水稻品种籽粒中铁生物有效性差异及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁是人体必需的微量矿物元素之一,主要参与氧的运输和能量代谢。铁缺乏是个世界性营养失调问题,占世界总人口的1/3人群面临着铁缺乏的威胁。稻米是主要粮食作物,为世界上一半人口提供能量和营养的需要,提高稻米铁含量及铁生物有效性可有效改善人体铁营养状况。本研究利用体外消化/Caco-2细胞模型研究了稻米籽粒铁生物有效性差异,以及叶面铁肥、土壤类型、种植地点和年份对稻米铁生物有效性的影响。结果如下:
     Caco-2细胞接种于Transwell细胞转运培养槽的聚碳酯微孔滤膜上,在37℃和5%二氧化碳浓度培养条件下,培养21d,细胞跨膜电阻值稳定在590 Ohms·cm~2;甘露醇透过率低于0.07%·h~(-1)·cm~(-2);肠腔侧(AP)碱性磷酸酶活性显著高于基底侧(BL)。表明,在本实验室条件下,Caco-2细胞模型能够形成与小肠上皮细胞相似的形态学结构,细胞间已形成紧密连接,并产生极化状态,可作为肠道吸收的体外模型。
     在不同铁浓度和pH下,研究Caco-2细胞吸收转运模型(模型Ⅰ)和细胞吸收转化模型(模型Ⅱ)对铁的吸收性能。结果表明,两种模型铁吸收均与pH呈负相关,铁吸收随铁浓度增加而增加;当铁浓度25μmol/L以上时,模型Ⅱ铁吸收增加趋势显著低于模型Ⅰ。表明,在高铁浓度时,模型Ⅱ有一定局限性。因此,本研究以下试验均采用模型Ⅰ。
     对Caco-2细胞铁吸收影响因素表明,草酸盐对二价铁抑制作用大于三价铁,随草酸盐/铁摩尔比,对二价铁抑制逐渐增加,5:1时有最大抑制;仅摩尔比为3:1以上时,草酸盐对三价铁有抑制作用。随硅酸盐/铁摩尔比增加,二价铁生物有效性逐渐降低,摩尔比为3:1时,铁生物有效性最低;硅酸盐对三价铁无影响。植酸对二价铁抑制作用大于三价铁。随着钙和锌水平增加,二价铁生物有效性出现不同程度的降低,最大的抑制分别出现在钙/铁摩尔比为1:1时和锌/铁摩尔比为3:1时。半胱氨酸、胱氨酸和抗坏血酸对细胞铁吸收有促进作用,且随浓度增加而增加。不同铁化合物生物有效性比较表明,柠檬酸亚铁和血红素铁铁生物有效性最高,元素铁粉最低,但减小其粒径可显著提高铁生物有效性,与其他铁化合物相比,元素铁粉受食物因子影响最小。
     铁对Caco-2细胞毒性研究表明,当铁浓度大于1.5mM时,二价铁对细胞的毒性大于三价铁,细胞的生存能力明显降低。LDH释放量测定表明,二价铁的氧化破坏使细胞膜的稳定性降低。Caco-2细胞SOD和GPx活性均随着铁处理水平增加而增加,且二价铁处理组两种酶活性增加幅度高于三价铁组,提示在高铁水平下,二价铁和三价铁均能诱导细胞抗氧化酶基因表达的作用。
     利用比色法和ICP-MS技术对“长三角”972个水稻基因型糙米铁含量分析表明,比色法测定铁含量最低值为15.74mg/kg,最高为54.68mg/kg,平均值35.01mg/kg;ICP-MS法测得最低值为5.25mg/kg,最高20.55mg/kg,平均值13.49mg/kg。两种方法显著相关,相关系数达0.7699。最终筛选出的13个水稻基因型,精米铁含量具有较大差异,其中铁含量最低为3.7mg/kg,最高达9.9mg/kg。利用Caco-2细胞模型进行铁生物有效性分析表明,基因型Gpei55、guangN66、HB075、TN7189显著高于其他基因型,而铁含量较高的JiaXingZD、HESQ57和GuangD50基因型,其铁生物有效性并不高,相反,铁含量最低的guangN66基因型却表现出最高的铁生物有效性。水稻精米籽粒铁生物有效性与半胱氨酸(P<0.01)、硫(P<0.01)含量呈极显著正相关;与磷(P<0.05)含量呈显著负相关。添加抗坏血酸能够显著提高稻米铁生物有效性。
     土壤类型对糙米营养品质影响表明,种植在小粉土和青紫泥的水稻铁富集量高于黄红壤(P>0.05;P>0.05);钙、铜、锌、蛋白质及直链淀粉含量受土壤类型影响不大;植酸(P<0.05)和总磷(P>0.05)含量黄红壤低于其他土壤;硫(P<0.05)含量小粉土显著低于其他土壤,黄红壤最高;半胱氨酸水平黄红壤高于小粉土(P<0.05)和青紫泥(P<0.05);其他16种氨基酸含量青紫泥均显著高于小粉土(P<0.05)和黄红壤(P<0.05)。铁生物有效性结果表明,糙米可透析铁量和细胞铁蛋白形成量黄红壤显著高于小粉土(P<0.05)和青紫泥(P<0.05),小粉土和青紫泥间变化不大;细胞转运铁量黄红壤显著的低于小粉土(P<0.05)和青紫泥(P<0.05),青紫泥细胞转运铁量最高。基因型间比较表明,IR64可透析铁量(P<0.05)和细胞铁蛋白形成量(P<0.05)最低,基因型TN7189和IR68144最高;细胞转运铁量IR64和TN7189低于其他两品种(P<0.05,P<0.05),以基因型IR68144细胞转运铁量最高。铁蛋白形成量与可透析铁(P<0.05)呈显著正相关;与植酸(P<0.05)和总磷含量(P<0.05)呈显著负相关;与总铁含量没有相关(P>0.05)。
     4个来自国际水稻所(IRRI)的水稻基因型在我国杭州、东辉和海宁种植2年表明,精米铁和钙含量明显受基因型(P<0.01;P<0.01)和基因型—环境效应(P<0.01;P<0.01)的影响;铜和锰受基因型(P<0.05;P<0.01)和环境(P<0.05;P<0.01)影响较大;锌主要受基因型影响。水稻籽粒蛋白质含量杭州高于东辉和海宁;直链淀粉含量受种植地点影响不大;植酸和磷含量均是东辉最高,而硫含量最低。水稻籽粒17种氨基酸水平均表现为杭州高于东辉和海宁。稻米铁生物有效性分析表明,基因型IR68144最高,IR72最低。铁生物有效性与植酸(P<0.05)和磷(P<0.01)含量呈显著负相关,与半胱氨酸(P<0.01)和硫(P<0.01)呈极显著正相关,与铁含量无明显相关性。第二年水稻籽粒铁生物有效性显著高于第一年(P<0.05)。基因型和基因型-环境互作效应对铁生物有效性具有显著影响(P<0.01;P<0.01)。
     叶面铁肥对水稻基因型籽粒中营养品质及铁生物有效性的影响表明,叶面铁肥均不同程度的提高了两个水稻基因型精米中铁含量。叶面铁肥FeSO_4(P<0.05)和EDTAFeNa(P<0.05)显著提高了基因型HB075籽粒中半胱氨酸水平,而对基因型TN7189籽粒中半胱氨酸水平影响不显著。几种铁肥均显著降低了基因型HB075籽粒中植酸含量(P<0.05),除HEDTAFe(P>0.05)外,其他铁肥均显著降低了基因型TN7189籽粒中植酸含量(P<0.05);几种铁肥也不同程度的降低了两种水稻基因型籽粒中磷的水平;铁肥显著提高了基因型HB075籽粒中硫的含量(P<0.05),但对基因型TN7189的影响不大(P>0.05);铁肥DTPAFe(P<0.05)显著提高了基因型HB075籽粒中钙含量。HEDTAFe则显著提高了基因型TN7189籽粒中钙含量;铁肥处理不同程度的提高了基因型HB075籽粒中铜和锌含量,尤其以DTPAFe对铜和锌的提高效果最好(P<0.05;P<0.05)。而,HEDTAFe铁肥显著提高了基因型TN7189籽粒铜含量(P<0.05),EDTAFeNa则显著降低了其籽粒中锌含量(P<0.05)。其他铁肥对基因型TN7189籽粒中铜和锌有一定促进作用,但均未达显著水平(P>0.05)。水稻籽粒铁生物有效性存在显著的基因型差异,基因型HB075铁生物有效性显著高于TN7189(P<0.05)。叶面铁肥对两品种铁生物有效性影响表明,喷施本实验中几种铁不能显著提高两种水稻籽粒铁可透析量;但铁肥处理却不同程度的提高了基因型HB075细胞铁蛋白形成量,而对基因型TN7189影响不大;叶面铁肥FeSO_4(P<0.05)和DTPAFe(P<0.05)显著提高了基因型HB075籽粒细胞转运铁量,FeSO_4(P>0.05)、EDTAFe(P<0.05)和HEDTAFe(P>0.05)则提高了基因型TN7189籽粒细胞转运铁量。以上结果表明,水稻籽粒铁生物有效性主要受基因型控制,喷施不同种类的铁肥对其有一定促进作用,且与水稻基因型存在密切关系。
Iron is an important essential micronutrient that is involved in oxygen transport andenergy metabolism. Iron deficiency is a wide-spread major micronutrient malnutritionproblem for humans, affecting one-third of the world's population. Rice is the dominant staplefood in the world which provides calories consumed and energy intake of almost half theworld's population. Therefore, slightly increase of iron content and iron bioavailability in ricegrains can greatly improve human health. In this study, iron bioavailability of different ricegenotypes were studied, and effects of foliar irons, soils, field locations, and years on ironbioavailability in rice grains were valued by a vitro digestion/Caco-2 cell model. The mainresults are summarized as followings:
     The Caco-2 cells were seeded onto the polycarbonate microporal membranes in Transwellbichambers and cultured on 37℃and in an atmosphere of 5% carbon dioxide. After 21 daysof culture, the transepithelial electrical resistance was about 590 Ohms·cm~2, the transportrate of mannitol across Caco-2 cell monolayers was less than 0.07%·h~(-1)·cm~(-2), and the activityof alkaline phosphatase in apical (AP) side was greatly higher than that in basolateral (BL)side. These results indicated that the Caco-2 cells cultured in our laboratory had similarity tointestinal epithelial cells in morphology, produced polarity, formed well tight junctionsbetween cells, and could be used as an in vitro model to investigate absorption mechanisms ofsubstances.
     Iron uptake of Caco-2 cells treated with different pH or iron levels were compared fromabsorption-transport model (modelⅠ) vs absorption- translation model (modelⅡ). The resultsindicated that iron uptake of Caco-2 cells was decreased with increasing of pH from 5.5 to 7.5,but it was increased with added iron levels in the all both model. Moreover, the decrease trendwas more obvious for modelⅠthan for modelⅡat exceed 25μmol/L of iron levels. The resultsindicated that preferable capability of iron uptake from modelⅠthan modelⅡat higher ironlevels.
     The effects of inhibitors and/or exciters on iron uptake of ferrous and ferric in Caco-2cell monolayers were investigated. The results were as follows. Uptake of ferrous wassignificantly reduced than it of ferric with increased of oxalate levels. Moreover, maximalinhibition of iron uptake of ferrous by oxalate occurred at a 1: 5 ratio of Fe to oxalate. Onlyinhibition of ferric by oxalate occurred at a 1: 3 ratio of Fe to oxalate. Uptake of ferrouswas decreased with increased of silicate levels, and maximal inhibition of iron uptake bysilicate occurred at a 1: 3 ratio of Fe to silicate. But silicate did not affect the uptake of ferric.More inhibition of iron uptake by phytic acid were from ferrous than from ferric. Uptake offerrous was inhibited in different degree with Ca2+ or Zn2+ levels, Ca2+/Fe2+ and Zn2+/Fe2+ molar ratio at 1: 1 and 3: 1 was appeared maximal inhibition of ferrous,respectively. Iron uptake was enhanced by Cys, Cys-cys, and Vc as their concentrationincreased, respectively. Comparison of iron bioavailability from different iron compoundswere showed that maximal ferritin amount of Caco-2 cell was from treated with citrate ferrousor heine, respectively. Iron bioavailability of reduced iron powder is increased withdecreasing of power granularity and is much lower than other iron compounds when the sizeis above 43μm. In general, water soluble iron compounds have an acceptable bioavailabilitybut cause unacceptable organoleptic changes during the storage or preparation of grains. Incontrast, the reduced iron powder does not cause organoleptic changes during storage or foodpreparation of cereal flours.
     Fe (Ⅱ) at a concentration>1.5 mM was found to be more effective in reducing cellularviability than Fe (Ⅲ). Lactate dehydrogenase (LDH) release investigation suggested that Fe(Ⅱ) can reduce the stability of cell membrane. The activities of superoxide dismutase (SOD)and the glutathione peroxidase (GSH-Px) of the cells treated with Fe (Ⅱ) were higher thanthose of Fe (Ⅲ), although both of them increased with raising iron supply levels. The resultsindicate that both Fe (Ⅱ) and Fe (Ⅲ) could reduce the cellular antioxidase gene expression athigh levels.
     Iron concentration of unpolished rice from nine hundred seventy two rice genotypes inYangtze River Delta Region (YRDR) were determined by Fast Screening methods andICP-MS methods. The results indicated that the lowest and highest of iron content was 15.74mg/kg and 54.68 mg/kg using Fast Screening methods, respectively. Means of Fast Screeningmethods was 35.01 mg/kg. The lowest and highest of iron content was 5.25 mg/kg and 20.55mg/kg using ICP-MS methods, respectively. Means of ICP-MS methods was 13.49 mg/kg.The Fast Screening methods were significantly correlation with ICP-MS methods as 0.7699of correlative coefficient. Iron content and iron bioavailability of polished rice of thirteen ricegenotypes selected from nine hundred seventy two rice genotypes in YRDR. Ironbioavailabilities from all rice genotypes were ranked as a percent relative to a control variety(IR68144) from the International Rice Research Institute (IRRI). Iron concentration in the ricesamples ranged from 3.7 mg/kg to 9.9 mg/kg. No correlation was observed between ironbioavailability and grain iron concentration. Iron bioavailabitity of polished rice from Gpei55,guangN66, HB075, and TN7189 genotypes were significantly higher than other ricegenotypes. Genotypes with high iron concentration (JiaXingZD, HESQ57, and GuangD50)have relatively low iron bioavailablity. In contrast, genotype of guangN66 with lowest ironconcentration has much high iron bioavailability. Cysteine and S levels showed positively andsignificantly correlation with iron bioavailability in polished rice. In contrast, P levels of polished rice showed negatively and significantly correlation with iron bioavailability. Theadded ascorbic acid significantly promoted iron bioavailability relative to experimentswithout added ascorbic acid.
     Iron concentration of unpolished rice from grown in Silt Loam Soil (SLS)(P>0.05) andPurplish Clayey Soil (PCS)(P>0.05) were reversely higher than grown in Yellowish red Soil(YRS). Different soil had no effect on Calcium, Copper, Zinc, protein and Amylose (P>0.05).Phytic acid (P<0.05) and P(P>0.05) concentration of unpolished rice from YRC werelower than from SLS and PCS, respectively. S concentration of unpolished rice from SLS wassignificantly lower than PCS (P<0.05) and YRS (P<0.05). moreover, maximal Sconcentration of unpolished rice from YRS. Cysteine content of unpolished rice was showedthat rice grown in YRS was significantly higher than it grown in SLS (P<0.05) or PCS (P<0.05). Dialyzable iron amount and ferritin formation of unpolished rice from YRS weresignificantly higher than from SLS (P<0.05) or PCS (P<0.05), and no significant differencebetween SLS and PCS. Transport iron of Caco-2 cells treated with unpolished rice from YRSwas significantly lower than SLS (P<0.05) and PCS (P<0.05), respectively. Comparison ofiron bioavailability among different rice genotypes were indicated that genotype of IR64 hadthe lowest dialyzable iron and ferritin formation amount than other genotypes (P<0.05), andthose were highest in genotypes of TN7189 and IR68144. Transport iron amount of Caco-2cells treated with genotype of IR64 (P<0.05) and TN7189 (P<0.05) was significantly lowerthan treated with IR68144 and HB075 genotypes, respectively. Obvious genotypic differencesin nutrient compositions were observed among the tested genotypes, such as protein, amylase,phytic acid, P, S, Ca, Cu, Zn, and 17 amino acids, however, only dialyzable iron levelsshowed positively and significantly correlation with iron bioavailability in unpolished rice. Incontrast, phytic acid and P levels of unpolished rice showed negatively and significantlycorrelation with iron bioavailability. Noticeable, iron bioavailability was no significantlycorrelation with grain iron in unpolished rice.
     Four rice genotypes from IRRI were grown in Hangzhou, Donghui, and Haining at twoyears, respectively. The effects of variety, location, and variety×location (G×E) onnutrient compositions and iron bioavailability of polished rice were investigated. The resultswere as follows. The varieties (P<0.01; P<0.01; P<0.01), and variety×location (P<0.01; P<0.05; P<0.01) interaction effects were highly significant for grain-Fe, -Caconcentration and iron bioavailability. Grain-Cu and-Mn concentration were significantlyaffected by varieties (P<0.05; P<0.01) and locations (P<0.05; P<0.01). The varietieseffects was higher than locations and variety×location (P>0.05) for grain Znconcentration. Grain protein content of polished rice from area of Hangzhou was higher thanareas of Donghui and Haining. Different plant areas did not affect the amylose concentration in polished rice. Grain phytic acid and P content of rice from area of Donghui were higherthan areas of Hangzhou and Haining, but grain S was lower than Hangzhou and Haining.Relative content of 17 amino acids in polished rice from area of Hangzhou were higher than itfrom areas of Donghui and Haining. Iron bioavailability of polished rice was determinedusing an in vitro digestion/Caco-2 cell model. The results indicated that genotype IR68144had the highest iron bioavailability, and genotype IR72 had the lowest iron bioavailabilityamong all the rice genotypes. Grain phytic acid and P levels showed negatively andsignificantly correlation with iron bioavailability in polished rice. In contrast, grain cysteineand S levels showed positively and significantly correlation with iron bioavailability. But nosignificantly correlation between grain iron content and iron bioavailability. The ironbioavailability of four rice varieties from second year was significantly higher than it fromfirst year.
     The effects of different foliar irons on nutrient compositions and iron bioavailability in ricegrain were investigated. The results were as follows. The total Fe amount of polished rice wasadvanced as two genotypes rice applied foliar irons. Cysteine concentration of rice grain wassignificantly increased as HB075 genotype treated with FeSO_4 and EDTAFeNa, but nosignificant difference between without and with foliar irons in TN7189 genotype. Phytic acidconcentration of polished rice was significantly decreased as treated with foliar irons inHB075 genotype. Except HEDTAFe, other foliar irons significantly decrease phytic acidlevels in grain of TN7189 genotype. P concentration of rice grain was decreased as appliedfoliar irons in two genotypes. S content of polished rice was significantly increased by foliarirons in HB075 genotype, but no significant difference in TN7189 genotype. DTPAFe offoliar iron significantly increase calcium concentration in grain of HB075 genotype.HEDTAFe of foliar iron significantly increase calcium concentration in grain of TN7189genotype. The concentration of iron and zinc in the HB075 genotype increased as treated withfoliar irons, and peaked treated with DTPAFe. Copper concentration of grain was significantlyincreased with HEDTFe, however, concentration of zinc was significantly decreased byEDTAFeNa in TN7189 genotype. Iron bioavailability of polished rice from HB075 genotypesignificantly higher than TH7189 genotype. Dialyzable iron amount of grain no significantlyincreased as treated with different foliar irons in two rice genotypes. The ferritin formation ofCaco-2 cell treated with polished rice from applied foliar irons was increased in HB075genotype, and hardly increased in TN7189 genotype. Transport iron amount of HB075genotype significantly increased by FeSO_4 and DTPAFe, and it significantly increased byFeSO_4, EDTAFe and HEDTAFe in grain of TN7189 genotype. This result suggested that ironbioavailability of grain significantly controlled with genotypes, and it can be increased withdifferent genotypes as applied appropriate foliar iron.
引文
Abilgos R G,Manaois R.V.,Escubio S.S.P.,Garcia A.D.G.2004.Seasonal effects of an iron content of iron-dense Philippine rices harvested in two locations.Philippine Rice Research and Development Highlights,2003,Philippine,92-94
    Abilgos R.G,Manaois R.V.,Corpuz E.Z.,Sebastian L.S.2002.Breeding for iron-dense rice in the Philippines.The Philippine Journal of Crop Science 27(Suppl.l),79-81
    Alvarez-Hernandez X.,Nichols G.M,Glass J.1991.Caco-2 cell line:a system for studying intestinal iron transport across epithelial cell monolayers.Biochim Biophys Acta 1070(1),205-208
    Angeles I.T.,Schultink W.J.,Matulessi P.,Gross R.,Sastroamidjojo S.1993.Deceasing rate of stunting among anemic Indonesian preschool children through iron supplementation.Am J Clin Nutr 53,339-342
    Artursson P.,Ungell A.L.,Lofroth J.E.1993.Selective paracellular permeability in two models of intestinal absorption:cultured monolayers of human intestinal epithelial cells and rat intestinal segments.Pharmaceutical Research 10,1123-1129
    Artursson P.,Karlsson J.1991.Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells.Biochemical and Biophysical Research Communication 175,880-885
    Ariza-nieto M.,Blair M.M.,Welch R.M.,Glahn R.P.2007.Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model.J.Agric.Food Chem 55,7950-7956
    A.Rossi R.,Poverini G.Di.,Lullo A.,Modesti A.,Modica M.L.1996.Scarino.Heavy Metal Toxicity Following Apical and Basolateral Exposure in the Human Intestinal Cell Line Caco-2.Toxicology in Vitro 10,27-36
    Arnold J.M.,and Bauman L.F.1976.Inheritance of and interrelation-ships among maize kernel traits and elemental contents.Crop Sci 16,439-440.
    Atklinson K.J.,Rao R.K.2001.Role of protein tyrosine phosphorylation in acetaldehyde-induced disruption of epithelial tight junctions.Am J Physiol 280,G1280-G1288
    Aukett M.A.,Parks Y.A.,Scott P.H.,Wharton B.A.1986.Treatment with iron increases weight gain and psychomotor development.Arch Dis Child 61,849-857
    Basta S.S.,Soekirman,Karyadi D.,Scrimshaw N.S.1979.Iron deficiency anemia and the productivity of adult males in Indonesia.Am J Clin Nutr 32,916-925.
    Ballot D.,Baynes R.D.,Bothwell T.H.,Gillooly M.,MacFarlane B.J.,MacPhail A.P.,Lyons G.,Derman D.P.,Bezwoda W.R.,Torrance J.D.1987.The effects of fruit juices and fruits on the absorption of iron from a rice meal.Br J Nutr 57,331-343.
    Barker D.J.P.Mothers,babies and disease in later life.London:BMJ Publishing House,1994
    Ba¨nzinger M.,Long J.2000.The potential for increasing the iron and zinc density of maize through plant breeding.Food Nutr.Bull 21,397-400.
    Bahram P.G,Seyed V.R.,Soltanali M.,Behrooz N.,Hossein K.2006.Effect of retinol on iron bioavailability from Iranian bread in a Caco-2 cell culture model.Nutrition 22,638-644
    Baker S.S.,Baker R.D.Jr.1992.Antioxidant enzymes in the differentiated caco-2 cell line.In Vitro Cell Dev Biol 28A,643-647
    Bettina Z(O|¨)dl,Michaela Zeiner,Patricia Paukovitsjlse Steffan,Wolfgang Marktl,Cem Ekmekcioglu.2005.Iron uptake and toxicity in caco-2 cells.Microchemical journal 79,393-397.
    Bettina Z(O|¨)dl,Michaela Zeiner,Mansour Sargazi,Norman B Roberts,Wolfgang Marktl,Ilse Steffan,Cem Ekmekcioglu.2003.Toxic and biochemical effects of zinc in caco-2 cells.Journal of Inorganic Biochemistry 97,324-330
    Bettina Z(O|¨)dl,Mansour Sargazi,Michaela Zeiner,Norman B Roberts,Ilse Steffan,Wolfgang Marktl,Cem Ekmekcioglu.2004.Toxicological effects of iron on intestinal cells.Cell Biochem Fund 22,143-147
    Beiseigel J.M.,Hunt J.R.,Glahn R.P.,Welch R.M.,Menkir A.,Maziya-dixon B.B.2007.Iron bioavailability from maize and beans:a comparison of human measure-ments with Caco-2 cell and algorithm predictions.Am J Clin Nutr 86,388-396
    Beard J L.2001.Iron biology and immune function,muscle metabolism and neuronal functioning.JNutr 131,568S-580S.
    Bovell-Benjamin A.C,Viteri F.E.,Allen L.H.2000.Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated By iron status.Am.J.Clin.Nutr 77,1563-1569.
    Bouis H.E.2002.Plant breeding:A new tool for fighting micronutrient malnutrition.The Journal of Nutrition 32(3),491 S-494S
    Briat J.E,Lobreaux S.1997.Iron transport and storage in plants.Trends Plant Sci 2(5),187-193
    Braughler J.M.,Duncan L.A.,Chase R.L.1986.The involvement of iron in lipid peroxidation.J Biol Chem 261,356-360
    Brune M.,Rossander L.,Hallberg L.1989.Iron absorption:No intestinal adaptation to a high phytate diet.Am.J.Clin.Nutr 49,542~545
    Bjorn-Rasmussen E.,Hallberg L.,Walker R.B.1972.Food iron absorption in man.I. Isotopic exchange between food iron and inorganic iron salt added to food:studies on maize,wheat and eggs.Am.J.Clin.Nutr 25,317-323.
    Cakmak 1.2002.Plant nutrition research:priorities to meet human needs for food in sustainable ways.Plant and Soil 247,3-14
    Carmichael J.1987.Evaluation of a tetrazoliumbased semiautomated colorimetric assay:Assessment of radiosensitivity.Cancer Research 47,943-948
    Cai L.,Tsiapalis G.,Cherian MG.1998.Protective role of zinc-metallothionein on DNA damage in vitro by ferric nitrilotriacetate (Fe-NTA) and ferric salts.Chemico-Biological Interactions 115,141-151
    Cabuslay,G.S.,Sison,C.B.,Laureles,E,Buresh,R,Lazaro,Gregorio G.B.2003.Grain Mineral Density Nitrogen Response and Seasonal varaiation.Workshop on Rice Breeding for Better Nutrition 4,7-11.
    Cakmak I.,Ozkan H.,Braun J.,Welch R.M.,Romheld V.2000.Zinc and iron concentrations in seeds of wild,primitive and modern wheat.Food Nutr.Bull 21,400-4003.
    Cary E.E.,Norvell W.A.,Grunes D.L.,Welch,R.M.,Reid,W.S.1994,Iron and manganese accumulation by the brz pea mutant grown in soils.Agron.J.86,938-941.
    Cary E.E.,Grunes D.L.,Dallyn S.L.,et al.1994.Plant Fe,Al and Cr concentrations in vegetables as influenced by soil inclusion.Food Qual 17,467-476
    Cabuslay G.S.,Sison C.B.,Laureles E.,Buresh R.,Lazaro W.,Gregorio G.B.2003.Grain mineral density:nitrogen response and seasonal variation.Workshop on rice breeding for better nutrition 4,7-11
    Chanakan P.,Bernie D.,Gordon T.,Benjavan R.2003.Easy and rapid detection of iron in rice grain.ScienceAsia 29,203~207
    Chamnongpol S.,Dodson W.,Cromie M.J.,Harris Z.L.,Groisman E.A.2002.Fe(Ⅲ)-mediated cellular toxicity.Mol Microbiol 45,711-719
    Cohe C.K.,Fox T.C,Carrin D.F.1998.The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants.Plant Physiol 116,1063~1072
    Cook J.D.,Reddy M.B.,Burri J.,Juillerat M.A.,Hurrell F.1997.The influence of different cereal grains on iron absorption from infant cereal foods.Am J Clin Nutr 65,964-969
    Conrad M.E.,Cortell S.,Williams H.L.,Foy A.I.1966.Polymerization and intraluminal factors in the absorption of hemoglobin-iron.J Lab Clin Med 68,659-668
    Cralg W.J.1994.Iron status of vegetarians.Am J Clin Nutr 59,1233-1237
    Dallmann P.R.1986 Biochemical basis for the manifestation of iron deficiency.Annu Rev Nutr 6,13-40.
    Davidsson L.,Galan P.,Kastenmayer P.,Cherouvrier F.,Juillerat M.A.,Hercberg S.,Hurrell R.F.1994.Iron bioavailability studied in infants:The influence of phytic acid and ascorbic acid in infant tormulas based on soy isolate.Pediatr.Res 36,816~822
    Davidson L.,Kastenmayer P.,Szajewska H.,Hurrell R.F.,Barclay D.2000.Iron bioavailability in infants from an infant cereal fortified with ferric pyrophosphate or ferrous fumarate.Am.J.Clin.Nutr 71,1597-1602.
    Deak M,Horvath G.V.,Davletova S.1999.Plants ectopically expressing the iron-binding protein.Ferritin,are tolerant to oxidative damage and pathogens.Nature biotechnot 17,192~196
    Delhaize E.1996.A metal-accumulator mutant of Arabidopsis thaliana.Plant Physiol 111,849-855.
    Duizer E.,Gilde A.J.,Versantvoort C.H.M.,et al.1999.Effect of cadmium chloride on the paraceilular barrier function of intestinal epithelial cell lines.Toxicol Appl Pharmacol 155,117-126
    Duizer E.,Wulp C.V.D.,Versantvoort C.H.M.,et al.1998.Absorption enhancement,structural changes in tight junctions and cytotoxicit y caused by palmitoyl carnitine in Caco-2 and IEC-18 cells.J Pharmacol Exp Ther 287,395-402
    Drakakaki G.,Marcel S.,Glahn R.P.,et al.2005 Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iror.Plant Molecular Biology 59,869-880.
    Egeli A.K.,Framstad T.,Morberg H.1998.Clinical biochemistry,haematology and body weight in piglets.Acta Vet Scand 39,381-393
    Ekstrom G,Cronholm T.,Ingelman-sundberg M.1986.Hydroxyl radical production and ethanol oxidation by liver microsomes isolated from ethanol-treated rat.J Biochem 233,755-781
    Etcheverry P.,Wissler J.,Wortley G.,Glahn R.P.2004.Caco-2 cell iron uptake from human milk and infant formula.Nutr Res 24,573~579
    Evan H.,Morgan.,Phillip S.O.2002.Mechanisms and regulation of intestinal iron absorption.Blood cells Molecules,and Diseases 29,384-399
    Ferruzza S.,Scarino M.L.,Rotilio G.,et al.1999.Copper treatment alters the permeability of tight junctions in cultured human intestinal Caco-2 cells.Am J Physiol 277,G1138-G1148
    Ferruzza S.,Scacchi M.,Scarino M.L.,et al.2002.Iron and copper alter tight junction permeability in human intestinal Caco-2 cells by distinct mechanisms.Toxicol in Vitro 16,399-404
    Forth W.,Rummel W.1973.Iron absorption.Physiol Rev 53,724-792.Forbes A.L.,Adams
    C.E.,Arnaud M.J.,Chichester C.O.,Cook J.D.,Harrison B.N.,Hurrell R.R,Kahn S.G,Morris E.R.,Tanner J.T.,Whittaker R 1989.Comparison of in vitro,animal,and clinical determinations of iron bioavailability:international nutritional anemia consultative group task force report on iron bioavailibility.Am.J.Clin.Nutr 49,225-238
    Frazer D.M.,Wilkins S.J.,Becker E.M.,et al.2003.A rapid decrease in the expression of DMT1 and Dcytb but not Iregl or hephaestin explains the mucosal block phenomenon of iron absorption.Gut 52(3),340-346
    Frossard E.,Bucher M.,Machler F.,Mozafar A.,Hurrell R.2000.Review:Potential for increasing the content and bioavailability of Fe,Zn and Ca in plants for human nutrition.J.Sci.Food Agric 80,861-879.
    Gan L S,Moseley A,Khosla B.(1996) CYP3A-like cytochrome p450-mediated metabolism and polarized efflux of cyclosporin A in caco2 cells.Drug Metab.Dispos,24:344-349
    Gan L.L.,Dhiren R.T.1997.Applications of the caco-2 model in the design and development of orally active drugs:elucidation of biochemical and physical barriers posed by the intestinal epithelium.Adv DrugDelir Rev 23,77-81
    Gan L.S.,Moseley A.,Khosla B.,et al.1996.CYP3A-like cytochrome p450-mediated metabolism and polarized efflux of cyclosporin A in caco2 cdls.Drug Metab.Dispos 24,344-349
    Gargari B.P.,Razavieh S.V.,Mahboob S.,Niknafs B.,Kooshavar H.2006.Effect of retinol on iron bioavailability from Iranian bread in a Caco-2 cell culture model.Nutrition 22,638-644
    Garcia-alfonso C,Lopez-barea J.,Sanz P.,Repetto G,Repetto M.1996.Changes in antioxidative activities induced by Fe(Ⅱ) and Fe(Ⅲ) in cultured vero coilsArch Environ Contam Toxicol 30,431-436
    Gillooly M.,Bothwell T.H.,Torrance J.D.,Mac'Phail A.,Derman D.,Bezwoda W.,Mills W.,Charlton R.,Mayet F.1983.The effect of organic acids,phytates and polyphenols on the absorption of iron from vegetables.Br.J.Nutr 49,331-336.
    Glahn R.R,Wortley G.M.2000.Inhibition of iron uptake by phytic acid,tannic acid,and ZnC12:studies using an in vitro digestion/Caco-2 cell model.J Agric Food Chem 50,390-395
    Glahn R.R,Lee O.A.,Yeung A.,Goldman M.I.,Miller D.D.1998.Caco-2 Cell Ferritin Formation Predicts Nonradiolabeled Food Iron Availability in an In vitro Digestion/Caco-2 Cell Culture Model.J.Nutr 128,257-264
    Glahn R.P.,Wien E.M.,Van Campen D.R.,Miller D.D.1996.Caco-2 cell iron uptake from meat and casein digests parallels in vivo studies:Use of a novel in vitro method for rapid estimation of iron bioavailability.JNutr 126,332-339
    Glahn R.P.,Lee O.A.,Yeung A.,Goldman M.L.,Miller D.D.1998.Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model.JNutr 128,1555-1561
    Glahn R.P,Lai C,Hsu J.,Thompson J.R,Van Campen D.R.1998.Decreased citrate improves iron availability from infant formula:application of an in vitro digestion/Caco-2 cell culture model.JNutr 128,257-264
    Glahn R.P.,Lee O.A.,Miller D.D.1999.In vitro digestion/Caco-2 cell culture model to determine optimal ascorbic acid to Fe ratio in rice cereal.J Food Sci 64,925-928
    Glahn R.P.,Cheng Z.Q.,Welch R.M.2002.Comparison of iron bioavailability from 15 rice genotypes:Studies using an in vitro digestion/Caco-2 cell culture model.J.Agric.Food Chem 50,3586~3591
    Glahn R.P,Wortley G.M.2002.Inhibition of iron uptake by phytic acid,tannic acid,and ZnC12:Studies using an in vitro digestion/Caco-2 cell model.J.Agric.Food Chem 50,390~395
    Glahn R.P,Rassier M.,Goldman M.I.,Lee O.A.,Cha J.2000.A comparison of iron availability from commercial iron preparations using an in vitro digestion/Caco-2 cell culture model.J.Nutr.Biochem 11,62~68
    Gorsline G.W.,Thomas W.I.,Baker D.E.1964.Inheritance of P,K,Mg,Cu,B,Zn,Mn,Al,and Fe concentrations by corn (Zea mays L.) leaves and grain.Crop Sci 4,207-210.
    Goto R,Datta S.K.2003.Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene.Plant Sci 164(3),371-378
    Goto F.,Yoshihiro Y.,Shigemoto N.1999.Iron fortification of rice seed by the soybean ferritin gene.Nature Biotechnol 17,282~286
    Grasset E.,Pinto M.,Dussaulx E.,Zweibaum A.,Desjeux J.F.1984.Epithelial properties of human colonic carcinoma cell line Caco-2:electrical parameters.Am J Physiol 247(16),C260-C267
    Graham R.D.,Welch R.M.1996.Breeding for staple-food crops with high micronutrients density.International Food Policy Research Institute 72,233-237
    Graham R.D.,Senadhira D.,Beebe S.,Iglesias C,Monasterio I.1999.Breeding for Micronutrient density in edible portions of staple food crops:conventional appro-aches.Field Crops Res 60,57-80
    Gregorio G.2002.A new tool for fighting micronutrient malnutrition.JNutr 132,500s-502s
    Gregoiro G.B.,Senadhira D.,Htut T.,et al.1999.Improving iron and zinc value of rice for human nutrition.A culture et development 23,68-81
    Griffiths W.J.H.,Kelly A.L.,Smith S J.,Cox T.M.2000 Localization of iron transport and regulatory proteins in human cells.Q J Med93,575-587
    Gupta U.C.1991.Iron status of crops in prince Edward island and effect of soil pH on plant iron concentration.Canadian Journal of Soil Science 71,197-202
    Guerinot M.L.,Yi Y.I.1994.Iron:noxious,noxious,and not readily available.Plant Physiol 104,815-820.
    Gunshin H.,Mackenzie B.,Berger U.V.,Gunshin Y,Romero M.R,Boron W.R,Nussberger S.,Gollan J.L.,Hediger M.A.1997.Cloning and characterization of a mammalian proton-coupled metal-ion transporter.Nature 388(6641),482-488
    Hallberg L.,Rossander L.,Skanberg A.1987.Phytate and the inhibitory effect of bran on iron absorption in man.Am.J.Clin.Nutr 45,988-996.
    Hemmi N.B.,Raj K.C.,Neal E.C,Chureeporn C,Mark L.R 2007.Assessment of coenzyme Q10 absorption using an in vitro digestion-Caco-2 cell model.International journal of Pharmaceutics 333,112-117
    Hemalatha S.,Ppatel K.,Srinivasan K.2007.Zinc and iron contents and their bioaccessibility in cereals and pulses consumed in India.Food Chemistry 102,1328-1336.
    Hidalgo I.J.,Raub T.J.,Borchardt R.T.1989.Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability.Gastroenterology 96,736-749
    Holm P.B.,Kristiansen K.N.,Pedersen H.B.2002.Transgenic approaches in commonly consumed cereals to improve iron and zinc content and bioavailability.J Nutr 132,514S-516S.
    Hong C.Y,Cheng K.J.,Tseng T.H.,Wang C.S.,Liu L.R,Yu S.M.2004.Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds.Transgenic Res 13(1),29-39
    Hurrell R.R,Reddy M.B.,Burri J.,Cook J.D.2000.An evaluation of EDTA compounds for iron fortification of cereal-based foods.Br.J.Nutr 84,903-910.
    Hurrell R.R,Furniss D.E.,Burri J.,Whittaker P.,Lynch S.R.,Cook J.D.1989.Iron fortification of infant cereals:a proposal for the use of ferrous fumarate or ferrous succinate.Am.J.Clin.Nutr 49,1274-1282.
    Hurrell R.F.1992.Prospects for improving the iron fortification of foods.In Fomon SJ (ed):“Nutritional Anemias.”New York:Raven pp 193-208.
    Hurrell R.F.,Juillerat M.A.,Reddy M.B.,Lynch S.R.,Dassenko S.A.,Cook J.D.1992.Soy protein,phytate,and iron absorption in humans.Am J Clin Nutr 56,573-578.
    Hurrell R.F.1997.Preventing iron deficiency through food fortification.Nutr.Rev 55, 210-222.
    Hurrell R.F.2002.Fortification:Overcoming technical and practical barriers.J.Nutr 132,806S-812S.
    Hurrell R.F.,Bothwell T.H.,Cook J.D.,Dary O.,Davidsson L.,Fairweather Tait S.J.,Hallberg L.,Lynch S.R.,Rosado J.,Walter T.,Whittaker P.2002.The usefulness of elemental iron for cereal flour fortification:A SUSTAIN task force report.Nutr.Rev 60,391-406.
    Jackson M.I.1997.The assessment of bioavailability of micronutrients:introduction.Eur J Clin Nutr 51 Suppll,S1-2.
    Jennifer K.L.,Marianne B.,Margaret E.S.2004.Diallel analysis of grain iron and zinc density in Southern African-adapted maize inbreds.Crop Science Vol 2019-2026.
    Juliano B.O.1985.A factors affecting nutritional propertises protein.Frans Natl Acad Sciz Technol(philipp) 7,205-216
    Kloots W.,Kamp D.O.D.,2004.Abrahamse L.In vitro iron availability from iron-fortified whole-grain wheat flour.J.Agric.FoodChem 52,8132~8136.
    Krebs N.F.2000.Overview of zinc absorption and excretion in the human gastrointestinal tract.J.Nutr 130,1374S~1377S.
    Kuratko C.N.1998.Decrease of manganese superoxide dismutase activity in rats fed high levels of iron during colon carcinogenesis.Food Chem Toxicol 36,819-824
    Kuratko C.N.1999.Iron increases manganese superoxide dismutase activity in intestinal epithelial cdh.Toxicol Lett 104,151-158
    Layrisse M.,Carcia-Casal M.N.,Solano L.,Baron M.A.,Arguello F.,Llovera D.,Ramirez J.,Leets I.,Tropper E.2000.Iron bioavailability in humans from breakfast enriched with iron bisglycine chelate,phytates and polyphenols.J.Nutr 130,2195-2199.
    Layrisse M.,Martinez Torres C,Leets I.,Taylor P.,Ramirez J.1984.Effect of histidine,cysteine,glutathione or beef on iron absorption in humans.J Nutr 114,217-223
    Larson E.R.,Rutger J.N.,Youngc K.A.,Raboyc V.2000.Isolation and genetic mapping of a non-lethal rice(Oryza sative L) low phytic acid 1 mutation.Crop Sci 40,1397-1405
    Le Z.,Raymond P.G,Chi K.Y.,Dennis D.M.2006.Iron Uptake by Caco-2 Cells from NaFeEDTA and FeS04:Effects of Ascorbic Acid,pH,and a Fe (Ⅱ) Chelating Agent.J.Agric.Food Chem 54,7924-7928
    Liang-Shang L.G,Dhiren R.T.1997.Applications of the caco-2 model in the design and development of orally active drugs elucidation of biochemical and physical bassiers posed by the intestinal epithelium.Advanced Drug Delivery Reviews 23,77-98
    Liu Z.H.,Cheng F.M.,Zhang G.P.2005b.Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content.Food Chemistry,89,49-52.
    Lonnerdal B.2000.Dietary factors influencing zinc absorption.J.Nutr 130,1378S~1383S
    Lopez H.W.,Vallery F.,Levrat-Verny M.A.,Coudray C.,Demigne C.,Remesy C.2000.
    Dietary phytic acid and wheat bran enhance mucosal phytase activity in rat small intestine.J Nutr 130,2020-2025.
    Lobreaux S.,Massenet O.,Briat J.F.1992.Iron induces ferritin synthesis in maize plantlets.Plant Mol Biol 19,563~575.
    Lobreaux S.,Yewdall S.,Briat J.F.,Harrison P.M.1992.Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin.Biochem J 288,931~939.
    Lucca P.,Hurrell R.,Potrykus I.2002.Fighting iron deficiency anemia with iron-rich rice.J American College Nutri 3,184S-190S.
    Lucca P.,Hurrell R.,Potrykus I.2001.Approaches to improving the bioavailability and level of iron in rice seeds.Journal of Science of Food and Agriculture 81,828-834
    Lucca P.,Hurrell R.,Potrykus I.2001.Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains.Theor Appl Genet 102(2-3),392-397
    Maberly G.F.,Trowbridge F.L.,Yip R.,Sullivan K.M.,West C.E.1994.Programs against micronutrient malnutrition:ending hidden hunger.Annu Rev Public Health 15,277-301.
    Maekawa A.A.,Glahn R.P.,Lei X.G.,Miller D.D.2006.Effect of bread baking on the bioavailability of hydrogen-reduced iron powder added to unenriched refined wheat flour.J.Agric.Food Chem 54,8362-8368.
    Mahfoud R.,Maresca M.,Garmy N.,et al.2002.The mycotoxin patulin alters the barrier function of the intestinal epithelium:mechanism of action of the toxin and protective effects of.glutathione.Toxicol Appl Pharmacol 181,209-218.
    Maziya-Dixon B.,Kling J.G.,Menkir A.,Dixon A.2000.Genetic variation in total carotene,iron,and zinc contents of maize and cassava genotypes.Food Nutr.Bull 21,419-422.
    Maznah Ismail.1999.The use of Caco-2 cells as an in vitro method to study bioavailability of iron.Mai J Nutr 5,31-45
    Mccord J.M.1996.Effects of positive iron status at a cellular level.Nutr Rev 54,85-88
    Meaney CM.,O 'Driscoll CM.2000.A comparison of the permeation enhancement potential of simple bile salt and mixed bile salt:fatty acid micellar systems using the Caco-2 cell culture model.IntJPharm 207,21-30
    Mendoza C,Viteri F.E.,Lonnerdal B.,Young K.A.,Raboy V.,Brown K.H.1998.Effect of genetically modified,low-phytic acid maize on absorption of iron from tortillas.Am.J. Clin. Nutr 68, 1123-1127.
    Meng F. H., Wei Y. Z., Yang X. E. 2005. Iron content and bioavailability in rice. J. Trace Elem. Med. Biol 18(4), 333-338.
    Michael A G., Pearson J. N., Marentes E. 1999. The physiology of micronutrition homeostasis in field crops. Field Crops Research 60, 41-56.
    Mi GuoHua., Chen FanJun., Liu XiangSheng., Chun Liang., Song JianLan. 2004. Genotype difference in iron content in kernels of maize. Journal of Maize Sciences 12, 13-15.
    Miguel A., Valentina S., Fernando P., Manuel O. 2006. Smaller iron particle size improves bioavailability of hydrogen-reduced iron-fortified bread. Nutr. Res 26, 235-239.
    Minotti G., Aust S. D. 1987. The role of iron in the initiation of lipid peroxidation. Chem Phys Lipids 44, 191-200
    Miller E. R., Ullrey D. E. 1987. The pig as a model for human nutrition. Annu Rev Nutr 7, 361-382.
    Miller G. A., Youngs V. L., Oplinger E. S. 1980. Environmental and cultivar effects on oat phytic acid concentration. Cereal Chemistry, 57, 189-191.
    Miller D. D., Schricker B. R., Rasussen R. R., Van Campen D. 1981. An in vitro method for estimation of iron availability from meals. Am J Clin Nutr 34, 2248-2256
    Miret S., Simpson P. J., McKie A. T. 2003. Physiology and molecular biology of dietary iron absorption. Annu Rev Nutr 23, 283-301
    Moughan P. J., Birtles M. J., Cranwell P. D., Smith W. C., Pedraza M. 1992. The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants. World Rev Nutr Diet 67, 40-113.
    Morgounov Alexei., G(?)mez-Becerra Hugo., Abugalieva Aigul., Dzhunusova Mira., Yessimbekova M., Muminjanov Hafiz., Zelenskiy Yu., Ozturk Levent., Cakmak Ismail. 2007. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, Volume 155, Numbers 1-2, May, pp. 193-203(11).
    Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Metbods 65: 55-63.
    Morgan E. H., Oates P. S. 2002. Mechanisms and regulation of intestinal iron absorption. Blood Cells Mol. Dis 29, 384-399.
    Murphy J. F., Riordan J., Newcombe R. G., Coles E. C., Pearson J. F. 1986. Relation of haemoglobin levels in first and second trimesters to outcome of pregnancy. Lancet 1, 992-995.
    Murakawa H., Bland C. E., Willis W. T., Dallman P. R. 1987. Iron deficiency and neutrophil function: different rates of correction of the depressions in oxidative burst and myeloperoxidase activity after iron treatment. Blood 695, 1464-1468.
    Narai A.,Arai S.,Shimisu M.1997.Rapid decrease in transepithelial electrical resistance of human intestinal Caco-2 cell monolayers by cytotoxic membrane perturbents.Toxicology in Hfm 11,347-354.
    Nappi A.J.Vass P.,Beutler E.2002.Brain iron metabolism and meurodegenerative disorders.Dev Neuronsci 24(2-3),188-196.
    Neutra M,Louvard D.1989.Differentiation of intestinal cells in vitro.In functional Epithelial Cells in Culture.Edited by K.S.Matlin and J.Valurtich.pp 363-398.Alan R.Liss,New York.
    Nunez M.T.,Tapia V.,Toyokuni S.,Okada S.2001.Iron-induced oxidative damage in colon carcinoma(caco-2) cells.Free Radic Res 34,57-68.
    O'Brien K.O.,Zavaleta N.,Caulfield L.E.,Wen J.,Abrams S.A.2000.Prenatal iron supplements impair zinc absorption in pregnant Peruvian women.J.Nutr 130,2251-2255.
    Okada T.,Narai A.,Matsunaga S.,et al.2000.Assessment of the marine toxins by monitoring the integrity of human intestinal caco-2 cell monolayers.Toxicol in Vitro 14,219-226.
    Oikeh O.S.,Menkir A.,Bussie M.D.,Welch R.,Glahn R.P.2003.Assessment of concentrations of Iron and zinc and bioavailable iron in grains of early-maturing Tropical Maize varieties.J.Agric.Food Chem 51,3688~3694.
    Oikeh S.O.,Kling J.G.,Okoruwa A.E.1998.Nitrogen fertilizer management effects on maize grain quality in the West African moist savanna.Crop Sci 38,1056-1061.
    Paola Lucca.,Richard Hurrell.,Ingo Potrykus.2002.Fighting iron deficiency anemia with iron-rich rice.Journal of the American College of Nutrition 21,184S-190S.
    Pedersen B.,Eggum B.O.1983.The influence of milling on the nutritive value of flour from cereal grains in rice qual plant.Plant Foods Hum Nutr 33,267-278.
    Pinto M.,Robine-Leon S.,Appay M.B.,Kedinger M.,Triadou N.,Dussaulx E.,Lacroix B.,Simon-Assmann P.,JTaffen K.,Fogh J.,Zweibaum B.1983.Enterocytelike differentiation and polarization of the human colon carcinoma cell line caco-2 in culture.Biology of the cell 47,323-330.
    Plonait H.,Bickhardt K(eds).1999.Lehrbuch der schweinekrankheiten.Berlin,Parey,1997 Andews NC.Disorders of iron metabolism.N Engl J Med 341,1986-1995.
    Ponnamperuma F.N.,Bradfield R.,Reech M.1955.Physiological disease of rice attributed to toxicity.Nature 175,265~270.
    Promuthai C,Rerkasem B.2003.The effect of nitrogen on rice grain iron.International Rice Research Notes 28(2),37-38.
    Prom-u-thai C,Dell B.,Thomson G,Rerkasem B.2003.Easy and rapid detection of iron in rice grain.ScienceAsia 29,203-207.
    Prom-u-thai C.,Rerkasem B.2001.Grain iron concentration in Thai rice germplasm.Dev Plant Soil Sci 92,350-351.
    Prom-u-thai C.,Huang L.,Glahn R.P.,Welch R.M.,Fukai S.,Rerkasem B.2006.Iron (Fe)bioavailabilityAnd the distribution of anti-Fe nutrition biochemicals in the unpolished,polished grain and Bran fraction of five rice genotypes.J.Sci FoodAgric 86,1209-1215.
    Qu L.Q.,Yoshihara T.,Ooyama A.,Goto F.,Takaiwa F.2005.Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds.Planta 222 (2),225-233
    Rachmawati D.,Mori T.,Hosaka T.,Takaiwa F.,Inoue E.,Anzai H.2004.Production and characterization of recombinant human lactoferrtin in transgenic javanica rice cv rojolele.4~(th) International Crop Science Congress,Brisbane,Australia.
    Ranaldi G,Consalvo R.,Sambuy Y.,et al.2003.Permeability characteristics of parental and clonal human intestinal Caco-2 cell lines differentiated in serum-supplemented and serum-free media.Toxicology in Vitro 17,761-767.
    Rao R.K.,Baker R.D.,Baker S.S.,et al.1997.Oxidant-induced disruption of intestinal barrier function:role of protein tyrosine phosphorylation.Am J Physiol 273,G812-G823.
    Rao R.K.,Li L.,Baker R.D.,et al.2000.Glutathione oxidation and PTPase inhibition by hydrogen peroxide in Caco-2 cell monolayer.Am J Physiol 279,G332-G340.
    Rao N.S.B.,Prasad J.S.,Sarathy C.V.1977.An animal model to study iron bioavailability from human diets.Br JNutr 37,451-456.
    Reinhold J.,Garcia L.P.M.,Arias-Amando L.,Garyon P.1982.Dietary fiber-iron Interactions:fiber-modified uptakes of iron by segments of rat intestine.Vahouny G.Kritchevsky D.eds.Dietary Fiber in Health and Disease,Plenum Press New York,NY.
    Regland M.,Briat J.F.,Gagnon J.,Laulhere J.P.,Massenet O.1990.Evidence for a conservation of ferritin sequences among plants and animals and for a transit peptide in soybean.J Biol Chem 256,18339-18334.
    Robinson N.J.,Procter C.M.,Conolly E.L.,et al.1999.A ferri-chelate reductase for iron uptake from soil.Nature 397,694-697.
    Robinson N.J.,Sadijuda T.,Groom Q.J.1997.The froh gene family from Arabidopsis thaliana:putative iron-chelate reductase.Plant Soil 196,245-248.
    Rossi A.,Poverini R? Di-lullo G,,Modesti A? Modica A? Scarino M,L.1996.Heavy metal toxicity following apical and basolateral exposure in the human intestinal cell line caco-2.Toxicology in Vitro 10,27-36.
    Saha P.,Kov J.H.2000.Effect of solubilizing excipients on permeation of poorly water-soluble compounds across Caco-2 cell monolayers.Eur J Pharm Biopharm 50(3),403-510.
    Sakurai K.,Cederbaum A.I.1998.Oxidative stress and cytotoxicity induced by ferric-nitrilotriacetate in hepG2 cells that express cytochrome P450 2El.Mol Pharmacol 54,1024-1035.
    Salovaara S.,Sandberg A.S.,Andlid T.2002.Organic Acids Influence Iron Uptake in the Human EpithelialCell Line Caco-2.J.Agric.Food Chem 50,6233-6238.
    Sambuy Y.,Ferruzza S.,Ranaldi G,et al.2001.Intestinal cell culture models:applications in toxicology and pharmacology.Cell Biol Toxicol 17,301-317.
    Senahira D.,Gregorio G.,Graham R.M.1998.Breeding iron and zinc-dense rice.Paper presented at the international workshop on micronutrient enhancement of rice for developing countries,September 3,1998.At rice research and extension center,Stuttgard,Arkansas.
    Sanchez L.,Ismail M.,Liew F.Y,Brock J.H.1996.Iron transport across Caco-2 cell monolayers.Effect of transferrin,lactoferrin and nitric oxide.Biochim Biophy Acta 1289,291-297.
    Sandberg A.S.,Svanberg U.1991.Hydrolysis by phytase in cereals;effects on in vitro estimation of iron availability.J Food Sci 56,1330-1333.
    Saicum Pintasen.,Channakan Prom-u-thai.,Sansanee Jamjod.,Narit Yimyam.2007.Variation of grain iron content in a local upland rice germplasm from the village of Huai Tee Cha in northern Thailand.Euphytica 158,27-34.
    Schachatman D.,Barker S.J.,1999.Molecular approaches for increasing the micronutrient density in edible portion of food crops.Field Crops Research 60,81-92.
    Sebastian S.,Josef P.,Michael B.K.2004.Impact of feeding high-iron rice on plasma iron,hemoglobin and red blood cell variables of early-weaned piglets.Ann Nutr Metab 48,109-117.
    SenadhiraD.,Graham R.D.,GregorioG.B.1998.High iron rice.The Philippine Journal of Crop Science 23(Supp 1.1),64.
    Sha X.Y,Fang X.L.2004.Transport characteristics of 9-nitrocamptothecin in the human intestinal cell line Caco-2 and everted gut sacs.Inernational Journal of Pharmaceutics 272,161-171.
    Sims J.L.,Patrick W.H.1978.The distribution of micronutrient cations in soil under conditions of varying redox potential and pH.J.Soil Science Society of America 42,258-262.
    South P.K.,Miller D.D.1998.Iron binding by tannic acid:Effects of selected ligands.Food Chem 63,167~172.
    Spence M.J.,Henzi M.T.,Lanners P.J.1990.The structure of a phaseolus vulgaris cDNA encoding the iron storage protein ferritin.Plant Mol Biol 17,499-504.
    Srigiridhar K.,Nair K.M.,Subramanian R.,Singotamu L.2001.Oral repletion of iron induces free radical mediated alterations in the gastrointestinal tract of rai.Mol Cell Biochem 219,91-98.
    Steinke F.,Hopkins D.1978.Biological availability to the rat of intrinsic and extrinsic iron with soybean protein isolates.J.Nutr 108,481-489.
    Stuart K.A.,Anderson G.J.,Frazer D.M.,et al.2004.Increased duodenal expression of divalent metal transporter 1 and iron-regulated gene 1 in cirrhosis.Hepatology 39(2),492-499.
    Susan Salovaara.,Ann-sofie Sandberg.,Thomas Andlid.2002.Organic acids influence iron uptake in the human epithelial cell line Caco-2.J Agric Food Chem 50,6233-6238.
    Takeuchi K.,Bjarnason I.,Laftah A.H.,et al.2005.Expression of iron absorption genes in mouse large intestine.Scand J Gastroenterol 40(2),169-177.
    Takahashi M.2003.Overcoming Fe deficiency by a transgenic approach in rice.Plant Cell Tiss Org Ccult 72(3),211-220.
    Taylor P.G.,Martinez Torres C,Romano E.L.,Layrisse M.1986.The effect of cysteine-containing peptides released during meat digestion on iron absorption in humans.Am J Clin Nutr 43,68-71.
    Taylor P.G.,Mendez Castellanos H.,Martinez Torres C,Jaffe W.,Lopez de Blanco M.,Landaeta Jimenez M.,Leets I.,Tropper E.,Ramirez J.,Garcia Casal M.N.1995.Iron bioavailability from diets consumed by different socioeconomic strata of the Venezuela population.J Nutr 125,1860-1868.
    Theil E.C.1987.Ferritin:structure,gene regulation,and cellular function in animals,plants,and microorganisms.Annu Rev Biochem 56,289-315.
    Tinawi M.,Martin K.J.,Bastani B.1996.Oral iron absorption test in patients on CAPD:comparison of ferrous sulfate and a polysaccharide ferric complex.Nephron 74,291-294.
    Tobin B.W.,Beard J.L.,Kenney W.L.2003.Exercise training alters feed efficiency and body composition in iron deficient rats.Med Sci Sports Exerc 25,52-59.
    Toshio T.1999.Relation between mean air temperature during ripening period of rice and amylographic characteristics or cooking quality.JpnJ Crop Sci 68(1),45-49.
    Tran C.D.H.,Timmins P.,Ronway B.R.,et al.2002.Investigation of the coordinated functional activities of cytochrome 450 3A4 and P-glycoprotein in limiting the absorption of xenobiotics in Caco-2 cell.J Pharm Sci 91,1170-128.
    Uc A.,Stokes J.B.,Britigan B.E.2004.Heme transport exhibits polarity in Caco-2 cells:evidence for an active and membrane protein-mediated process.Am J Physiol Gastrointest Liver Physiol 287(6),Gl 150-7.
    UNICEF/UNU/WHO/MI Technical workshop,Oct7-9,Boston and Ottawa.International Nutrition Foundation and the Micronutrient Initiative;UNICEF/UNU/WHO/MI Technical Workshop;UNICEF:New York 1999,1-60.
    UNICEF and WHO.Prevention and Control of Iron Deficiency Anemia in Women and Children;Report of the UNIEF/WHO Regional Consultation,Feb3-5,1999,Geneva,Switzerland;United Nations Children's Fund:Geneva,Switzerland 1999,1-110.
    Vasconcelos M,Datta X.,Oliva N.,Khalekuzzaman M,Tomizo L.,Krishnan S.,Oliveina M,Goto F.2003.Enhanced iron and zinc accumulstion in transgenic rice with the ferritin gene.Plant Sci 164,371-378.
    Velarde G.,Ait-AissaS.,GilletC,et al.1999.Use of transepithelial electrical resistance in the study of pentachlorophenol toxicity.Toxicol in Vitro 13,723-727.
    Walgren R.A.,Kamaky K.J.,Lindenmayer G..E.2000.Efflux of Dietary Flavonoid Guercetin 4'-β-glucoside Across Human Intestinal Caco-2 Cell Monolayers by Apical Multidrug Resistance-associated Protein-2 J.Pharmcol Exp Thev 294,830-835.
    Wallace G.A.,Wallace A.,1982.Micronutrient uptake by leaves from foliar sprays of EDTA chelated metals.In:Nelson,S.D.(Ed.).Iron Nutrition and Interactions in Plants.Marcel Dekker,Basel,pp.975-978.
    Walter T.,De Andraca I.,Chadud P.,Perales C.G.1986.Iron deficiency anaemia:adverse effects on infant psychomotor development.Pediatrics 84,7-17.
    Watal B.,Abrahamse S.L.,Treptow-van Lishaut S.1999.Enhancement of ovalbumin-induced antibody production and mucosal mast cell response by mercury.Food and Chemical Toxicology 37,627-637.
    Watkins P.1992.Drug metabolism by cytochromes P450 in the liver and small bowel.Gastrointest.Pharmacol 21,511-526.
    Welch R.M.,Graham R.D.2002.Breeding crops for enhanced micronutrient content.Plant and Soil 245,205-21 4.
    Welch R.M.,Graham R.D.2004.Breeding for micronutrients in staple food crops from a human nutrition perspective.Journal of Experimental Botany 55,353-364.
    Welch R.M.2002.Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally.J.Nutr 132,495S-499S.
    WHO/UNICEF/UNU.Report of a WHO/UNICEF/UNU consultation of indicators and strategies for iron deficiency anaemia programmes.Geneva:WHO,1993
    WHO.1999.Malnutrition worldwide.Geneva,Switzerland:World Health Organization.http://www.who.int/nut/malnutrition worldwide.htm.1-13.
    WHO:“National Strategies for Overcoming Micronutrient Malnutrition.” Document A45/3.Geneva:World Health Organization,1992.
    Wienk K.J.H.,Marx J.J.M.,Beynen A.C.1999.The concept of iron bioavailability and its assessment.Ewr J Nutr 38,51-75.
    Willem K.,Danielle Op D.K.,Leo A.2004.In vitro iron availability from iron-fortified whole-grain wheat flour.J.Agric.Food Chem 52,8132-8136.
    YangX.,Ye Z Q.,ShiCH.,etal.1998.Genotypic diferences in concentrations of iron,manganese,copper and zinc in polished rice grains.Journal of Plant Nutrition 21,1453-1462.
    Yee S.1997.In vitro permeability across Caco-2 cells(colonic) can predict in vivo (small intestinal) absorption in man-fact or myth.Pharm Res 14(6),763-768.
    Yeung C.K.,Miller D.D.,Cheng Z.Q.,Glahn R.P.2005.Bioavailability of elemental iron powders in bread assessed with an in vitro digestion/Caco-2 cell culture model.J.Food.Sci 70,S199-S203.
    Yilmaz A.,Ekiz H.,Torun B.,et al.1997.Different zinc application methods on grain yield,and zinc concentrations in wheat grown on zinc deficient calcareous soils in central Anatolia.J Plant Nutr 20,461-471.
    Yumoto R.,Murakami T.,Nakamoto Y.,et al.1999.Transport of rhodaminel23,a P-glycoprotein substrate,across rat intestine and caco-2 cell monolayers in the presence of cytochrome P-450 3A-related compounds.J Pharmacol Exp Ther 289,149-155
    Yun S.,Habicht J.P.,Miller D.D.,Glahn R.P.2004.An in vitro digestion/Caco-2 cell culture system accurately predicts the effects of ascorbic acid and polyphenols compounds on iron bioavailability in humans.J.Nutr 134,2717-2721.
    Yu J.,Hu S.,Wang J.,Wong G.K.,Li S.,Liu B.,Deng Y,Dai L.,Zhou Y,Zhang X.,et al.2002.A draft sequence of the rice genome (Oryza sativa L.ssp.indica).Science 296(5565),79-92.
    Zager R.A.,Schimpf B.A.,Bredi C.R.,Gmur D.J.1993.Inorganic iron effects on in vitro hypoxic proximal renal tubular cell injury.J Clin Invest 91,702-708.
    Zaleska M.M.,Floyd R.A.1985.Reginal lipid peroxidation in rat brain in vitro:Possible role of endogenous \xoxv.Neurochem Res 10,397-403.
    Zhu L, Glahn R P, Yeung C K, Miller D D. (2006) Iron uptake by Caco-2 cells from NaFeEDTA and FeSO4: Effects of ascorbic acid, pH, and a Fe(Ⅱ) chelating agent. J. Agric. Food Chem, 54: 7924-7928
    Zijp-itske M, Korver O, Tijburg-lilian B M. (2000) Effect of tea and other dietary factors on iron absorption. Crit. Rev. Food Sci. Nutr, 40: 371-398.
    Zodl B., Sargazi M., Zeiner M., Roberts N. B., Steffan I., Marktl W., Ekmekcioglu C. 2004. Toxicological effects of iron on intestinal cells. Cell Biochem Funct 22, 143-148.
    曹慧,韩镇海,许雪峰,张勇.2002.高等植物的铁营养.植物生理学通讯,38(2),180-186
    陈君生,赵显峰,于波等.2003.NaFeEDTA强化酱油对铁缺乏的防治效果-人群干预试验.卫生研究,32,29-38
    崔骁勇,曹一平,张福锁.2000.氮素形态及HCO~(3-)对豌豆铁素营养的影响.植物营养与肥料学报,6,84-90
    戴尧天.1984.铁强化中国酱油的研究1.FeSO4强化酱油的初步试验.营养学报,6,149-153
    俄胜哲,袁继超,姚凤娟,丁志勇等.2004.攀西及相邻地区稻米中矿物元素含量的差异分析.四川农业大学学报,22(41),313-317
    俄胜哲,袁继超,丁志勇等.2005.氮磷钾肥对稻米铁、锌、铜、锰、镁、钙含量和产量的影响.中国水稻科学,19(5),434-440
    顾德法,徐美玉.1992.紫黑糯米特种营养研究.中国农业科学,25(5),36-41
    韩龙植,南钟浩,全东兴,曹桂兰.2003.特种稻种质创新与营养特性评价.植物遗传资源学报,4(3),207-213
    郝虎林,魏幼璋,杨肖娥,冯英,吴春勇.2007.供氮水平对稻株铁、锰、铜、锌含量和稻米品质的影响.中国水稻科学,21(4),411-416
    郝虎林.2007.富铁水稻铁营养生理特性的研究.浙江大学博士生学位论文,杭州,46-47
    何万领,郑文革,任洪涛,张江宏,张自强.2005.日粮铜、铁、锌水平对仔猪生产性能和粪便指标的影响.黑龙江畜牧兽医,2,23-25
    霍军生,孙静,陈君石等.2001.乙二铵四乙酸铁钠强化酱油对学生贫血状况的改善.卫生研究,30,296-298
    蒋彬.2002.精米中微量元素铁铜锰锌的含量差异.昭通师范高等专科学校学报,24(2),45-48
    江川,王金英,郑金贵.2004.稻米矿质营养元素含量受种植环境的影响研究.福建农业学报,19(1),1-6
    季峰,秦玉娥,陈玉燕编著.2004.儿童缺铁防治.浙江科学技术出版社,杭州
    李晨,涂从勇,潘大建,周汉钦,范芝兰.2003.富铁稻米遗传育种研究现状与展望.植物遗传资源学报,4(4),355-359.
    李成荃.1992.杂交水稻生产面临的挑战及其对策.安徽农业科学,20(2),97-102.
    李林,沙国栋,陆准淮.1996.灌浆结实期温光因子对稻米品质的影响.中国农业气象,5(2),33-38.
    李建国,韩勇,解文孝,等.2008.播期及环境因子对稻米产量和品质的影响.安徽农业科学,36(8):3160-3162.
    李静主编.1993.人体营养学与社会营养学,北京:中国轻工业出版社,162-163
    刘志伟,陈秉衡.2004.Caco-2细胞单层模型及其在毒理学中的应用.卫生研究,33(6),756-758
    刘铮,朱其清.1991.微量元素的农业化学.农业出版社,北京
    刘巧泉,姚泉洪,王红梅,顾铭洪.2004.转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量.遗传学报,31(5),518-524
    李欣,顾铭洪,潘学彪.1989.稻米品质研究Ⅱ.灌浆期间环境条件对稻米品质的影响.江苏农学院学报,10(1),7-12.
    罗玉坤,杨金华主编.1998.中国优特稻种资源评价.中国农业出版社,北京,
    吕文英.2000.米类食品中锌,铁,钙,锰,铜等元素测定与研究.微量元素与健康研究,17(4),46-47
    孟凡花,魏幼璋.2004.水稻中铁含量及其生物有效性研究进展.西北农林科技大学学报(自然科学版),32(2),73-76.
    孟凡花,魏幼璋.2004.水稻中铁的含量及其生物有效性研究进展.西北农林科技大学学报(自然科学版),33(2),73-77
    孟亚利,高如嵩,张嵩午.1994.影响稻米品质的主要环境生态因子研究.西北农业大学学报,22(1),40-43.
    彭仲明,等.1992.特种稻品种资源品质评价.中国特种稻学术研究研讨会论文选,上海:上海科技教育出版社,424-429
    戚金亮,王忆,印莉萍,韩镇海.2003.与植物铁素营养相关的蛋白和基因.植物生理学通讯,39(3),294-299
    渠慎春,章镇,乔玉山.2004.植物ZIP基因家族铁载体蛋白基因研究进展.西北植物学报,24,1348-1354
    唐咏梅,陈晓钟,李桂荣,周瑞华,宁鸿珍,闫红.2006.缺铁性贫血对孕妇免疫功能及感染性疾病的影响.卫生研究,35,79-81
    王如文.1998.切断孕妇、婴幼儿铁缺乏流行链.中国农村医学,26,22
    徐晓晖,郭泽建,程志强,黎军英,李德葆.2003.铁蛋白基因的水稻转化及其功能初步分析.浙江大学学报(农业与生命科学版),29(1),49-54
    杨玉爱.1994.有机肥料资源及其对微量元素的螯合和利用的研究.土壤通报,25,21-25
    印莉萍,孙铭明,刘祥林,邱泽生.1999.铁转运机制与相关基因的研究进展.植物学通报,16,642-647
    尹红娟.2007.铁锌肥对水稻和旱稻铁锌营养的影响.中国农业大学硕士学位论文,1-59
    曾亚文,申时全,汪禄祥,刘家富,普晓英,杜鹃.2005.云南稻种矿质元素含量与形态及品质性状的关系.中国水稻科学,19 (2),127-131
    张进,吴良欢,孔向军,伍少福,李永山,赵永德.2006.铁锌混合肥喷施对豌豆籽粒铁、锌、可溶性糖和维生素C含量的影响.植物营养与肥料学报,12(2),245-249
    张进,吴良欢,王敏艳.2007.铁氮配施对稻米中铁、锌、钙、镁和蛋白质含量的影响.农业环境科学学报,26(1),122-125
    张名位等.2000.黑米中矿物元素铁、锌、锰、磷含量的遗传效应研究.遗传学报,27(9),792-799
    张名位等.1996.特种稻米中微量元素铁、锌、锰含量的配合力和稳定性分析.中国水稻科学,10(4),201-206
    张卓然主编.2004.培养细胞学与细胞培养技术.上海科学技术出版社,上海,1版,427-432
    赵宝路.1998.氧自由基和天然抗氧化剂.科学出版社1版,81-85
    赵秋艳,李汴生.2001.新型铁营养强化剂--超微细元素铁粉.食品与发酵工业,27,67-69
    赵秋艳,李汴生.2005.各种铁强化面粉的稳定性研究.粮食加工与食品机械,7,64-65
    赵秀兰,郑绍建,王琴,胡蔼堂.1998.氮素形态对营养液pH值及磷锌和磷铁间颉抗作用的影响.西南农业大学学报,20,1-4
    赵秀兰,郑绍建,王琴,胡蔼堂.1998.氮素形态对营养液pH值及磷锌和磷铁间颉抗作用的影响.西南农业大学学报,20,1-4
    赵则胜等.1996.功能米的研究与利用.上海农学院学报,14(4),236-242
    中国统计年鉴,2004.http://www.stats.gov.cn/tjsj/ndsj/yb2004-c/indexch.htm
    周崇松,刘文宏,范必威,罗丽.2003.川稻中铜铁锌锰四种微量元素的研究.广东微量元素科学,10(10),56-59
    周德翼,张嵩午,高如嵩,等.1994.稻米综合品质与结实期气象因子的关系研究.西北农业大学学报,22(2),6-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700