (9): 3296–3305.
    [11] Hai M. Duong, Dimitrios V. Papavassiliou, Kieran J. Mullen, Brian L. Wardleand Shigeo Maruyama, Calculated Thermal Properties of Single-Walled CarbonNanotube Suspensions, J. Phys. Chem.C, 2008, 112(50): 19860-19865.
    [12] Unger E, Liebau M, Duesberg G S, Graham A P, Kreupl F, Seidel R, HoenleinW. Fluoriation of carbon nanotubes with xenon difluoride, Chem. Phys. Lett.2004, 399: 280.
    [13] Eric Pop, David Mann, Qian Wang, Kenneth Goodson, and Hongjie Dai,Thermal Conductance of an Individual Single-Wall Carbon Nanotube aboveRom Temperature, Nano lett., 2006, 6(1): 96-100.
    [14] Benoit C. St-Antoine, David Menard and Richard Martel, Position SensitivePhotothermoelectric Effect in Suspended Single-Walled Carbon Nanotube Films,Nano lett., 2009,9(10): 3503-3508.
    [15] Feng L, Song Y L,Zhai J, Liu B Q,Xu J,Jiang L,Zhu D B. Creation of asuperhydrophobic surface from an amphiphilic polymer, Angew. Chem, Int. Edit2003, 42: 800.
    [16] Ebbwsen T W, Lezec H J, Hiura H, Bennett J W, Ghawmi H F, Thio T. Electricalconductivity of individual carbon nanotubes. Nature, 1996, 382(6586): 54-5.
    [17] Saito R, Fujita M,Dresselhaus Q Dresselhaus M S. Eleetronic structure andgrowth mechanism of cathon tubules. Material Science and Engineering, 1993,19: 185-191.
    [18] Dai H, Wong E W,Lieber C M. Probing eleetrical transport in nanomaterials:conductivity of individual carbon nanotubes, Scienee,272: 523-526.
    [19] DeHeer W A, Bacsa W S, Ugarte D, Geffin T, Humphrey baker R, Forro L.Aligined carbon nanotubes films: Production and optical and electricalproperties, Scienee, 1995, 268: 845-847.
    [20] HuangY H, okada M, Tanaka K, Yamabe T. Estimation of superconduetingtransition temperature in metallic carbon nanotubes. Phys. Rev. B, 1996,53(9):5129-5132.
    [21] Bachtold A, Strunk. C, Salvetat J P, Bonard J M, Forro L, Nussbaumer T,Sehonenberger C. Anaronov- Bohm oscillations in carbon nanotubes, Nature,1999, 397: 673.
    [22] Zaric S, Ostojic G N, Kono J, Shaver J, Moore V C, Strano M S, Hauge R H,Smalley R E, Wei X. Optical singnature of the Aharonov-Bohm Phase insingle-walled carbon nanotubes, Science, 2004, 304:1129.
    [23] Roche S, Dresselhaus G, Dresselhaus M S, Saito R, Aharomov-Bohm spectralfeatures and coherence lengths in carbon nanotubes, Phys. Rev. 2000, 62:16092
    [24] Ajiki H, Ando T. Magnetic-properties of Ensembles of carbon nanaotubes, J.Phys. Soc. JPn 1995, 64: 4382.
    [25] Curran S A, Ajayan P M, Blau W. J., et al. A composite frompoly(m-phenylenvinylene-Co-2, 5-dioctoxy-P-phenylenevinylene) and carbonnanotube: A novel materials for molecular optoelectronics. J. AdvancedMaterials, 1998, 10(14): 1091-1093.
    [26] Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of openingand filling carbon nanotubes. Nature, 1994, 372: 159.
    [27] Liu J, Rinzler A G, Dai H,et al. Fullerene pipes. Science, 1998, 280: 1253.
    [28] Hamon M A, Hu H, Bhowmik P,et al. Ester-functionalized soluble single-walledcarbon nanotubes. Applied Physics A, 2002, 74: 333.
    [29] Chen J, Hamon M A, Hu H, et al. Solulion properties of single-walled carbonnanotubes. Seienee, 1998, 282: 95.
    [30] Hamon M A, Chen J, Hu H, et al. Dissolution of single-walled carbon nanotubes.Advaneed Materials, 1999, 11: 834.
    [31] Pompeo F, Resaseo D E. Water solubilization of single-walled carbon nanotubesby functionalization with glucosamine. Nano Letters, 2002, 2(4): 369.
    [32] Eitan A, Jiang K Y, Dukes D, et al. Surface modiflcation of multiwalled carbonnanotubes toward the tailoring of the interface in polymer composites. ChemicalMaterials, 2003, 15: 3198.
    [33]曹春华,李家麟,贾志杰,等.用二胺在碳纳米管上引入胺基团的研究.新型炭材料, 2004, 19(2): 137.
    [34] Hamwi A, Alvergnat H, Bonnamy S, et al. Fluorination of carbon nanotubes.Carbon, 1997, 35: 723.
    [35] Mickelson E T, Chiang I W, Zirnmerman J L, et al. Solvation of fluorinatedsingle-wall carbon nanotubes in alcohol solvents. Journal of Physical ChemistryB, 1999, 103: 4318.
    [36] Khabashesku V N, Billups W E, Margrave J L. Fluorination of single-wallcarbon nanotubes and subsequent derivatization reactions. Accounts of ChemicalReseareh. 2002, 35, 1087.
    [37] Stevens J L,,Huang A Y, Peng H Q, et al. Sidewall amino-functionalization ofsingle-walled carbon nanotubes thlough fluorination and subsequent reactionswith terminal diamines. Nano Letters, 2003, 3(3): 31.
    [38] Peng H, Alemany L B, Margrave J L, et al. Sidewall carboxylic acidfunctionalization of single-walled carbon nanotubes. Journal of AmericanChemical Society, 2003, 125: 1517.
    [39] Nikolaev P, Bronikowski M J, Bradley R K, et al. Gas-phase catalytic growth ofsingle-walled carbon nanotubes from carbon monoxide. Chemical PhysicsLetters, 1999, 313: 91.
    [40]郭金学,李宇国,吴胜伟,等.多壁碳纳米管γ辐照后的化学修饰.辐照研究与辐射工艺学报,2005, 23(3): 155.
    [41] Dyke C A, Tour J M. Solvent-free functionalization of carbon nanotubes. Joumalof American Chemical Society. 2003, 125, 1156.
    [42] Cynthia A. Mitchell and Ramanan Krishnamoorti, Dispersion of Single-WalledCarbon Nanotubes in Poly(ε-caprolactone), Macromolecules, 2007,40(5): 1538-1545.
    [43] Prashanth Asuri, Shyam Sundhar Bale, Ravindra C. Pangule, Dhiral A. Shah,Ravi S. Kane, and Jonathan S. Dordick, Structure, Function, and Stability ofEnzymes Covalently Attached to Single-Walled Carbon Nanotubes, Langmuir,2007, 23(24): 12318-12321.
    [44] Namilae S, Chandra N, Shet C. Mechanical behavior of functionalized nanotubes.Chemieal Physics Letters, 2004, 387: 247.
    [45] Meisha L. Shofner, Valery N. Khabasheshesku, and Enrique V. Barrera,Processing and Mechanical Properties of Fluorinated Single-WallCarbon-Polyethylene Composites, Chem. Mater., 2006, 18(4): 906-913.
    [46] Chen R J, Zhang Y, Wang D, et al. Noncovalent sidewall functionalization ofsingle-walled carbon nanotubes for protein immobilization. Journal of AmericanChemistry Society, 2001, 123: 3838.
    [47] Steuerman D W, Star A, Narizzano R, et al. Interaction between conjugatedPolymers and single-walled carbon nanotubes. Joumal of Physical Chemistry B,2002, 106: 3124.
    [48] Coleman J N, Dalton A B, Curran S, et al. Phase separation of carbon nanotubesand turbostratic graphite using a functional organic polymer. Advaneed Materials,2000, 12(3): 213.
    [49] Xia H S, Wang Q, Qiu G H. Polymer-encapsulated carbon nanotubes preparedthrough ultrasonically in itiated in situ emulsion polymerization. ChemicalMaterials, 2003, 15: 3879.
    [50] Lau K T, David H Eeffctiveness of using carbon nanotubes asnano-reinofrcements ofr advanced composite structures[J]. Carbon, 2002, 40(9):1605-1606.
    [51] Trevor J. Simmons, Justin Bult, Daniel P. Hashim, Robert J. Linhardt andPulickel M. Ajayan, Noncovalent Functionalization as an Alternative toOxidative Acid Treatment of Single wall Carbon Nanotubes with Applicationsfor Polymer Composites, ACS Nano, 2009, 3(4): 865-870.
    [1] Frenkel & Smit著,汪文川等译.分子模拟——从算法到应用,北京:化学工业出版社, 2002
    [2] H Sun. COMPASS: An ab Initio Forcefield Optimized for Condensed-PhaseApplications- Overview with Details on Alkane and Benzene Compounds. JPhys Chem B, 1998, 102: 7338
    [3] H Sun, P Ren, JR Fried. The COMPASS Forcefield: Parameterization andValidation for Polyphosphazenes. Theor Polym Sci, 1998, 8:229-246
    [4] AK Rappe, WA Goddard. Charge Equilibration for Molecular Simulations. J PhysChem., 1991, 95:3358-3363
    [5] C.R.A. Catlow, S. C. Parker, and M. P. Allen, Computer modelling of fluids,polymer and solids(Kluwer Academic, Dordrecht, 1990)
    [6] HJC Berendsen, JPM Postma, WF Van Guansteren, et al. Molecular dynamicswith coupling to an external bath. J. Chem. Phys.,1984,81:3684-3690
    [7] HC Andersen. Molecular dynamics smulation at constant pressure and/ortemperature. J. Chem. Phys. , 1980,72: 2384-2393
    [8] M Parrinello, A Rahman, J.Phys. (Paris), 1981, C6:511
    [9] HQ Ding, N Karasawa, WA Goddard. Atomic level simulations on a millionparticles: The cell multipole method for Coulomb and London nonbondinteraetions. J. Chem. Phys., 1992, 97:4309-4315
    [10] S Nosé. A molecular dynamics method for simulations in the canonical ensemble.Mol. Phys., 1984, 52: 255-268.
    [11] S Nosé. A unified formulation of the constant temperature molecular dynamicsmethods. J. Chem. Phys., 1984, 81: 511-519.
    [12] HC Andersen. Molecular dynamics simulations at constant pressure and/ortemperature. J. Chem. Phys., 1980, 72: 2384-2393.
    [13] PP Ewald. Die Berechnung Optischer and Elektrostatischer Gitterpotentiale.Annalen der Physik, 1921, 369(3):253-287
    [14] N Karasawa, WA GoddardⅢ. Acceleration of convergence for lattice sums. J.Phys. Chem, 1989, 93: 7320-7327.
    [1] Elena Bekyarova, Erik T, Thostenson, Aiping Yu, Mikhail E. ltkis, DanyloFakhrutdinov, Tsu-Wei Chou, and Robert C. Haddon, FunctionalizedSingle-walled Carbon Nanotubes for Carbon fiber-Epoxy Composites, J. Phys.Chem. C, 2007, 111(48): 17865-17871.
    [2]刘举庆,肖潭,吴萍,碳纳米管的功能化及其在聚合物结构复合材料中的应用,纳米科技, 2007,6: 21-25.
    [3] Thostenson E. T, Ren Z. F, ChouT. W, Advances in the science and technology ofcarbon nanotubes and their composites: a review. Composites Science andTechnology, 2001, 61(13): 1899-1912.
    [4] Andrews R, Jacques D, Qian D, Rantell T, Multiwall Carbon Nanotubes: Synthesisand Application, Accounts of Chemical Research, 2002, 35(12): 1008-1017.
    [5] Zhang J, Lee J. K, Wu Y, Murray R. W, Photoluminescence and electronicinteraction of anthracene derivatives adsorbed on sidewalls of single-walledcarbon nanotubes, Nano Lett, 2003, 3(3): 403-407.
    [6] Femando K. A. S, Lin Y, Wang W, Kumar S, Zhou B, Xie S. Y, Cureton L. T, SunY. E, Diminished band-gap transitions of single-walled carbon nanotubes incomplexation with aromatic molecules, Journal of the American ChemicalSociety, 2004, 126(33): 10234-10235.
    [7] Fifield L. S, Dalton L.R, Addleman R.S, Galhotra R. A, Engelhard M. H, FryxellG E, Aardahl C. L, Noncovalent functionalization of carbon nanotubes withmolecular anchors using supercritical fluids. Journal of Physical Chemistry B,2004, 108(25): 8737-8741.
    [8] Paloniemi H, Aaritalo T, Laiho T, Liuke H, Kocharova N, Haapakka K, Terzi F,Seeber R, Lukkafi J, Water-soluble full-length single-wall carbon nanotubepolyelectrolytes: Preparation and characterization, Journal of Physical ChemistryB, 2005, 109(18): 8634-8642.
    [9] Islam M. E, Rojas E, Bergey D. M, Johnson A. T, Yodh A. G, High weight fractionsurfactant solubilization of single-wall carbon nanotubes in water, Nano Letters2003, 3(2): 269-273.
    [10] Moore V C, Strano M S, Haroz E. H, Hauge R. H, Smalley R. E, Schmidt J,Talmon Y, Individually suspended single-walled carbon nanotubes in varioussurfactants. Nano Lett, 2003, 3(10): 1379-1382.
    [11] Matarredona O, Rhoads H, Li Z. R, Harwell J. H, Balzano L, Resasco D. E,Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionicsurfactant NaDDBS, Journal of Physical Chemistry B, 2003, 107(48):l3357-13367.
    [12] Katz E, Willner I, Biomolecule-functionalized carbon nanotubes: Applications innanobioelectronics. Chemphyschem 2004, 5(8): 1085-1104.
    [13] O’Connell M. J, Boul P, Ericson L. M, Huffman C, Wang Y. H, Haroz E, KuperC, Tour J, Ausman K. D, Smalley R. E, Reversible water-solubiIization ofsingle-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters,2001, 342(3-4): 265-271.
    [14] Kim T. H, Doe C, Kline S. R, Choi S. M, Water-redispersible isolatedsingle-walled carbon nanotubes fabricated by in situ polymerization of micelles.Advanced Materials 2007, 19(7): 929-933.
    [15] Tomonari Y, Murakami H, Nakashima N, Solubilization of single-walled carbonnanotubes by using polycyclic aromatic ammonium amphiphiles inwater-Strategy for the design of high-performance solubilizers. Chemistry-aEuropean Journal, 2006, 12(15): 4027-4034.
    [16] Lee J. U, Huh J, Kim K. H, Park C, Jo W. H, Aqueous suspension of carbonnanotubes via non-covalent functionalization with oligothiophene-terminatedpoly(ethylene glycol). Carbon, 2007, 45(5): 1051-1057.
    [17] Liu-Zhu Gong and lin Pu, Sythesis of a chiral micelle-like dendrimer withphenylene dendrons and a 1,1’-binaphthyl core, Tetrajedron letters, 2001, 42(42):737-7340.
    [18] (a) Murer, P.; Seebach, D. Angew. Chem. 1995, 107, 2297 ; ( b) Murer, P. K.;Lapierre, J. M.; Greiveldinger, G.;Seebach, D. Helv. Chim. Acta 1997, 80, 1648.
    [19] Pugh, V. J, Hu Q-S, Pu L, The First Dendrimer-Based EnantioselectiveFluorescent Sensor for the Recognition of Chiral Amino Alcohols, Angew.Chem., Int. Ed, 2000, 39(20): 3638-3641.
    [20] Lin Pu, Synthesis and study of binaphthyl-based chiral dendrimers, J.Potochem.,2003, 155: 47-55.
    [21] Lin Pu, Fluorescence of Oganic Molecules in Chiral Recognition,Chem. Rev.,2004, 104: 1687-1716.
    [22] Toon Veratraelen,Marc Van Houteghem, Veronique Van Speybroeck and MichelWaroquier, MD-TRACKS:A Productive Solution for the Advanced Analysis ofMolecular Dynamics and Monte Carlo simulations, J. Chem. Inf. Model., 2008,48(12): 2414-2424.
    [23] Erik F. da Silva, Tatyana Kuznetsova, Bjorn Kvamme, and Kenneth M. Merz Jr,Molecular Dynamics study of Ethanolamine as a Pure Liquid and in AqueousSolution, J. Phys. Chem. B, 2007,111(14): 3695-3703.
    [1] Tasis D, Tagmatarchis N, Bianco A, Prato M, Chemistry of carbon nanotubes.Chemical Reviews, 2006, 106(3): 1105-1136.
    [2] Zheng M, Jagota A, Semke E. D, Diner B. A, Mclean R. S, Lustig S. R,Richardson R. E, Tassi N. G, DNA-assisted dispersion and separation of carbonnanotubes, Nature Materials, 2003, 2(5):338-342.
    [3] Nakashima N, Okuzono S, Murakami H, Nakai T, Yoshikawa K, DNA dissolvessingle-walled carbon nanotubes in water, Chemistry Letters, 2003,32(5):456-457.
    [4] Star A, Steuerman D. W, Heath J. R, Stoddart J. F, Starched carbon Nanotubes,Angewandte Chemic-International Edition, 2002, 41(14): 2508-2512.
    [5] Chen J, Dyer M. J, Yu M. E, Cyclodextrin-mediated soft cutting of single-walledcarbon nanotubes, Journal of the American Chemical Society, 2001, 123(25):6201-6202.
    [6] Chambers G, Carroll C, Farrell Ct F, Dalton A. B, McNamara M, Panhuis M. I. H,Byme H. J, Characterization of the interaction of gamma cyclodextrin withsingle-walled carbon nanotubes. Nano Letters, 2003, 3(6): 843-846.
    [7]古练权,许家喜,段玉峰,生物化学[M],北京:高等教育出版, 2000, 33.
    [8] Han Zuilhof, KeiJi Morokuma. Copper(II) dimaino acid complexes: qunatumchemical computaions regarding diaseteromeric effects on the energy ofcomplexation. Orgnaic Letters, 2003, 5(17): 3081-308.
    [9] Donze C,RizzaRellie, Vecchio G. Synthesis and intramolecular inclusion studiesof trytophan-modified-β- cyclodexrtins. Joumal of Inclusion Phenomena andMolecular Recongition in Chemistry, 1998, 31(l): 27-4l.
    [10]孙登明,朱庆仁,张振新等,聚L-色氨酸修饰电极的制备及对多巴胺的测定.分析试验室, 2003, 22(6): 6-8.
    [11] Zhengding Su, Kenneth Mui, Elisabeth Daub, Tong Leung, and John Honek,Single-Walled Carbon Nanotube Bingding Peptides: Probing Tryptophan’sImportance by Unnatural Amino Acid Substitution, J. Phys. Chem. B, 2007,111(51):14411-14417.
    [12] H Sun. COMPASS: An ab Initio Force-Field Optimized for Condensed-PhaseApplications- Overview with Details on Alkane and Benzene Compounds. JPhys Chem B, 1998, 102: 7338-7364.
    [13] KL Yin, DH Zou, B Yang, etal, Investigation of H-bonding for the related forcefields in materials studio software. Computer and Appilied Chemistry, 2006,23:1335-1340.
    [1]刘璐琪,郭志新,戴黎明等,碳纳米管的有机化学修饰, [J]科学通报, 2001,19(46): 1590 -1595.
    [2] Zorbas V, Smith A. L, Xie H, Ortiz-Acevedo A, Dalton A. B, Dieckman G. R,Draper R. K, Baughman R. H, Musselman I. H, Importance of Aromatic Contentfor Peptide/Single-Walled Caron Nanotube Interaction, J Am. Chem. Soc, 2005,127: 12323-12328.
    [3] Dieckmann G. R, Dalton A. B, Johnson P. A, Razal J, Chen J, Giordano G. M,Musselman I H, Baughman R. H, Draper R. K, Controlled Assembly of CarbonNanotubes by Designed Amphiphilic Peptide Helices, J Am. Chem. Soc, 2003,125: 1770-1777.
    [4] Poenitzsch V. Z, Winters D. C, Xie H, Dieckmann G. R, Dalton, A. B, MusselmanI. H, Effect of Electron-Donating and Electron-Withdrawing Groups onPeptide/Single-Walled Carbon Nanotube Interactions. J. Am. Chem. Soc, 2007,129: 14724-14732.
    [5] Lifeng Zheng, Dheeraj Jain and Peter Burke, Nanotube-Peptide Interactions on aSilicon Chip, J. Phys. Chem. C, 2009, 113(10): 3978-3985.
    [6] Weng J B, Hong M Ch, Shi Q, Rong Cao, Albert S C Chna. ChiarlSupramolecular Assemblies Derived from the Insertion of a Segmental ignad intoa Copper-Tyorsine Framewok, Eur J Inogr Chem, 2002, 2553.
    [7] Wei M, Yuan Q, David G E, Wang Zh Q, Duan X. Layered solids as a“moleeularcontainer”for pharmaceutical agaents: L-tyrosine-intercalated layered doublehydroxides. J Mater Chem, 2005, 15: 1197.
    [8] Wang D, Xu Q M, Wan L J et al. Adsorption of Ennatiomeric and RacemicTyrosineonCu(111 ): A Scanning Tumreling Micorscopy Study. Langmuir, 2003, 19:1958-1962.
    [9]张卉,汪振辉,单壁碳纳米管/聚合物修饰玻碳电极的电化学行为及酪氨酸的伏安测定,分析试验室, 2005, 24(3): 27-31.
    [10] Veigl E, Bohs B, Mnadl A et al, Comparison of (S)-N-(3,5-dinitrobenzoyl)tyorsine derivatives as chiral selectors for high-performance liquidchromatographic enantioseparations, J Chromatogr A, 1995, 694: 135-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700