新型光化学传感分子的设计合成与分子识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以香豆素作为荧光基团和发色基团,设计合成了一系列新型光化学传感分子,并将它们用于对特定的离子、生物小分子、酶和蛋白质物种的识别,取得了非常好的识别效果,其中部分传感分子可以应用于细胞内荧光成像。主要工作概述如下:
     1.设计合成了一种基于香豆素的肼衍生物(SR01)作为传感分子。它在乙腈溶液中能识别Hg2+离子,用肉眼即可观察到溶液颜色由橙色(490 nm)变成紫红色(575 nm),而其它金属离子无此变化,体现了良好的识别选择性,该传感分子可在较长波长下检测Hg2+离子,而且具有较高灵敏度。
     2.设计合成了一种基于香豆素结构的席夫碱衍生物(WSCU)。该传感分子在水相中能比色识别Cu2+离子,用肉眼即可观察到溶液颜色由橙色(460 nm)变为红色(530 nm)。我们用NMR,MS等方法对识别的机制进行了研究,提出了一种合理的识别模型,而且进一步将其制成传感试纸,有望应用于Cu2+的快速检测。
     3.设计合成了一种基于香豆素结构的席夫碱衍生物(WSZN)。该传感分子可用于识别水相中的Zn2+离子,与Zn2+作用后荧光增强10倍。我们进一步用单晶结构分析确定了传感分子与Zn2+形成配合物的结构。此外用激光共聚焦显微镜研究了该传感分子在HepG2细胞内对Zn2+的荧光成像,取得了很好的效果。
     4.设计合成了一种香豆素的噻唑烷衍生物Ligand 1,该化合物在水相中易于被O2氧化,生成强荧光的Coumarin 6。然而,将该噻唑烷与HgCl2配位后,可制得一种无荧光的稳定配合物HgL作为传感分子,用于水相中识别生物巯基化合物,如半胱氨酸Cys(荧光增强13倍),还原型谷胱甘肽GSH(荧光增强15倍),而对于氧化型谷胱甘肽GSSG则无作用。利用这种选择性,还可进一步用于谷胱甘肽还原酶的选择性识别。我们用NMR,MS等方法对识别机理进行了深入研究,提出了一种全新的“潜荧光”传感机理。此外我们从HgL单晶结构中发现,其分子间存在特殊的Hg-S长程相互作用(3.112 ?),该化学键长度超过了目前剑桥晶体结构数据库中记录的Hg-S键最长值(2.9 ?)。
     5.设计合成了一种基于香豆素的氨基硫脲衍生物Ligand 2,它在水相中有强荧光发射。将该化合物与HgCl2配位制得了一种无荧光的配合物Hg2L2作为传感分子。从单晶结构中发现Hg2L2是以氯桥相连的双核配合物。它在水相中的荧光发射能随着生物巯基化合物如Cys,GSH的加入而增强(约12倍)。而且Hg2+和GSH的交替加入可使溶液呈现循环的荧光“开”-“关”状态,这种循环的荧光“开”-“关”过程可以用肉眼明显的观察到。进一步研究发现,其对谷胱甘肽还原酶的识别有很好的选择性。此外,该可“再生”的传感分子能够用于细胞内生物巯基化合物的荧光成像,在不同种类的细胞中均取得了很好的效果。
A series of fluorescent and colorimetric chemosensors were designed and synthesized for selective detection of the environmentally and biologically significant species, such as Cu2+, Zn2+, cysteine, glutathione, as well as enzymes and proteins. In addition, it was found that these optical chemosensors could be used for intracellular imaging to monitor the level of those important species; the results are summarized as follows:
     1. A coumarin azine derivative (SR01) was synthesized and characterized. It was used as a colorimetric chemosensor for Hg2+. The absorption maximum of SR01 shows a large red shift from 490 nm to 565 nm (Δ=75 nm) in the presence of Hg2+. The change in color is very easily observed by naked eyes, while other metal cations, Fe2+, Co2+, Ni2+, Zn2+, Cd2+, Cu2+, Fe3+, Ag+, Pb2+, alkali metal and alkaline earth metal cations do not induce such a change.
     2. A coumarin Schiff-base derivative (WSCU) was synthesized and used as a colorimetric chemosensor for Cu2+ recognition in aqueous solution. The absorption maximum of the chemosensor shows a large red-shift (Δ=70 nm) in the presence of Cu2+. The change in color (from orange to red) is very easily observed by naked eyes, while other metal cations, Ag+,Fe3+,Fe2+, Co2+, Ni2+, Zn2+, Cd2+, Hg2+, Pb2+, alkali metal and alkaline earth metal cations do not induce such a change. To investigate the practical application of WSCU, a test kit was prepared for the fast detection of Cu2+ in aqueous solution.
     3. A novel coumarin derivative (WSZN) was designed and synthesized as a fluorescent chemosensor for Zn2+ detection in aqueous solution, the solution of the WSZN has weak fluorescence emission, and the fluorescence is greatly enhanced (10 times) upon addition of Zn2+, while other metal cations, Fe2+, Co2+, Ni2+, Zn2+, Cd2+, Hg2+, Pb2+, alkali metal and alkaline earth metal cations do not induce such a change. Furthermore, recognition model was demonstrated by X-ray analysis, and the novel chemosensor was successfully employed for Zn2+ imaging in HepG2 cells
     4. A coumarin thiozolidine derivative (ligand 1) was designed and synthesized, which can take a spontaneous and quantitative oxidation reaction to yield a strong fluorescence emission compound laser dye coumarin-6. Such an anomalous oxidation reaction was inhibited upon mercury ligation to form a non-fluorescence emissive unusual complex HgL as a novel chemosensor. X-ray analysis shows that HgL has strong Hg-S and weak Hg-N bonds packed in a unidirectional fashion through bridging Hg-S (3.112 ?). The chemosensor demonstrated a high selectivity in the recognition of thiol containing chemical species such as cysteine (Cys) and glutathione (GSH). Based on the differential responses of HgL to GSH and GSSG, the fluorescent and visualization assay of glutathione reductase (GR) using HgL was demonstrated by comparison to a series of proteins/enzymes.
     5. A novel coumarin thiosemicarbazide derivative (ligand 2) shows a strong fluorescence emission in aqueous solution. It was ligated with mercury to construct a novel regenerative chemosensor Hg2L2, which is non-emissive in aqueous solution. Both molecular structures of ligand 2 and Hg2L2 were characterized by X-ray analysis. Thiol (-SH) compounds react with Hg2L2 to release strong fluorescent species Ligand 2, and Hg2L2 can be regenerated upon addition of HgCl2. The fluorescence can be repeatedly quenched and recovered for more than 10 times upon alternate addition of HgCl2 and cysteine. Hg2L2 shows good selectivity to the reduced form of glutathione (GSH) than the oxidized form of glutathione (GSSG) in aqueous solution. Based on this result, a convenient method of detection for Glutathione reductase (GR) was established, and the interaction process could be easily observed by naked eyes or fluorescence spectrum. Furthermore, the novel chemosensor Hg2L2 was empolyed successfully in intracellular thiol (-SH) imaging.
引文
[1]. Lehn, J. M. Supramolecular Chemistry,concepts and perspectives. 1995, VCH,Weinheim.
    [2]. Vogtle, F. supramolekulare chemie, Teubner, 1989.Stuttgart.
    [3]. Vogtle, F. supramolekulare chemie, 1991. Wiley.New York.
    [4]. Lehn, J. M. Perspectives in Supramolecular Chemistry - From Molecular Recognition towards Molecular Information Processing and Self-Organization, Angew. Chem. Int. Ed. 1990, 29, 1304-1319.
    [5]. Fyfe, M. C. T., Stoddart, J. F., Synthetic Supramolecular Chemistry. Acc. Chem. Res. 1997, 30(10), 393-401.
    [6]. Kikuchi, K., Komatsu, K., Nagano, T. Zinc sensing for cellular application. Curr opin in Chem Bio. 2004, 8, 182-191.
    [7]. Rietveld, P., Arscott, L. D., A. Berry, N. S., Scrutton, M. P., Deonarain, R. Perham, N., Williams, C. H. Reductive and oxidative half-reactions of glutathione reductase from Escherichia coli. Biochemistry. 1994, 33, 13888-13895.
    [8]. Balzani. V., Scandola, F. Supramolecular photochemistry. 1991. New York:Ellis Horwood.
    [9]. 吴世康,超分子光化学导论,科学出版社,2005,p 5.
    [10]. Anthony.W. C. Chemical Communication in Water Using Fluorescent Chemosensors, Acc. Chem. Res. 1994, 27(10), 302-308.
    [11]. Martinez-Manez, R., Sancenon, F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chem. Rev, 2003, 103(11), 4419-4476.
    [12]. Bissell,R.A., de Silva,A.P., Gunaratne,H.Q.N., Lynch,P. M. L., Maguire,G.E.M., McCoy,C.P., K.R.A.S.Sandanayake, Topics of Current Chemistry.1993, p223.
    [13]. Bissell, R. A., de Silva, A. P., Gunaratne,H. Q. N., Lynch,P.M. L., Maguire,G. E. M., Sandanayake, K. R. A. S. Molecular Fluorescent Signalling with Fluor– spacer– receptor Systems: Approaches to Sensing and Switching Devices via Supramolecular Photophysics, Chem. Soc. Rev. 1992, 21, 187-195.
    [14]. Powe, A. M., Fletcher, K. A., St. Luce, N. N, Lowry, M., Neal, S., McCarroll, M. E, Oldham, P. B., McGown,L.B., Warner, I. M.,Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry, Anal. Chem. 2004, 76(16), 4614-4634.
    [15].Bernard, V., Isabelle. L. Design principles of fluorescent molecular sensorsfor cation recognition, Coordination Chemistry Reviews. 2000, 205, 3 - 40.
    [16]. Bissell, R. A., de Silva,P., Gunaratne,H. Q. N., Lynch,P. L. M., Maguire,G. E. M., Sandanayake,K. R. A. S. Molecular Fluorescent Signalling with Fluor– spacer– receptor Systems: Approaches to Sensing and Switching Devices via Supramolecular Photophysics. Chem. Soc. Rev. 1992, 21,187-195
    [17]. Wiskur,S. L., Haddou,H. A., Lavigne,J. J., Anslyn,E. V. Teaching Old Indicators New Tricks. Acc. Chem. Res. 2001, 34, 963-972.
    [18]. Schuster, G. B. Long-Range Charge Transfer in DNA: Transient Structural Distortions Control the Distance Dependence, Acc. Chem. Res. 2000, 33(4), 253-260.
    [19]. McCusker, J. K. Femtosecond Absorption Spectroscopy of Transition Metal Charge-Transfer Complexes. Acc. Chem. Res. 2003, 36(12), 876-887.
    [20]. de Silva, P., Gunaratne, H. Q., Gunnlaugsson,N. T., Huxley,A. J. M., McCoy,C. P., Rademacher,J. T., Rice,T. E. Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev. 1997, 97, 1515-1566.
    [21]. Gaillard, E. R., Whitten, D. G. Photoinduced Electron Transfer Bond Fragmentations, Acc. Chem. Res. 1996, 29(6), 292-297.
    [22]. Lindstrom, C. D., Zhu, X. Y., Photoinduced Electron Transfer at Molecule-Metal Interfaces. Chem. Rev. 2006, 106(10), 4281-4300.
    [23]. Michael. R. W. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 1992, 92, 435-461.
    [24]. Scheiner, S. Bent Hydrogen Bonds and Proton Transfers, Acc. Chem. Res. 1994; 27(12); 402-408.
    [25]. Bredas, J. L., Beljonne, D., Coropceanu, V., Cornil, J. Charge-Transfer and Energy-Transfer Processes in -Conjugated Oligomers and Polymers: A Molecular Picture. Chem. Rev. 2004, 104(11), 4971-5004.
    [26]. Speiser, S. Photophysics and Mechanisms of Intramolecular Electronic Energy Transfer in Bichromophoric Molecular Systems: Solution and Supersonic Jet Studies. Chem. Rev. 1996, 96, 1953-1976.
    [27]. Saigusa, H., Lim, E. C. Excimer Formation in van der Waals Dimers and Clusters of Aromatic Molecules. Acc. Chem. Res. 1996, 29(4), 171-178.
    [28]. Frans C. De Schryver, P. C., Vandendriessche, J., Rudy, G., Anne, M. S., Marc, V. D. A. Intramolecular excimer formation in bichromophoric molecules linked by a short flexible chain, Acc. Chem. Res. 1987, 20(5), 159-166.
    [29]. Edward, C. L. Molecular triplet excimers. Acc. Chem. Res. 1987, 20(1), 8-17.
    [30]. Martinez-Manez, R.; Sancenon, F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chem. Rev. 2003; 103(11), 4419-4476.
    [31]. Thiagarajan, V., Ramamurthy, P., Thirumalai, D., Ramakrishnan, V. T. A novel colorimetric and fluorescent chemosensor for anions involving PET and ICT pathways. Org. Lett. 2005; 7, 657-660.
    [32]. Yuan, M., Li, Y., Li, J., Li, C., Liu, X., Lv, J., Xu, J., Liu, H., Wang, S., Zhu, D. A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule. Org.Lett. 2007, 9, 2313-2316.
    [33]. Miller, E. W., Bian, S. X., Chang, C. J. A Fluorescent Sensor for Imaging Reversible Redox Cycles in Living Cells. J. Am. Chem. Soc. 2007, 129(12), 3458-3459.
    [34]. Mello, J. V., Finney, N. S. Reversing the Discovery Paradigm: A New Approach to the Combinatorial Discovery of Fluorescent Chemosensors. J. Am. Chem. Soc. 2005, 127, 10124-10125.
    [35]. Ahn, D. J., Chae, E. H., Lee, G. S., Shim, H.-Y., Chang, T.-E., Ahn, K.-D., Kim, J. M. Colorimetric Reversibility of Polydiacetylene Supramolecules Having Enhanced Hydrogen-Bonding under Thermal and pH Stimuli, J. Am. Chem. Soc. 2003, 125(30), 8976-8977.
    [36]. Peng, X., Du, J., Fan, J., Wang, J., Wu, Y., Zhao, J., Sun, S., Xu, T. A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells. J. Am. Chem. Soc. 2007; 129, 1500-1501.
    [37]. Zhu, M.,Yuan, M., Liu, X., Xu, J., Lv, J., Huang, C., Liu, H., Li, Y., Wang, S.,Zhu, D. Visible Near-Infrared Chemosensor for Mercury Ion. Org. Lett. 2008, 10 ,1481-1484.
    [38]. Lee, D. H., Im, J. H., Son, S. U., Chung, Y. K., Hong, J. I. An Azophenol-based Chromogenic Pyrophosphate Sensor in Water. J. Am. Chem. Soc. 2003, 125, 7752-7753.
    [39]. Coskun, A., Yilmaz, M. D., Akkaya, E. U. Bis(2-pyridyl)-Substituted Boratriazaindacene as an NIR-Emitting Chemosensor for Hg(II). Org. Lett.; 2007, 9, 607-609.
    [40]. Zhou, L. L., Sun, H., Li,H. P., Wang,H., Zhang,X. H., Wu,S. K., Lee,S.T. A Novel Colorimetric and Fluorescent Anion Chemosensor Based on the Flavone Quasi-Crown Ether-Metal Complex. Org. Lett. 2004, 6, 1071–1074.
    [41]. Bell, T. W., Hou, Z., Luo, Y., Drew, M. G. B., Chapoteau,E., Czech, B. P., Kumar, A. Detection of Creatinine by a Designed Receptor, Science. 1995, 269,671-674.
    [42]. Roger, Y. Tsien. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980, 19, 2396-2404.
    [43]. Grynkiewicz, G., Poenie, M., Tsien, R.Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 1985, 260, 3440-3450.
    [44]. Minta, A., Kao, J., Tsien, R Y. Fluorescent indicators for cytosolic calcium based a rhodamine and fluorescein chromophores. J. Biol. Chem. 1989, 264, 8171-8178.
    [45]. London, R. E. Methods for measurement of intracellular magnesium: NMR and fluorescence. Annu. Rev. Physiol. 1991, 53, 241-258.
    [46]. Walkup, G., Burdette, S., Lippard, S., Tsien, R. A New Cell-Permeable Fluorescent Probe for Zn2+. J. Am. Chem. Soc. 2000, 122, 5644-5645.
    [47]. Burdette, S., Frederickson, C., Bu, W., Lippard, S. ZP4, an Improved Neuronal Zn2+ Sensor of the Zinpyr Family. J. Am. Chem. Soc. 2003, 125, 1778-1787.
    [48]. Hirano, T., Kikuchi, K., Urano, Y., Higuchi, T., Nagano, T. Novel Zinc Fluorescent Probes Excitable with Visible Light for Biological Applications. Angew.Chem.Int.Ed. Engl. 2000, 39, 1052-1054.
    [49]. Hirano, T., Kikuchi, K., Urano, Y., Nagano, T. Improvement and Biological Applications of Fluorescent Probes for Zinc, ZnAFs. J. Am. Chem. Soc. 2002, 124, 6555-6562.
    [50]. Chang, C., Jaworski, J., Nolan, E., Sheng, M., Lippard, S. From the Cover: A tautomeric zinc sensor for ratiometric fluorescence imaging: Application to nitric oxide-induced release of intracellular zinc. Proc. Natl. Acad. Sci. 2004, 101, (5), 1129-1135.
    [51]. Sparano, B. A., Koide, K. A. Strategy for the Development of Small-Molecule-Based Sensors That Strongly Fluoresce When Bound to a Specific RNA. J. Am. Chem. Soc, 2005, 127, 14954- 14955.
    [52]. Lee, H. N., Swamy,K. M. K., Sook, K. K., Kwon,J.Y., Kim, Y.M., Kim,S.J., Yoon,Y. J., Yoon. J.Y. Simple but Effective Way to Sense Pyrophosphate and Inorganic Phosphate by Fluorescence Changes. Org. Lett, 2007, 9, 243-246.
    [53]. Ojida, A., Miyahara, Y., Kohira, T., Hamachi, I. Recognition and fluorescence sensing of specific amino acid residue on protein surface using designed molecules. Biopolymers, 2004, 76, 177-184.
    [54]. Takahiro, A., Nakata ,E., Koshi, Y., Ojida, A., Hamachi, I. Design of a HybridBiosensor for Enhanced Phosphopeptide Recognition Based on a Phosphoprotein Binding Domain Coupled with a Fluorescent Chemosensor. J. Am.Chem.Soc. 2007, 129, 6232-6239.
    [55]. Xu, S.,Chen, K.,Tian, H.A colorimetric and fluorescent chemodosimeter: fluoride ion sensing by an axial-substituted subphthalocyanine. J.Mater.Chem,2005.15:2676-2680.
    [56]. Zhang, T.Z., Eric, V. Anslyn, A. Colorimetric Boronic Acid Based Sensing Ensemble for Carboxy and Phospho Sugars. Org. Lett. 2006, 8, 1649 - 1652
    [57]. Barbara, P. K.,Brus, L. E.Picosecond kinetic and vibrationally resolved spectroscopic studies of intramolecular excited-state hydrogen atom transfer J.Phys.Chem.1989,93, 29-34.
    [58]. Douhal, A.,Lahmam, F,Zewel, A. H. Proton-transfer reaction dynamics Chem.Phys.1996,207,477-498.
    [59]. Frederickson, C., Kasarskis, E., Ringo, D., Frederickson, R. A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain.J. Neurosci. Meth. 1987, 20, (2), 91-103.
    [60]. Andrews, J., Nolan, J., Hammerstedt, R., Bavister, B. Characterization of N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide for the detection of zinc in living sperm cells. Cytometry. 1995, 21, 153-159.
    [61]. Zalewski, P., Forbes, I., Betts, W. Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6- quinolyloxy) acetic acid], a new specific fluorescent probe for Zn(II). Biochem. J. 1993, 296, 403-408.
    [62]. Mahadevan, I., Kimber, M., Lincoln, S., Tiekink, E., Ward, A., Betts, W., Forbes,I., Zalewski, P. The Synthesis of Zinquin Ester and Zinquin Acid, Zinc (II)-Specific Fluorescing Agents for Use in the Study of Biological Zinc(II). Aust. J. Chem. 1996, 49, 561-568.
    [63]. Budde, T., Minta, A., White, J., Kay, A. Imaging free zinc in synaptic terminals in live hippocampal slices. Neuroscience. 1997, 79, 347-358.
    [64]. Jiang, P., Chen, L., Lin. J., Liu, Q., Ding, J., Gao, X., Guo, Z. Novel Zinc Fluorescent Probe Bearing Dansyl and Aminoquinoline Groups. Chem. Commun. 2002, 1421-1424.
    [65]. Liu, Y., Zhang, N., Chen, Y., Wang, L. H. Fluorescence Sensing and Binding behavior of Aminobenzenesulfonamidoquinolino-cyclodextrin to Zn2+. Org.Lett, 2007.9, 315-318.
    [66]. Wu, J. S., Wang, F., Wang, P. F., Zhang, X. H., Wu, S. K. Zr-EDTA-flavonol Ternary Complex: An Efficient Chemosensor for Fluoride in Aqueous Solution. Sensors and Actuators B: Chemical. 2007, 125,447-452
    [67] Gabe, Y., Urano, Y., Kikuchi, K., Kojima, H., Nagano, T. Highly Sensitive Fluorescence Probes for Nitric Oxide Based on Boron Dipyrromethene Chromophore-Rational Design of Potentially Useful Bioimaging Fluorescence Probe. J.Am.Chem.Soc.2004,126:3357-3367.
    [68]. Jiang, W., Fu, Q., Fan, H., Ho, J., Wang. W. A Highly Selective Fluorescent Probe for Thiophenols,Angewandte Chemie. 2007, 46, 8445-8448.
    [69]. Yang, Y. K., Tae, J. Acridinium Salt Based Fluorescent and Colorimetric Chemosensor for the Detection of Cyanide in Water. Org. Lett. 2006,8(25), 5721-5723.
    [70].Lee, K. S., Kim, H. J., Kim, G. H., Shin, I., Hong, J. I. Fluorescent Chemodosimeter for Selective Detection of Cyanide in Water. Org. Lett. 2008, 10, 49-51.
    [71]. Mohanty, J. G., Jaffe, J.S., Shulman, E.S., Raible, D.G. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J. Immunol Methods. 1997, 202, 133–141.
    [72]. Tatiana, O. Z., Aleksey, V. R., Birrell, G. B., Griffith, O. H., John, F. W. K. Synthesis of Fluorogenic Substrates for Continuous Assay of Phosphatidylinositol-Specific Phospholipase C. Bioconjugate Chem. 2001, 12, 307-313.
    [73]. Wu, J. S.; Liu, W. M., Zhuang, X. Q., Wang, P. F., Tao, S. L., Zhang, X. H., Wu, S. K., Lee, S. T. Fluorescent Turn-on of coumarine derivatives by metal cations: A new signaling mechanism based on C=N isomerization. Org. Lett. 2007, 9, 1, 33-36.
    [74]. Paeker, C. A., Ress, W. T. Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst. 1960, 85, 587-600.
    [75]. 张建成,王夺元. 现代光化学,2006,化学工业出版社,p44.
    [76]. Choi, J. K., Kim, S. H., Yoon, J., Lee, K. H., Bartsch, R. A., Kim, J. A PCT-Based, Pyrene-Armed Calix [4] crown Fluoroionophore J. Org. Chem. 2006, 71, 8011-8015.
    [77] Lee, H.N., Xu, Z.C., Kim, S. K., Swamy, K. M. K., Kim, Y. M., Kim, S. J., Yoon, J.Y. Prophosphate-Selective Fluorescent Chemosensor at Physiological pH: formation of a Unique Excimer upon Addition of Pyrophosphate.J. Am.Chem.Soc. 2007, 129, 3828-3829.
    [78]. Wu, J. S., Zhou, J. H., Wang, P. F., Zhang, X. H., Wu, S. K. New FluorescentChemosensor Based on Exciplex Signaling Mechanism. Org. Lett. 2005, 7, 2133-2136.
    [79]. Turro.N. J. Modern molecular photochemistry, The Benjamin/cummings Publishing Co, inc. 1978, p 301-305.
    [80]. Komatsu, T., Kikuchi, K., Takakusa, H., Hanaoka, K., Ueno, T., Kamiya, M., Urano, Y., Nagano, T. Design and Synthesis of an Enzyme Activity-Based Labeling Molecule with Fluorescence Spectral Change. J. Am. Chem. Soc., 2006, 128; 15946-15947.
    [1]. Paul, B. T., Wellington, K. A., Nanuli, N., Dwayne, S. Review: environmental exposure to mercury and its toxicopathologic implications for public health. Environ.Toxicol. 2003, 18, 149–175.
    [2]. Sergio, T., Pablo, G., Eugenlo, C., Emillo, P. Optical mercury sensing using a benzothiazolium hemicyanine dye. Org. Lett.,2006, 8, 3857–3860.
    [3]. Wang, J., Qian, X.H., Cui, J. Detecting Hg2+ ions with an ICT fluorescent sensor molecule: remarkable emission spectra shift and unique selectivity. J. Org. Chem. 2006, 71, 4308–4311.
    [4]. Wang, J. Qian, X. H. Two regioisomeric and exclusively selective Hg2+ sensor molecules composed of a naphthalimide fluorophore and an ophenylenediamine derived triamide receptor. Chem. Commun. 2006, 109–110.
    [5]. Rurack, K. M., Kollmannsberger, U., Resch, G., Daub, J. A selective and sensitive fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore and receptor units. J. Am. Chem. Soc. 2000, 122, 968–969.
    [6]. J. V. Ros-Lis, R. Martinez-Maňez, K. Rurack, F. Sancenon, J. Soto, M. Spieles, Highly selective chromogenic signaling of Hg2+ in aqueous media at nanomolar levels employing a squaraine-based reporter, Inorg.Chem. 2004, 43, 5183–5185.
    [7]. Yang, Y. K., Yook, K. J., Tae, J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media, J. Am. Chem. Soc. 2005,127,16760–16761.
    [8]. Descalzo, A. B., Martinez-Maňez, R., Radeglia, R., Rurack, K., Soto,J. Coupling selectivity with sensitivity in an integrated chemosensor framework: design of a Hg2+-responsive probe, operating above 500 nm. J. Am. Chem. Soc. 2003, 125 3418–3419.
    [9]. Ros-Lis, J. V., Marcos, M. D., Martinez-Maňez, R., Rurack,K., Soto,J. A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions. Angew. Chem. Int. Ed. 2005, 44, 4405–4406.
    [10]. Caballero, A., Martinez-Maňez, R., Lloveras, V., Ratera, I., Gancedo, V. J. Wurst, K. Tarraga, A. Molina, P. Veciana, J. Highlyselective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines, J. Am. Chem. Soc. 2005, 127, 15666–15667.
    [11]. Guo, X., Qian, X., Jia, L. A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. J. Am. Chem. Soc. 2004, 126 2272–2273.
    [12]. Tatay, S., Gavina, P., Coronado, E., Palomares, E. Optical mercury sensing using a benzothiazolium hemicyanine dye. Org. Lett. 2006, 8, 3857–3860.
    [13]. Coronado, E., Galan-Mascaros, J. R. C. Marti-Gastaldo, E., Palomares, J. R., Durrant, R. V., Gratzel, M. M., Nazeeruddin, K. Reversible colorimetric probes for mercury sensing. J. Am. Chem. Soc. 2005, 127,12351–12356.
    [14]. Yoon, S., Albers, A. E., Wong, A. P., Chang, C. J. Screening mercury levels in fish with a selective fluorescent chemosensor. J. Am. Chem. Soc. 2005, 127, 16030–16031.
    [15]. Moon, S. Y., Cha, N. R., Kim, Y. H., Chang, S. K. New Hg2+-selective chromo and fluoroiono-phore based upon 8-Hydroxyquinoline, J. Org. Chem. 2004,69,181–183.
    [16]. Talanova, G. G., Elkarim, N. S. A., Talanov, V. S., Bartsch, R. A. A calixarenebased fluorogenic reagent for selective mercury (II) recognition. Anal. Chem. 1999, 71, 3106–3109.
    [17]. Thorfinnur, G., Lee, T. C., Raman, P. Cd2+ Sensing in water using novel aromatic iminodiacetate based fluorescent chemosensors, Org. Lett. 2003, 5, 4065–4068.
    [18]. Gunnlaugsson, T. Leonard, J. P., Murray, N. S. Highly selective colorimetric Naked-eye Cu2+ detection using an azobenzene chemosensor, Org. Lett. 2004, 6, 1557–1565.
    [19]. Moon, S. Y., Cha, N. R., Kim, Y. H., Chang, S. K. New Hg2+-selective chromo and fluoroionophore based upon 8-hydroxyquinoline, J. Org. Chem. 2004, 69. 181–183.
    [20]. Martinez-Manez, R., Espinosa, A., Tarraga, A., Molina, P. New Hg2+ and Cu2+ selective chrom- and fluoroionophore based on a chromophoric azine. Org. Lett. 2005, 7, 5869–5872.
    [21]. Tremblay, M. S., Sames, D. A new fluorogenic transformation: development of an optical probe for coenzyme Q. Org. Lett. 2005, 7, 2417–2420.
    [22]. Akita, S. Umezawa, N. Higuchi, T. On-bead fluorescence assay for serine/ threonine kinases. Org. Lett. 2005, 7, 5565–5568.
    [23]. Feuster, E. K., Glass, T. E. Detection of amines and unprotected amino acids in aqueous conditions by formation of highly fluorescent iminium ions, J. Am. Chem. Soc. 2003,125, 16174–16175.
    [24]. Hirshberg, M., Henrick, K., Lloyd, H. L., Vasisht, N., Brune, M., Corrie, J. E. T., Webb, M. R. Crystal structure of phosphate binding protein labeled with a coumarin fluorophore, a probe for inorganic phosphate,Biochemistry, 1998, 37, 10381–10385.
    [25]. Alarcon, R., Silva, M., Valcareal, M. Kinetic fluorimetric determination of microamounts of copper by its catalytic effect on the hydrolysis of 2-hydroxybenzaldehyde azine, Anal. Lett. 1982, 15, 891–907.
    [26]. Valeur, B. Molecular fluorescence: principles and applications, Wiley-VCH Verlag GmbH, New York, 2001, 341.
    [1]. Uchechi, E. Ukaegbu, S. H., Rosenzweig, A. C. Biochemical Characterization of MmoS, a Sensor Protein Involved in Copper-Dependent Regulation of Soluble Methane Monooxygenase. Biochemistry. 2006, 45, 10191-10198.
    [2]. Gaggelli, E., Kozlowski, H., Valensin, D., Valensin, G. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer’s, Prion. and Parkinson’s Diseases and Amyotrophic Lateral Sclerosis). Chem. Rev. 2006, 106 (6); 1995-2044.
    [3]. Chiu, Y. C., Okajima, T., Murakawa, T., Uchida, M., Taki, M., Hirota, S., Kim, M., Yamaguchi, H., Kawano, Y., Kamiya, N., Kuroda, S., Hayashi, H., Yamamoto, Y., Tanizawa,K. Kinetic and Structural Studies on the Catalytic Role of the Aspartic Acid Residue Conserved in Copper Amine Oxidase. Biochemisty. 2006, 45, 4105-4120.
    [4]. Dujols, V., Ford, F., Czarnik, A. W. A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu(II) Ion in Water. J. Am. Chem. Soc. 1997, 119, 7386-7387.
    [5]. Royzen, M. Dai, Z. Canary, J. W. Ratiometric Displacement Approach to Cu(II) Sensing by Fluorescence. J. Am. Chem. Soc. 2005, 127(6), 1612-1613.
    [6]. Wu, Q. Y., Anslyn, E. V. Catalytic Signal Amplification Using a Heck Reaction. An Example in the Fluorescence Sensing of Cu(II). J. Am. Chem. Soc. 2004, 126, 14682-14683.
    [7]. Gunnlaugsson, T. Leonard, J. P. Murray, N. S. Highly Selective Colorimetric Naked-Eye Cu(II) Detection Using an Azobenzene Chemosensor. Org.Lett. 2004, 6, 1557-1560.
    [8]. Mokhir, A. Kr?mer, R. Double discrimination by binding and reactivity in fluorescent metal ion detection. Chem. Commun. 2005, 17, 2244-2246.
    [9]. Zeng, L., Miller, E.W., Pralle, A., Ehud Y. I., Christopher, J. C. A Selective Turn-On Fluorescent Sensor for Imaging Copper in Living Cells, J. Am. Chem. Soc. 2006, 128, 10-11.
    [10]. Valeur, B. Leray, I. Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 2000, 205, 3–40.
    [11]. de Silva, A. P., Fox, D. B., Allen J. M. Moody, T. S. Combining luminescence, coordination and electron transfer for signalling purposes, Coord. Chem. Rev. 2000, 205,, 41–57.
    [12]. Prodi, L., Bolletta, F., Montalti, M. Accheroni, N. Luminescent chemosensors for transition metal ions. Coord. Chem. Rev. 2000, 205(1), 59–83.
    [13]. Amendola, V., Fabbrizzi, L., Foti, F., Licchelli,M., Mangano, C., Pallavicini, P., Poggi, A., Sacchi,D., Taglietti, A. Light-emitting molecular devices based on transition metals. Coord. Chem. Rev. 2006, 250, 273-299.
    [14]. Wu, J. S., Wang, P. F., Zhang, X. H., Wu, S. K. Novel fluorescent sensor for detection of Cu(II) in aqueous solution. Spectrochimica Acta. Part A. 2006, 65,749-752.
    [15]. Ellen K. F. Glass.T. E. Detection of Amines and Unprotected Amino Acids in Aqueous Conditions by Formation of Highly Fluorescent Iminium Ions . J. Am. Chem. Soc. 2003, 125, 16174-16175.
    [16]. Hirshberg, M., Kim H., Lesley, L. H., Vasisht, N., Martin B., John, E. T. C., Martin, R. W. Crystal Structure of Phosphate Binding Protein Labeled with a Coumarin Fluorophore, a Probe for Inorganic Phosphate,Biochemistry. 1998, 37, 10381-10385.
    [17]. Trost, B. M., Toste, F. D. Greenman, K. Atom Economy. Palladium-Catalyzed Formation of Coumarins by Addition of Phenols and Alkynoates via a Net C-H Insertion J. Am. Chem. Soc. 2003, 125, 4518-4526.
    [18]. Li, K., Zeng, Y., Neuenswander,B. Tunge, J. A. Sequential Pd(II)-Pd(0)Catalysis for the Rapid Synthesis of Coumarins. J. Org. Chem. 2005, 70(16), 6515-6518.
    [19] Jia, C., Piao, D., Kitamura, T., Fujiwara, Y. New Method for Preparation of Coumarins and Quinolinones via Pd-Catalyzed Intramolecular Hydroarylation of C-C Triple Bonds, J. Org. Chem. 2000, 65(22), 7516-7522.
    [1]. Cowan.J.A. Inoganic Biochemistry. New York: VCH Publishers, Inc.1993.
    [2]. Zalewski, P. D., Jian, X., Soon, L. L. L., Breed, W. G., Seamark, R. F., Lincoln, S. F., Ward, A. D., Sun, F. Z. Changes in distribution of labile zinc in mouse spermatozoa during maturation in the epididymis assessed by the fluorophore Zinquin. Reprod., Fertil. DeV. 1996, 8, 1097-1105.
    [3]. Berg, J. M., Shi, Y. G. The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc. Science, 1996, 271, 1081-1085.
    [4]. O’Halloran, T. V. Transition metals in control of gene expression. Science. 1993, 261, 715-725.
    [5]. Assaf, S. Y., Chung, S. H. Release of endogenous Zn2+ from brain tissue during activity Nature, 1984, 308, 734-736.
    [6]. Howell, G. A., Welch, M. G., Frederickson, C. J. Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 1984, 308, 736-738.
    [7]. Bush, A. I. Metals and neuroscience. Curr. Opin. Chem. Biol. 2000, 4, 184-191.
    [8]. Outten, C. E., O’Halloran, T. V. Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis, Science. 2001, 292, 2488-2492.
    [9]. Finney, L. A., O’Halloran, T. V. Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion Receptors. Science. 2003, 300, 931-936..
    [10]. Komatsu, K., Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. Selective Zinc Sensor Molecules with Various Affinities for Zn2+, Revealing Dynamics and Regional Distribution of Synaptically Released Zn2+ in Hippocampal Slices. J. Am. Chem. Soc.; 2005, 127(29); 10197-10204.
    [11]. Kawabata, E., Kikuchi, K., Urano, Y., Kojima, H., Odani, A., Nagano, T. Design and Synthesis of Zinc-Selective chelators for extracellular applications, J. Am. Chem. Soc.; 2005; 127(3); 818-819.
    [12]. Maruyama, S., Kikuchi, K., Hirano, T., Urano, Y., Nagano, T. A Novel,Cell-Permeable, Fluorescent Probe for Ratiometric Imaging of Zinc Ion, J. Am. Chem. Soc. 2002, 124(36), 10650-10651.
    [13]. Burdette, S. C., Walkup, G. K., Spingler, B., Tsien, R. Y., Lippard, S. J. Fluorescent Sensors for Zn2+ Based on a Fluorescein Platform: Synthesis, Properties and Intracellular Distribution, J. Am. Chem. Soc. 2001,123, 7831-7841.
    [14]. Wu, J. S., Liu, W. M., Zhuang, X. Q., Wang, P. F., Tao, S. L., Zhang, X. H.,Wu, S. K., Lee, S. T. Fluorescent Turn-on of coumarine derivatives by metal cations: A new signaling mechanism based on C=N isomerization. Org. Lett. 2007, 9, 1, 33-36.
    [1]. Schirmer,R. H., Krauth-Siegel,R.L. Glutathione Reductase. In glutathione, chemical, biochemical, and medical aspects; Dolphin, D., Poulson , R,Avramovic,O., EDs: Wiley: New York, 1989; vol, III, Part A, pp 553-596.
    [2]. Willams, C. H. Jr. In chemistry and biochemistry of flavoenzymes; Muller, F., Ed. CRC Press:Boca Raton,FL,1992;Vol,3,pp 121-211.
    [3]. Sun, Q.A., Su, D., Novoselov, S. V., Carlson, B.A., Hatfield, D.L., Gladyshev, V. N., Reaction mechanism and regulation of mammalian thioredoxin/ Glutathione reductase. Biochemistry. 2005, 44, 14528-14537.
    [4]. Arscott, L. D., Veine, D. M., Williams, C. H. Jr. Mixed Disulfide with Glutathione as an Intermediate in the Reaction Catalyzed by Glutathione Reductase from Yeast and as a Major Form of the Enzyme in the Cell. Biochemistry. 2000, 39, 4711-4721.
    [5]. Guan, X., Davis, M. R., Tang, C., Jochheim, C. M., Jin, L., Baillie, T. A. Identification of S-(n-Butyl carbamoyl) glutathione, a Reactive Carbamoylating Metabolite of Tolbutamide in the Rat, and Evaluation of Its Inhibitory Effects on Glutathione Reductase in Vitro, Chem. Res. Toxicol. 1999, 12, 1138-1143
    [6]. Bergmeyer, H.U. Methods of enzymafic analysis. New York And London:Academic Press,1963 875—879.
    [7]. Beutler,E., Duron, O., Kel, B. M.Improved method for determination of blood glutathione. J.Lab.C1in.Meg.1963.61:882—886.
    [8]. Hissin, P. L. Hill R A fluorometric method for determination of 0xidized and reduced gletathione in tissues. Analytical Biochem.1976,74(I),214-226.
    [9]. Smith, I.k., Vierheller, T.L., Thorne, S. A. Assay of Glutathione Reductase inrude tissue homogenates using 5,5’-dithiolbis ( 2- nitro benzoic acid), Anal Biochem.1988.175, 408-413.
    [10]. Wang, W., Rusin, O., Xu, X., Kim, K. K., Escobedo, J. O., Fakayode, S. O., Fletcher, K. A., Lowry, M., Schowalter, C. M., Lawrence, C. M., Fronczek, F. R., Warner, I.M., Strongin, R. M. Detection of Homocysteine and Cysteine. J. Am. Chem. Soc. 2005, 127, 15949-15958.
    [11]. Tanaka, F., Mase, N., Barbas, C. F. Determination of Cysteine Concentration by Fluorescence Increase: Reaction of Cysteine with a Fluorogenic Aldehyde. Chem. Commun. 2004: 1762-1763.
    [12]. Rusin, O., St. Luce, N. N., Agbaria, R. A., Escobedo, J. O., Jiang, S. Isiah, M., Warner, F. B., Dawan, K. L., Strongin, R. M. Visual Detection of Cysteine and Homocysteine. J. Am. Chem. Soc. 2004, 126, 438-439.
    [13]. Bouffard, J., Kim, Y., Swager, T. M., Weissleder, R., Hilderbrand, S. A. A. Highly Selective Fluorescent Probe for Thiol Bioimaging. Org. Lett. 2008, 10, 37-40.
    [14]. Matsumoto, T., Urano, Y., Shoda, T., Kojima, H., Nagano, T. A Thiol-Reactive Fluorescence Probe Based on Donor-Excited Photoinduced Electron Transfer: Key Role of Ortho Substitution. Org. Lett. 2007, 9(17), 3375-3377.
    [15]. Melnick, J. G., Parkin, G. Cleaving Mercury-Alkyl Bonds: A Functional Model for Mercury Detoxification by MerB. Science, 2007, 317, 225-227.
    [16]. JonesoI, G., Jackson, W. R., Choi, C., Bergmark, W. R. Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism. J. Phys. Chem., 1985, 89, 294-300,
    [17]. Grellmann, K. H., Erich, T. Reaction pathways for the photochemical conversion of o-substituted benzylideneanilines to azoles. J. Am. Chem. Soc. 1973, 95, 3104-3108.
    [18]. Duatti, A., Marchi, A., Rossi, R., Magon, L., Deutsch, E.,Bertolasi, V., Bellucci.F. Reactivity of 2-(2-hydroxy phenyl)Benzothiazoline with the oxotetrahalometalate(V) complexes [MOX4]- (M =technetium, rhenium; X =Cl,Br). Synthesis and characterization of new oxo-M(V)Complexes containing 2-(2-hydroxy phenyl) benzothiazole, Crystal structure of Tetra-phenylarsonium oxotrichloro [2-(2-hydroxy phenyl)benzothiazo lato] technetate(V). Inorg. Chem, 1988, 27, 4208-4213.
    [19]. Reynolds, G. A., Drexhage, K. H. New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers. Optics.Commun. 1975, 13, 222-225.
    [20]. King, J. B., Haneline, M. R., Tsunoda, M., Gabbai, F. P. Dimerization of the Trinuclear Mercury (II) Complex [(o-C6F4Hg)3· 3-acetone] via Mercurophilic Interactions, J. Am. Chem. Soc. 2002, 124(32), 9350-9351.
    [21]. stricks, W., Kolthoff, I. M. Reactions between Mercuric Mercury and Cysteine and Glutathione. Apparent Dissociation Constants, Heats and Entropies of Formation of Various Forms of Mercuric Mercapto-Cysteine and–Glutathione. J. Am. Chem. Soc. 1953, 75, 5673-5674.
    [22]. Hossain, M. A., Mihara, H., Ueno, A. Novel Peptides Bearing Pyrene and Coumarin Units with or without β-Cyclodextrin in Their Side Chains Exhibit Intramolecular Fluorescence Resonance Energy Transfer. J. Am. Chem. Soc.; 2003; 125; 11178-11179.
    [1]. Niroshini, M. G., Gregory I. G., Jacob, C. Multiple roles of cysteine in biocatalysis. Biochem.and Biophy. Research Commun, 2003, 300(l), 1-4.
    [2]. Sano, K., Yokozeki, K., Tamura, F. Microbial conversion of DL-ATC to L-cysteine and L-cystine:screening of microorganisms and identification of products. Appl. Environ. Microbiod.I, 1977, 34(6), 806-810.
    [3]. Janáky, R., Varga, V., Hermann, A., Saransaari, P., Oja. S. S. Mechanism of cysteine toxicity. Neurochem. Res. 2000, 25, 1397-1405
    [4]. Nakhai-Pour, H. R., Grobbee, D. E., Bots, M. L., Muller, M., Van der Schouw, Y. T. Circulating homocysteine and large arterial stiffness and thickness in a population-based sample of middle-aged and elderly men. Journal of Human Hypertension. 2007, 21, 942 - 948
    [5]. Carmel, R., Jacobsen, D. W., Eds. Homocysteine in Health and Disease; Cambridge University Press: Cambridge, U.K., 2001.
    [6]. Agrwal, S. H., Agrawel, M., Lee, E.H. changes inpolyamine and glutathione contents of a green algae.Chlorogonium elongatum france exposed to mercury. Eviron.Exper.Bot,1992. 92, 45-151.
    [7]. Rockstroh, M.P., Rao, J. K. Serum selenium, plasma glutathione (GSH) and erythrocyte glutathione peroxidase (GSH-Px)-levels in asymptomatic versussymptomatic human immunodeficiency virus-1 (HIV-1)-infection. Eur. J. Clin. Nutr. 1997, 51, 266-272.
    [8]. Nath, R. G., Ocando, J. E., Richie, J. P., Jr., Chung, F. L. Effect of Glutathione Depletion on Exocyclic Adduct Levels in the Liver DNA of F344 Rats. Chem. Res. Toxicol. 1997, 10(11), 1250-1253.
    [9]. Murray, A. R., Kisin, E., Castranova, V., Kommineni, C., Gunther, M. R., Shvedova, A. A. Phenol-Induced in Vivo Oxidative Stress in Skin: Evidence for Enhanced Free Radical Generation, Thiol Oxidation, and Antioxidant Depletion, Chem.Res. Toxicol. 2007, 20(12), 1769-1777.
    [10]. Tsunoda, T., Eguchi, S., Narui, K. On the bioassay of amino acids(II); Determination of arginine, asparatic acid and cysteine. Amino Acids, 1961, 3, 7-13.
    [11]. Chwatko, G., Bald, E. Determination of different species of homocysteine in human plasma by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. A. 2002, 949, 141-151.
    [12]. Daskalakis, I., Lucock, M. D., Anderson, A., Wild, J., Schorah, C. J., Levene, M. I. Determination of Plasma Total Homocysteine and Cysteine Using HPLC with Fluorescence Detection and an Ammonium 7-fluoro-2,1,3-benzoxadiazole-4 -sulphonate (SBD-F) Derivatization Protocol Optimized for Antioxidant Concentration, Derivatization Reagent Concentration, temperature and matrix pH. Biomed. Chromatogra. 1996, 10, 205-212.
    [13]. Tanaka, F., Mase, N., Barbas, C. F. Determination of Cysteine Concentration by Fluorescence Increase: Reaction of Cysteine with a Fluorogenic Aldehyde, Chem. Commun. 2004, 1762-1763.
    [14]. Oleksandr, R., Nadia, N., St. Luce, Rezik A. A., Jorge O. E., Jiang,S., Isiah. M. W., Fareed, B. D., Lian, K., Strongin, R. M. Visual Detection of Cysteine and Homocysteine. J. Am. Chem. Soc. 2004, 126, 438-439.
    [15]. Wang, W., Escobedo, J. O., Lawrence, C.M., Strongin, R. M. Direct Detection of Homocysteine. J. Am. Chem. Soc. 2004, 126, 3400-3401.
    [16]. Guo, Y., Shao, S., Xu, J., Shi, Y., Jiang, S. A specific colorimetric cysteine sensing probe based on pyrromethane–TCNQ assembly. Tetrahedron. Lett. 2004, 45, 6477-6480.
    [17]. Nie, L., Ma, H., Sun, M., Li, X., Su, M., Liang, S., Direct chemiluminescence determination of cysteine in human serum using quinine–Ce(IV) system.Talanta, 2003, 59, 959-964.
    [18]. Wang, W., Rusin, O., Xu, X., Kim, K. K., Escobedo, J. O., Fakayode, S. O., Kristin, A., Fletcher, M. L., Schowalter, C. M. Lawrence, C. M., Fronczek, F. R., Isiah, M. W., Strongin, R. M. Detection of Homocysteine and Cysteine. J. Am. Chem. Soc. 2005, 127, 15949-15958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700