基于混合智能算法的热工动态过程故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足电网负荷需求,火电机组常需按照电网调度指令改变机组负荷而处于变负荷动态过渡工况运行。以往针对机组稳定工况的故障诊断研究无法适应这一新情况,严重影响故障诊断系统在实际机组中的应用效果。深入开展变负荷动态过渡过程故障诊断研究,对提高机组可用率、保障机组安全、经济运行具有重要的现实意义。为此,本文基于机组监控系统提供的丰富的热力系统运行参数,深入研究变负荷动态过渡过程热力系统故障的多智能融合诊断方法,并以超临界机组高压给水加热器系统故障诊断为例对算法进行深入仿真试验研究。
     文中首先对混合智能诊断算法中涉及的粒子群优化算法、Elman神经网络和近邻分类法的基本概念和原理进行了论述,并结合具体实例阐明其在不同领域应用的有效性。
     针对变工况动态过渡过程中故障特征参数正常参考值难于获取的困惑,考虑Elman神经网络辨识非线性动态系统的优势和粒子群算法优良的优化性能,建立了一种基于进化Elman神经网络的动态过程特征参数参考值预测模型。该模型采用离散粒子群算法优化Elman网络的结构,改进粒子群算法(IPSO)调整Elman网络的参数,结合两种算法的优势同时进化Elman网络,以自动产生一个高泛化性能和低结构复杂度的网络。IPSO算法中采用新的学习策略并引入变异操作以增强种群多样性,从而提高算法的寻优精度和收敛速度。2个时间序列预测的实例验证了该方法的可行性和有效性。将该方法应用于高加系统变工况动态过渡过程特征参数的预测,取得了满意的结果。
     以变工况动态过程故障的准确诊断为目的,提出了一种基于粒子群和最近邻的热力系统故障诊断新方法。针对故障类别多样、机组运行工况多变导致的故障样本集过于庞大的问题,采用IPSO算法优化典型故障原型,有效减少样本数量,并确保产生的精简原型集能够全面地表示不同故障类的典型特征分布。结合进化Elman神经网络实时预测的特征参数参考值进行故障征兆计算,并依据最近邻分类规则对故障进行诊断。8个UCI标准数据集的分类结果验证了IPSO算法优化原型的有效性。借助某600MW超临界机组全工况仿真系统,在100%至80%额定负荷范围内,对高加给水系统故障进行详细的仿真诊断试验,结果表明该方法对不同稳态下高加给水系统程度迥异故障以及变负荷动态过渡过程中发生的高加故障均能给出满意的诊断结果。
     为进一步提高变负荷动态过渡过程热力系统故障诊断的准确率,利用神经网络优良的非线性逼近能力,提出了一种融合多个基分类器的集成分类器诊断模型。该模型使用原始的训练集建立基分类器以保证故障信息的完整性,提高基分类器的诊断正确率;采用不同的学习参数训练单个基分类器,以增加基分类器的多样性;运用神经网络融合多个基分类器的诊断结果进行二次诊断,有效提高集成分类器整体的诊断正确率。借助600MW超临界机组全工况仿真系统,在100%至70%额定负荷范围之间进行基于集成分类器的高加故障诊断仿真试验,表明集成分类器诊断模型对70%额定负荷稳态工况以及变负荷动态过渡过程高加给水系统程度迥异故障均能给出满意的诊断结果。诊断结果同时验证了神经网络融合方法相比于多数投票和加权平均融合方法的有效性。
     本文研究成果对提高智能故障诊断方法对热力系统变工况动态过渡过程的适应性,促进热力系统故障诊断从理论方法研究走向工程应用,提高机组自身运行的安全性和经济性具有重要作用。
The power unit changes the unit load according to the dispatching commands to meet the load demand of the power grid, so it often runs under variable load dynamic transient conditions. Many successful works have been done in this field, but most of them focus on fault diagnosis under steady state load conditions. Therefore, it is of great practical significance to carry out fault diagnosis study for the thermal system under load-varying dynamic transient conditions with potential advantages of improving the availability, safety and economy of a power unit. In order to take advantage of the diversity and complementarity of individual intelligent diagnosis methods, we fuse these methods to improve accuracy of a diagnosis system. The fault diagnosis method for the thermal system under variable load dynamic transient conditions is investigated. The high-pressure feedwater heater system of a600-MW coal-fired power unit is taken as a target system and typical faults are simulated and diagnosed.
     The basic conceptions and principles of particle swarm optimization algorithm, Elman neural networks and nearest neighbor classification are introduced in this dissertation. An illustration for each algorithm is provided to show the validity for variable application fields.
     Aiming at the puzzled problem that the reference values of feature parameters are not easy to be accurately predicted under load-varying dynamic conditions, an evolutionary Elman neural network(ENN) prediction model is proposed. A novel hybrid optimization algorithm is presented for simultaneous optimization of ENN's structure and its parameters. When training an ENN, a discrete PSO algorithm is adopted to determine the structure of the ENN and an improved PSO (IPSO) algorithm is employed to adjust the parameters. The hybrid algorithm combines the advantages of DPSO and IPSO to automatically generate a network with low complexity and high generalization performance. In the IPSO algorithm, each particle adjusts its trajectory towards its personal best position, the global best position achieved so far by the whole swarm and the best particle in the current swarm. A mutation operation is integrated into the IPSO algorithm. These improvements can enhance convergence and increase diversity of the swarm. Two time series prediction examples are illustrated to thoroughly verify the feasibility and efficiency of the proposed method for structure and parameter learning of ENN. Further application of the proposed method to feature parameters prediction of the feedwater heater system in a600-MW coal-fired power generating unit demonstrates the validity of the method.
     With the purpose of correct and rapid fault diagnosis under load-varying dynamic conditions, a novel fault diagnosis approach is proposed based on particle swarm optimization algorithm and nearest neighbor classifier. Due to multiple fault types and varying operation conditions, the fault sample set becomes too large. To solve this puzzle, the IPSO algorithm is employed to generate a sufficient small set of the typical fault prototypes which can represent efficiently the distributions of the fault classes and discriminate well when used to classify. Moreover, the evolutionary Elman neural network is used to predict the reference values of fault feature parameters. Real-time fault symptoms are calculated with the predicted values and the real values of the feature parameters. Fault diagnosis is implemented by calculating the similarity between the real-time fault symptoms and the generated fault prototypes with the nearest neighbor classifier. The effectiveness of the proposed prototype optimization method based on IPSO algorithm is evaluated on eight real world classification problems. Finally, the proposed diagnosis method is applied to diagnose faults of a high-pressure feedwater heater system in a600-MW coal-fired power unit. The obtained results show the proposed method can recognize varying degrees of faults under steady load conditions and achieve good diagnosis results under load-varying dynamic transient conditions.
     In order to further improve the accuracy of fault diagnosis of the thermal system under load-varying dynamic conditions, a new fault diagnosis model based on ensemble classifier is proposed which employs a neural network to fuse the results of multiple base classifiers. The original data set is used to train the base classifiers to ensure the integrity of the faulty information, different learning parameters are employed to improve the diversity of base classifiers and a neural network is used to fuse the results of multiple base classifiers to improve the accuracy of fault diagnosis of the whole ensemble classifier. The proposed ensemble classifier can obtain satisfactory diagnosis results for the faults of varying degrees in a power plant thermal system under both steady load conditions and load-varying dynamic conditions when the scope of loading conditions is expanded to70%rated-load.
     It is of great practical significance for improving the diagnosis accuracy of intelligent diagnosis methods, promoting thermal system fault diagnosis from theoretical research to engineering application and improving the safety and economy of the power unit.
引文
[1]毛健雄.中国火电技术的发展方向和世界超超临界技术的最新发展一发展超超临界机组对于C02减排的重大意义[J].600/1000MW超超临界机组技术交流2009年会论文集,2009:1-12
    [2]韩小琪,宋璇坤,李冰寒,等.风电出力变化对系统调频的影响[J].中国电力,2010,43(6):26-29
    [3]张洪奎.汽轮机高压加热器的故障诊断与运行[J].电站辅机,997,(3):4-10
    [4]洪钧,王利平,刘虹.国产200MW机组高压加热器热经济性估算方法[J].华北电力技术,1998,(11):50-52
    [5]王运民,卢绪祥.高压加热器给水旁路门泄漏经济性分析[J].湖南电力,2001,21(3):43-44
    [6]董卫国,徐则民.火电厂给水加热器的运行、维护与检修[M].北京:中国电力出版社,1997
    [7]马良玉.结合仿真计算的电站热力系统故障智能诊断研究[D].保定:华北电力大学,2003
    [8]雷亚国.混合智能技术及其在故障诊断中的应用[D].西安:西安交通大学,2007
    [9]胥传普.火电厂回热系统性能与故障分析[D].南京:东南大学,1990
    [10]汪健.基于热力参数的大型机组热力循环系统的集成故障诊断系统[D].北京:清华大学,1996
    [11]马良玉,王兵树,高建强,等.大旁路布置高压给水加热器系统故障模糊知识库及其神经网络的诊断研究[J].动力工程,2002,22(1):1615-1621,1588
    [12]马良玉,王兵树,高建强,等.300MW火电机组高加系统典型故障特征规律的仿真研究[J].系统仿真学报,2002,14(4):455-458,473
    [13]张欣刚,王雷,徐治皋,等.高压加热器泄漏的静态仿真计算及其故障特征分析[J].热力发电,2005,(10):13-17,29
    [14]张欣刚,李勇,徐治皋,等.高压给水加热器泄漏的动态仿真与故障特征提取[J].汽轮机技术,2004,46(2):132-134,153
    [15]张晓,李录平,陈腊民,等.加热器内部泄漏故障的实验研究[J].热能动力工程,2011,26(1):63-66
    [16]李录平.凝汽器低真空运行的原因及模糊诊断[J].汽轮机技术,1993,35(5):45-48
    [17]王培红,朱玉娜,贾俊颖,等.模糊模式识别在凝汽器故障诊断中的应用[J].中国电机工程学报,1999,19(10):46-49
    [18]欧阳晓燕,火电厂凝汽器系统的故障诊断研究[D].北京:北京交通大学,2010
    [19]丁燕.凝汽器动态数学模型及故障诊断系统研究[D].武汉:武汉大学,2005
    [20]马良玉,王兵树,高建强,等.基于仿真模型的对分式凝汽器故障样本知识提取研究[J].热能动力工程,2001,16(3):298-302
    [21]毕小龙.热力系统的状态监测与故障诊断研究[D].南京:东南大学,2007
    [22]马良玉,马永光,王兵树.不同负荷下高加给水系统程度迥异故障诊断的新方法[J].中国电机工程学报,2010,30(2):115-121
    [23]K. Mo, S. J. Lee, P. H. Seong. A dynamic neural network aggregation model for transient diagnosis in nuclear power plants[J]. Progress in Nuclear Energy,2007, 49:262-272
    [24]C. Lin, H.J. Chang. Identification of pressurized water reactor transient using template matching[J]. Annals of Nuclear Energy,2011,38:1662-1666
    [25]P. Baraldi, R.Razavi-Far, E. Zio. Bagged ensemble of Fuzzy C-Means classifiers for nuclear transient identification[J]. Annals of Nuclear Energy,2011,38: 1161-1171
    [26]E. Zio, G. Gola. Neuro-fuzzy pattern classification for fault diagnosis in nuclear components [J]. Annals of Nuclear Energy,2006,33:415-426
    [27]滕丕忠,张聘,陈荣生,等.基于模糊神经网络的凝汽器故障诊断及其性能监测[J].电力自动化设备,2007,27(1):90-92
    [28]侯国莲,孙晓刚,张建华,等.基于非线性主元分析和概率神经网络的凝汽器故障诊断方法研究[J].中国电机工程学报,2005,25(18):104-108
    [29]韩晓娟,徐大平,柳亦兵.基于主分量灰色关联分析的凝汽器故障诊断[J].中国电机工程学报,2006,26(z1):93-96
    [30]周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报,2009,35(6):748-758
    [31]丁艳军,王培红,吕振中,等.生产过程早期故障检测与诊断的一种新方法[J].中国电机工程学报,2000,20(3):61-65,70
    [32]马良玉,王兵树,高建强,等.生产过程轻微和早期故障智能诊断的一种新方法[J].中国电机工程学报,2002,22(6):115-118
    [33]周克毅,邵爱菊,葛聪.国外电站性能监测与诊断概况[J].动力工程,1999,19(1):58-63
    [34]程道来,吴茜,吕庭彦,等.国内电站故障诊断系统的现状及发展方向[J].动力工程,1999,19(1):53-57
    [35]周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报,2009,35(6):748-758
    [36]K.Y. Kim, Y.J. Lee. Fault detection and diagnsosis of the deaerator level control system in nuclear power plants[J]. Journal of the Korean Nuclear Society,2004, 36 (1):73-82
    [37]B. Koppen-Seliger, N. Kiupel, H. S. Kellinghaus, et al. A fault diagnosis concept for a high-pressure preheater line[C]. Proceedings of the 34th Conference on Decision & Control, New Orleans, LA-December 1995
    [38]T. Barszcz, P. Czop. A feedwater heater model intended for model-based diagnostics of power plant installations[J]. Applied Thermal Engineering, 2011,31:1357-1367
    [39]于刚.电站热力系统故障诊断与操作指导的研究[D].南京:东南大学,2000
    [40]J. Ma, J. Jiang. Applications of fault detection and diagnosis methods in nuclear power plants:A review[J]. Progress in Nuclear Energy,2011,53:255-266
    [41]张曦,阎威武,刘振亚,等.基于核主元分析和近邻支持向量机的汽轮机凝汽器过程监控和故障诊断[J].中国电机工程学报,2007,27(14):56-61
    [42]L. Ma, Y. Ma, K. Y. Lee. An intelligent power plant fault diagnostics for varying degree of severity and loading conditions[J]. IEEE Transactions on Energy Conversion,2010,25(2):546-554
    [43]L. Ma, K. Y. Lee. Fuzzy neural network approach for fault diagnosis of power plant thermal system under different operating points[C]. Proceedings of the IEEE Power & Energy Society General Meeting (CDROM), Pittsburgh, PA, July, 2008:1-7
    [44]L. Ma, J. Gao, B.Wang. Fault intelligent diagnosis for high-pressure feedwater heater system of a 300MW coal-fired power unit based on improved BP neural network[J]. Proceedings of 2002 International Conference Power System Technology., Kunming, China,2002:1535-1539
    [45]L. Ma, Y. Ma, J. Ma. Fault diagnosis for the feedwater heater system of a 300 mw coal-fired power generating unit based on RBF neural network[J]. Lecture Notes in Computer Science,2006,3930:832-841
    [46]M. J. Embrechts, S. Benedek. Hybrid identification of nuclear power plant transients with artificial neural networks[J]. IEEE Transactions on Industrial Electronics,2004,51(3):686-693
    [47]S. J. Lee, P. H. Seong. A dynamic neural network based accident diagnosis advisory system for nuclear power plants[J]. Progress in Nuclear Energy, 2005,46 (3-4):268-281
    [48]A.C.A. Mol, J.C.S. Almeida, C.M.N.A. Pereira, et al. Neural and genetic-based approaches to nuclear transient identification including'don't know'response[J]. Progress in Nuclear Energy,2006,48:268-282
    [49]T.V. Santosh, G. Vinod, R.K. Saraf, et al. Application of articial neural networks to nuclear power plant transient diagnosis[J]. Reliability Engineering and System Safety,2007,92:1468-1472
    [50]J. Cai, X. Ma, Q. Li. On-line monitoring the performance of coal-fired power unit:A method based on support vector machine [J]. Applied Thermal Engineering,2009,29:2308-2319
    [51]C. Gottlieb, V. Arzhanov, W. Gudowski, et al. Feasibility study on transient identification in nuclear power plants using support vector machines [J]. Nuclear Technology,2006,155:67-77
    [52]M. Marseguerra, E. Zio, A. Oldrini, et al. Fuzzy identification of transients in nuclear power plants[J]. Nuclear Engineering and Design,2003,225:285-294
    [53]R.G. Costa, A.C.A. Mol, P.V.R. Carvalho. An efficient Neuro-Fuzzy approach to nuclear power plant transient identification[J]. Annals of Nuclear Energy, 2011,38:1418-1426
    [54]S.S. Choi, K.S.Kang, H.G. Kim, et al. Development of an on-line fuzzy expert system for integrated alarm processing in nuclear power plants[J]. IEEE Transactions on Nuclear Science,1995,42(14):1406-1418
    [55]J.A. C. C. Medeiros, R. Schirru. Identification of nuclear power plant transients using the particle swarm optimization algorithm[J]. Annals of Nuclear Energy, 2008,35:576-582
    [56]A.D.S.Nicolau, R.Schirru, A.A.D.M.Meneses. Quantum enolutionary algorithm applied to transient identification of a nuclear power plant[J]. Progress in Nuclear Engery,2011,53:86-91
    [57]P. Baraldi, R.Razavi-Far, E. Zio. Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational conditions [J]. Raliability Engineering and System Safety,2011,96:480-488
    [58]卢绪祥,李录平,胡念苏.汽轮机组回热系统故障诊断知识的模糊处理及诊断研究[J].热能动力工程,2003,18(1):13-16
    [59]张建华,侯国莲,张巍,等.一种基于模糊规则和遗传算法的凝汽器故障诊断方法的研究[J].中国电机工程学报,2004,24(4):205-209
    [60]毕小龙,王洪跃,司风琪,等.基于KPCA和PNN的高加系统故障诊断[J].汽轮机技术,2006,48(5):386-388,392
    [61]王雷,张瑞青,盛伟,等.基于模糊规则和支持向量机的凝汽器故障诊断[J].热能动力工程,2009,24(4):476-480
    [62]唐桂忠,张广明,巩建鸣.基于模糊粗糙集和事例推理的凝汽器真空故障诊断[J].化工学报,2011,62(8):2227-2231
    [63]吴立锋,郭世利,衡世权,等.基于遗传-神经网络的凝汽器故障诊断研究[J].电站辅机,2004,90(3):8-11
    [64]文孝强,徐志明,孙媛媛,等.凝汽器故障诊断的模糊交互熵算法[J].中国电机工程学报,2009,29(20):6-11
    [65]丁常富,代志纲,田松峰,等.采用模糊聚类分析和BP网络相结合的高压加热器故障诊断[J].发电设备,2007,(1):60-63
    [66]曹文亮,王兵树,马进,等.基于符号有向图节点定量化模型的故障诊断方法[J].中国电机工程学报,2006,26(7):67-70
    [67]曹文亮,王兵树,马良玉,等.基于改进SDG的电站热力系统故障诊断方法研究[J].中国电机工程学报,2005,25(23):124-128
    [68]于达仁,王伟,胡清华,等.除氧器故障诊断的含未测节点的符号有向图方法[J].汽轮机技术,2008,50(1):39-42
    [69]邱凤翔,郭振宇,徐治皋,等.模糊概率符号有向图单元模型及电站高加系统故障诊断[J].中国电机工程学报,2011,31(2):104-110
    [70]徐刚,骆志高,李明义,等.变工况运行的机械故障诊断研究[J].机械工程学报,2001,37(12):104-107
    [71]邹今春,沈玉娣.变工况齿轮箱故障诊断方法综述[J].机械传动,2012,36(8):124-127,132
    [72]于善平,刘晓东,管丽娜.变工况滚动轴承故障诊断方法研究[J].大连民族学院学报,2008,10(1):27-30
    [73]康海英,栾军杰,郑海起,等.基于阶次跟踪和经验模态分解的滚动轴承包络解调分析[J].机械工程学报,2007,43(8):119-122
    [74]康海英,栾军杰,郑海起,等.基于阶次跟踪和HHT边际谱的轴承故障诊断研究[J].振动与冲击,2007,26(6):1-3
    [75]李辉,郑海起,唐力伟.基于阶次跟踪与变换时频谱的轴承故障诊断[J].振动、测试与诊断,2010,30(2):138-142
    [76]L.F. Villa, A. Renones, J.R. Peran, et al. Angular resampling for vibration analysis in wind turbines under non-linear speed fluctuation[J]. Mechanical Systems and Signal Processing,2011,25(6):2157-2168
    [77]F. Bonnardot, M. EiBadaoui, R. B. Randall. Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation) [J]. Mechanical Systems and Signal Processing,2005,19:766-785
    [78]F.Combet, L.Gelman. An automated methodology for performing time synchronous averaging of a gearbox signal without speed sensor[J]. Mechanical Systems and Signal Processing,2007,23:2590-2606
    [79]牛征,刘吉臻,牛玉广.动态多主元模型故障检测方法在变工况过程中的应用[J].动力工程,2005,25(4):554-558,598
    [80]牛征.基于多元统计分析的火电厂控制系统故障诊断研究[D].保定:华北电力大学,2006
    [81]J. Kennedy, R.C. Eberhart, Particle swarm optimization[C]. Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, IEEE Service Center, Piscataway, NJ,1995,4:1942-1948
    [82]R. C. Eberhart, Y. Shi, Tracking and optimizing dynamic systems with particle swarms[C].Proceedings of the IEEE International Congress on Evolutionary Computation,2001:94-100
    [83]R. C. Eberhart, Y.Shi, Particle swarm optimization:developments, applications and resources[C]. Proceedings of the IEEE International Conference on Evolutionary Computation,2001:81-86
    [84]Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, et al. Particle swarm optimization:basic concepts, variants and applications in power system[J]. IEEE Transactions on Evolutionary Computation,2008,12 (2):171-195
    [85]R. A. Bakkiyaraj, N.kumarappan. Optimal reliability planning for a composite electric power system based on Monte Carlo simulation using particle swarm optimization[J]. International Journal of Electrical Power and Energy Systems, 2013,47:109-116
    [86]姚耀中,徐玉如.粒子群优化算法分析[J].哈尔滨工程大学学报,2007,28(11):1242-1246
    [87]Y. Shi, R. C. Eberhart. A modified particle swarm optimizer[C]. Proceedings of the IEEE International Conference on Evolutionary Computation,1998:69-73
    [88]Y. Shi, R. C. Eberhart. Empirical study of particle swarm optimization[C]. Proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, NJ:IEEE Service Center,1999:1945-1950
    [89]J. Kennedy, R. C. Eberhart. A discrete binary version of the particle swarm optimization algorithm [C]. Proceedings of the IEEE Conference on Systems, Man, and Cybernetics, Piscataway, NJ:IEEE Service Center,1997:4104-4109
    [90]杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004,6(5):87-94
    [91]J.L.Elman, Finding structure in time[J], Cognitive Science,1990,14:179-211
    [92]D. T. Pham, X. Liu. Dynamic system modeling using partially recurrent neural networks[J]. Journal of Systems Engineering,1992,2:90-97
    [93]时小虎,梁艳春,徐旭.改进的Elman模型与递归反传控制神经网络[J].软件学报,2003,14(6):1110-1119
    [94]W.M. Lin, C.M. Hong. A new Elman neural network-based control algorithm for adjustable-pitch variable-speed wind-energy conversion systems[J]. IEEE Transactions on power electronics,2011,26(2):473-481
    [95]X. Wu, V. Kumar. The top ten algorithms in Data Mining [M]. London, U.K. chapman & Hall,2009
    [96]张庆国,张宏伟,张君玉.一种基于k最近邻的快速文本分类方法[J].中国科学院研究生院学报,2005,22(5):554-559
    [97]D.J.Newman, S.Hettich, C.L.Blake, et al. UCI repository of machine learning databases. Irvine, CA:University of California, Department of Information and Computer Science,1998, URL:http://www.ics.uci.edu/-mlearn/MLRepository
    [98]任浩仁,李蔚,盛德仁,等.火电机组变工况下运行指标应达值的分析[J].中国电机工程学报,1999,19(9):50-52,56
    [99]G. Martin. Consider soft sensors[J]. Chemical Engineering Progress,1997,7: 66-70
    [100]刘福国.电站锅炉入炉煤元素分析和发热量的软测量实时监测技术[J].中国电机工程学报,2005,25(6):139-145
    [101]陈彦桥,郭一,刘建民,等.一种改进烟气含氧量软测量建模方法与仿真[J].动力工程学报,2011,31(1):13-16
    [102]张曦,陈世和,朱亚清,等.基于KPCR的发电机组参数预测与估计[J].电力自动化设备,2010,30(10):54-57
    [103]Y.Cheung, L.Xu. Independent component ordering in ICA time series analysis[J]. Neurocomputing,2001,41(1):145-152
    [104]司风琪,周建新,仇晓智,等.独立成分分析方法在电站热力过程数据检验中的应用[J].中国电机工程学报,2008,28(26):77-81
    [105]李蔚,盛德仁,陈坚红,等.双重BP神经网络组合模型在实时数据预测中的应用[J].中国电机工程学报,2007,27(17):94-97
    [106]司风琪,洪军,徐治皋.基于改进Elman网络的动态系统测量数据检验方法[J].东南大学学报(自然科学版),2005,35(1):50-54
    [107]王晓霞,马良玉,王兵树,等.进化Elman神经网络在实时数据预测中的应用[J].电力自动化设备,2011,31(12):77-81
    [108]周建新,司风琪,仇晓智,等.基于SVR和GA的锅炉运行氧量基准值的优化确定[J].东南大学学报(自然科学版),2008,38(6):1061-1065
    [109]黄景涛,马龙华,茅建波,等.基于支持向量回归的300MW电站锅炉再热汽温建模[J].中国电机工程学报,2006,26(7):19-24
    [110]王春林,周昊,周樟华,等.基于支持向量机的大型电厂锅炉飞回含碳量建模[J].中国电机工程学报,2005,25(20):72-76
    [111]葛宏伟,梁艳春.进化Elman神经网络模型与非线性系统辨识[J].吉林大学学报(工学版),2005,35(5):511-519
    [112]A. Blanco, M. Delgado, M. Pegalajar. A real-coded genetic algorithm fortraining recurrent neural networks[J]. Neural Networks,2001,14 (1):93-105
    [113]H. Ge, Y. Liang, M. Marchese. A modified particle swarm optimization-based dynamic recurrent neural network for identifying and controlling nonlinear systems[J]. Computers and Structures,2007,85:1611-1622
    [114]C. Juang. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design[J]. IEEE Transactions on System, Man and Cybernetics-Part B:Cybernetics,2004,34 (2):997-1006
    [115]P.J.Angeline. Using selection to improve particle swarm optimization[C]. Proceeding of the IEEE International Conference on Evolutionary Computation, Anchorage, USA,1998:84-89
    [116]M. S. Arumugam, M.V.C. Rao. On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square(RMS) variants for comptuting optimal conrol of a class of hybrid systems[J]. Applied Soft Computing,2008,8:324-336
    [117]F. van den Bergh, A.P. Engelbrecht. A new locally convergent particle swarm optimizer[C]. Proceedings of IEEE Conference on Systems, Man, and Cybernetics, Hammamet, Tunisia,2002:96-101
    [118]胡旺,李志蜀.一种更简化而高效的粒子群算法[J].软件学报,2007,18(4):861-868
    [119]F. van den Bergh, A.P. Engelbrecht. Cooperative learning in neural networks using particle swarm optimizers [J]. South African Computer Journal,2000, (11):84-90
    [120]T.Krink, J.S.Vestertroem, J.Riget. Particle swarm optimization with spatial particle extension[C]. Proceedings of the IEEE congress on evolutionary computation, Honolulu, Hawaii, May 2002:1474-1479
    [121]赫然,王永吉,王青,周津慧,等.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044
    [122]吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420
    [123]连志刚,焦斌.一种混合搜索的粒子群算法[J].控制理论与应用,2010,27(10):1404-1410
    [124]A. Ratnaweera, S. Halgamuge, H. Watson. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation,2004,8(3):240-255
    [125]J. J. Liang, A. K. Qin, P. N. Suganthan, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J]. IEEE Transactions on Evolutionary Computation,2006,10(3):281-295
    [126]Z.H.Zhan, J.Zhang, Y.Li, et al. Chung. Adaptive particle swarm optimization[J]. IEEE Transaction on System, Man and Cybernetics-Part B:Cybernetics,2009, 39(6):1362-1381
    [127]Z.H.Zhan, J.Zhang, Y.Li, et al.Orthogonal learning particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation,2011,15(6):832-847
    [128]张春概.进化算法的若干研究及应用[D].上海:上海交通大学,2001
    [129]M. Mackey, L. Glass. Oscillation and chaos in physiological control systems[J]. Science,1977,197(4300):287-289
    [130]H. Du, N. Zhang. Time series prediction using evolving radial basis function networks with new encoding scheme[J]. Neurocomputing,2008,71(7): 1388-1400
    [131]C. Harpham, C. Dawson. The effect of different basis functions on a radial basis function network for time series prediction:a comparative study[J]. Neurocomputing,2006,69(16):2161-2170
    [132]I. Rojas, H. Pomares, J. Bernier, et al. Time series analysis using normalized PG-RBF network with regression weights[J]. Neurocomputing,2002,42(1): 267-285
    [133]Y. Chen, B. Yang, J. Dong. Time-series prediction using a local linear wavelet neural network[J]. Neurocomputing,2006,69(4):449-465
    [134]S. Yang, Y. Chen. An evolutionary constructive and pruning algorithm for artificial neural networks and its prediction applications [J]. Neurocomputing, 2012,86:140-149
    [135]L. Herrera, H. Pomares, I. Rojas, et al. Multigrid-based fuzzy systems for time series prediction:cats competition[J]. Neurocomputing,2007,70(13): 2410-2425
    [136]A. Lendasse, E. Oja, O. Simula, et al. Time series prediction competition:the CATS benchmark[C]. Proceedings of the IEEE International Joint Conference on Neural Networks,2004:1615-1620
    [137]X. Cai, N. Zhang, G. Venayagamoorthy, et al. Time series prediction with recurrent neural networks trained by a hybrid PSO-EA algorithm[J]. Neurocomputing,2007,70:2342-2353
    [138]S.W.Kim, J.Oomenn. A brief taxonomy and ranking of creative prototype reduction schemes[J]. Pattern Analysis and Applcations,2003,6:232-244
    [139]H.Brighton, C.Mellish. Advances in instance selection for instance-based learning algorithms[J]. Data Mining and Knowledge Discovery,2002,6(2): 153-172
    [140]E.Marchiori. Class conditional nearest neighbor for large margin instance selection[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2010,32(2):364-370
    [141]W.Lam, C.K.Keung, D.Liu. Discovering useful concept prototypes for classification based on filtering and abstraction[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,14(8):1075-1090
    [142]J.S.Sanchez. High training set size reduction by space partitioning and prototype abstraction[J]. Pattern Recognition,2004,37(7):1561-1564
    [143]C.L. Chang. Finding prototypes for nearest neighbor classifiers[J]. IEEE Transactions on Computers,1974, C-23(11):1179-1184
    [144]T.Kohonen. The self organizing map[C]. Proceedings of the IEEE,1990,78(9): 1464-1480
    [145]C.H.Chen, A.Jozwik. A sample set condensation algorithm for the class sensitive artificial neural network[J]. Pattern Recognition Letters,1996,17(8): 819-823
    [146]J.C. Bezdek, L.I. Kuncheva. Nearest prototype classifier designs:an experimental study[J]. International Journal of Intelligent Systems,2001,16: 1445-1473
    [147]F.Fernandez, P.Isasi. Evolutionary design of nearest prototype classifiers[J]. Journal of Heuristics,2004,10(4):431-454
    [148]U.Garain. Prototype reduction using an artificial immune model[J]. Pattern Analysis and Applications,2008,11(3-4):353-363
    [149]I.Triguero, S.Garcia, F.Herrera. A preliminary study on the use of differential evolution for adjusting the position of examples in nearest neighbor classification[C]. Proceedings of the IEEE Congress on Evolutionary Computation,2010:630-637
    [150]D.Koloseni, J.Lampinen, P.Luukka. Differential evolution based nearest prototype classifier with optimized distance measures for the features in the data sets[J]. Expert Systems with Applications,2013,40:4075-4082
    [151]I.Triguero, S.Garcia, F.Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification[J]. Pattern Recognition,2011,44:901-916
    [152]P.Luukka, J.Lampinen. Differential evolution classifier in noisy settings and with interacting variables[J]. Applied Soft Computing,2011,11:891-899
    [153]L. Nanni, A. Lumini. Particle swarm optimization for prototype reduction[J]. Neurocomputing,2009,72:1092-1097
    [154]A. Cervantes, I. Galvan, and P. Isasi. Building nearest prototype classifiers using a Michigan approach PSO[C]. Proceedings of the IEEE Swarm Intelligence Symposium,2007:135-140
    [155]A.Cervantes, I.M.Galvan, P.Isasi. AMPSO:a new particle swarm method for nearest neighborhood classification[J]. IEEE Transactions on System, Man and Cybernetics-Part B:Cybernetics,2009,39 (5):1082-1091
    [156]R. Krishnapuram, J. M. A. Keller. Possibilistic approach to clustering[J]. IEEE Transactions on Fuzzy Systems,1993,2 (1):98-110
    [157]F.Fernandez, P.Isasi, Evolutionary design of nearest prototype classifiers[J]. Journal of Heuristics,2004,10(4):431-454
    [158]曹文亮.基于符号有向图的热力系统故障诊断方法研究[J].保定:华北电力大学,2006
    [159]K.Y. Hung, R.W.P. Luk, D.S. Yeung, et al. A multiple classifier approach to detect Chinese character recognition errors[J]. Pattern Recognition,2005,38: 723-738
    [160]Z.Q. Zhao, D.S. Huang, B.Y. Sun. Human face recognition based on multi-features using neural networks committee [J]. Pattern Recognition Letters, 2004,25:1351-1358
    [161]唐春生,金以慧.基于全信息矩阵的多分类器集成方法[J].软件学报,2003,14(6):1103-1109
    [162]H. Altmcay, M. Demirekler. Speaker identification by combining multiple classifiers using Dempster-Shafer theory of evidence[J]. Speech Communication,2003,41:531-547
    [163]A. Bertoni, R. Folgieri, G. Valentini. Bio-molecular cancer prediction with random subspace ensembles of support vector machines[J]. Neurocomputing, 2005,63:535-539
    [164]T. Rohlfing, C.R. Maurer. Multi-classifier framework for atlas-based image segmentation [J]. Pattern Recognition Letters,2005,26:2070-2079
    [165]张春霞,张讲社.选择性集成学习算法综述[J].计算机学报,2011,34(8):1399-1410
    [166]L. Breiman. Bagging predictors[J]. Machine Learning,1996,24(2):123-140
    [167]G. Fumera, F. Roli, A. Serrau. A theoretical analysis of bagging as a linear combination of classifiers [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(7):1293-1299
    [168]L. Breiman. Random forests[J]. Machine Learning,2001,45(1):5-32
    [169]G.M. Munoz, D.H. Lobato, A. Suarez. An analysis of ensemble pruning techniques based on ordered aggregation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2009,31(2):245-259
    [170]L. Chen, M.S. Kamel. A generalized adaptive ensemble generation and aggregation approach for multiple classifiers systems [J]. Pattern Recognition, 2009,42:629-644
    [171]L. Nanni, A. Lumini. Fuzzy Bagging:A novel ensemble of classifiers [J]. Pattern Recognition,2006,39:488-490
    [172]R.E. Schapire. The strength of weak learnability[J]. Machine Learning,1990, 5(2):197-227
    [173]Y. Freund, R.E. Schapire. Decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997,55(1):119-139
    [174]J.J. Rodriguez, J. Maudes. Boosting recombined weak classifiers[J]. Pattern Recognition Letters,2008,29:1049-1059
    [175]N.G. Pedrajas. Constructing ensembles of classifiers by means of weighted instance selection[J]. IEEE Transactions on Neural Networks,2009,20(2): 258-277
    [176]D.Parikh,R.Polikar. Ensemble based incrimental learning approach to data fusion[J]. IEEE Transactions on System, Man, and Cybernetics,2007,37(2): 437-450
    [177]M.D. Muhlbaier, A. Topalis, R. Polikar. Learn++.NC:Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes[J]. IEEE Transactions on Neural Networks, 2009,20(1):152-168
    [178]R.E. Banfield, L.o. Hall, K.W. Bowyer, et al. A new ensemble diversity measure applied to thinning ensembles[C]. Proceedings of the Fourth Int'l Workshop Multiple Classifier Systems (MCS'03),2003:306-316
    [179]R. Maclin,J.W. Shavlik. Combining the predictions of multiple classifiers: using competitive learning to initialize neural networks[C]. Proceedings of the 14th Int'l Joint Conference on Artificial Intelligence,1995:524-531
    [180]O. Pujol, D. Masip. Geometry-based ensembles:toward a structural characterization of the classification boundary [J]. IEEE Transactions Pattern Analysis and Machine Intelligence,2009,31(6):1140-1146
    [181]P. Chaudhuri, A.K. Ghosh, H. Oja. Classification based on hybridization of parametric and non-parametric classifiers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(7):1153-1164
    [182]B. Verma, A. Rahman. Cluster-oriented ensemble classifier:impact of multicluster characterization on ensemble classifier learning[J]. IEEE Transactions on Knowledge and Data Engineering,2012,24(4):605-618
    [183]R. Polikar. Ensemble based systems in decision making[J]. IEEE Circuits and Systems Magazine,2006,6(3):21-45
    [184]J. Kittler, M. Hatef, R.P.W. Duin, et al. On combining classifiers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(3):226-239
    [185]E. Alpaydin. Voting over multiple condensed nearest neighbors[J]. Artificial Intelligient Review,1997,11(1-5):115-132
    [186]S.D. Bay. Nearest neighbor classification from multiple feature subsets[J]. Intelligent Data Analysis,1999,3(3):191-209
    [187]Z.Zhou, Y.Yu. Ensembling local learners through multimodal perturbation[J]. IEEE Transactions on System, Man and Cybernetics-Part B:Cybernetics,2005, 35(4):725-735

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700