AZ81镁合金表面微弧氧化改性及涂层的药物释放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金因其优异的生物相容性和生物可降解性,被认为是潜在的人体植入材料,可用于制备新型冠状动脉支架。本文研究基于具有双重可控释放性能要求的可吸收镁合金支架,设计一种新型结构的表面涂层,并系统研究了该涂层对于镁离子以及药物分子的双重控制释放功能。
     本研究采用微弧氧化法改性镁合金基体,通过不同氧化电流密度下的微弧氧化改性效果的对比对氧化机理进行初步探讨;Hank’s模拟体液中的电化学测试及浸泡实验对改性效果进行表征。扫描电镜结果表明,改性后基体表面存在许多微孔,且随着氧化电流的增大,孔洞数目减小,但直径增大,随后的极化曲线、阻抗能谱测试表明改性后的试样相较于空白基体,耐蚀性得到一定提高,并呈现出先增后减的变化趋势。XRD测试分析了改性陶瓷层的成分,主要由MgO、Mg、Mg2SiO4这几相组成。浸泡实验表明改性后的基体其镁离子释放速率能维持在一个相对稳定的水平,可以实现镁合金的可控降解。
     PLGA作为高分子载药涂层,紫杉醇为装载药物,对药物释放规律进行研究。载药涂层DSC和红外光谱数据表明,在8~12%的药物浓度范围内,紫杉醇均匀分散在PLGA体系中。静态药物释放实验表明,PLGA可使紫杉醇长期持续释放, 50天后,药物释放率基本都在30%左右。PLGA载药涂层药物释放机制研究表明,释放首先主要由扩散控制,而后由PLGA基体降解控制。
     采用聚乙二醇(PEG)作为增塑剂研究其对药物释放性能的影响,结果显示: PEG的添加,加速PLGA膜的降解。药物释放实验表明,添加PEG能够提高载药膜药物释放能力,随PEG含量的增加,药物释放率增加。
     不同LA:GA比例的PLGA作为控释层,药物释放实验表明控释层能显著地降低紫杉醇的释放速率,且随着GA比例的增大,控释效果减弱。
     运用血小板粘附实验测试PLGA载药膜的血液相容性,结果表明加入了紫杉醇的PLGA膜表面没有大规模的血小板聚集现象,粘附数目明显减小且没有出现严重的血小板变形现象,显示出载药膜良好的血液相容性
Magnesium alloy is a kind of potential implant biomaterial due to their good biocompatibility and biodegradability; it is possible to develop a new type of coronary artery stent. This research taking into account the dual controlled release of drug and magnesium ions, a new type of coating on magnesium alloys was designed to meet these requirements, and the release property was studied systematically.
     In this study, micro-arc oxidation was used to modify the magnesium’s surfaces; a preliminary study of oxidation mechanism was taken by the contrast of the modified effect of the samples which were treated with different oxidation current density. Electrochemical tests in Hank’s simulated body fluid and immersion test were used to characterize the modification effect. SEMs showed that there were many pores on the surface of the modified samples, and with the oxidation current increased, the number of the pores decreased, the pores’diameter increased. Then the polarization and impedance spectroscopy tests showed that compared to the bare samples, the modified ones had a certain increase in corrosion resistance, showed a trend that first increased and then decreased.XRD test showed the modified ceramic layer was comprised of the phases such as MgO and Mg2SiO4 mainly. Immersion test showed that the magnesium release rate of the modified ones can be maintained at a stable level relatively, it can achieve the target of controlled degradation of magnesium alloy in some way.
     By use of PLGA as drug-loaded coating, Taxol as drug,the drug release profile was studied. DSC and infrared spectral of the drug-loaded coating showed that Taxol can be dispersed in the polymer system evenly when the concentration of drug ranged from 8% to 12%. In static drug release experiment, the results showed Taxol could be gradually release in a long time, and the cumulative release rate after 50 days reached approximately 30%. The study of release mechanism showed that the paclitaxel release in first stage was dominated by diffusion, and then shifted to degradation-controlled stage.
     The influence on the drug release by the addition of PEG as plasticizer was investigated. The results showed that PEG was indeed able to accelerate the degradation of PLGA films, and with the increasing of the content of PEG, the rate of drug release increased.
     Different LA: GA ratio of PLGAs were used as the controlled release layer, drug release experiments showed that the controlled release layer can significantly reduced the release rate of paclitaxel, and the controlled-release effect was weaker as the proportion of PGA increasing.
     The platelet adhesion experiment was used to evaluate the blood compatibility of PLGA drug-carrying film, the results showed that there were no large-scale platelet aggregation on the surface of PLGA film with the adding of the paclitaxel, the number of adhesion platelets was significantly reduced and no severe deformation was found , showing that the drug-carrying film’s good blood compatibility
引文
[1]黄楚波,新型生物可降解冠脉支架的研究:[硕士学位论文],广州;暨南大学,2009
    [2]倪中华,易红,王跃轩等,预防心血管再狭窄纳米颗粒载药涂层支架的研究,东南大学学报(自然科学版),2004,34(6):789-793.
    [3]邱原刚,药物洗脱支架在冠心病介入治疗中应用的现状,当代医学,2009, 15(30):7-8
    [4] Dotter C. T, Judkins M. D. Transluminal treatment of arteriosclerotic obatruction: a new technique and a preliminary report of its application, Circulation, 1964, 30: 654-670.
    [5] Dotter C. T. Transluminally placed coil spring endoarterial tube grafts, long term patency in canine politeal artery, Invest. Radiol, 1969, 4: 329-332.
    [6] Sigwart U, Puel J, Mirkovitch V., et al. Intravascular stents to prevent occlusion and restenosis after transluminal grafting, N. Engl. J. Med., 1987, 316: 701-706
    [7] Savage MP, Fischman DL, Rake R, et al. Efficacy of coronary stenting versus balloon angioplasty in small coronary arteries.Stent Restenosis Study (STRESS) Investigators. J Am CollCardiol.1998;31(2): 307-311.
    [8] Kandzari D. E, Tcheng J. E., Zidar J. R. Coronary artery stents: evaluating new designs for contemporary percutaneous intervention, Catheter Cardiovasc Interv, 2002, 56(4): 562-576.
    [9] Luciana L L, Subbu S. Venkatraman, Adjustable paclitaxel release kinetics and its efficacy to inhibit smooth muscle cells proliferation, Journal of Controlled Release 130 (2008) 9-14.
    [10] Leon M, Baim D, Popma J J et al. A clinical trial comparing three antithrombotic drug regimens after coronary artery stenting, New Engl J Med, 1998, 339: 1665-1671.
    [11] Riveiro P A, Gallo R, Antonius J et al. A new expandable intracoronary tantalum (Strecker) stent: early experimental results and follow-up to twelve months, Am Heart J, 1993, 125: 50-1510.
    [12]刘强,程晓农,徐红星,费黄霞,徐文荣.,316L不锈钢和NiTi合金血管支架的血液相容性[J],中国组织工程研究与临床康复,2008,12(4):735-737
    [13] Stone GW, Ellis SG, Cox DA, et al. One-year clinical result s wit h the slow- release, polymer-base, paclitaxel-elu-ting TAXUS stent: the TAXUS-Ⅳtrial [J]. Circulation, 2004 ,109 (16) :194221947.
    [14] Urban P, Gershilick AH, Guagliumi G,et al. Safety of coronary sirolimus-eluting stents in daily clinical practice : one-year follow-up of the ecypher registry[J] . Circulation ,2006 ,113(11) :143421441.
    [15] Stack RS, Califf RM, Phillips HR, et al. Interventional cardiac cat heterization at DukeMedical Center [J] . Am J Cardiol, 1988, 62 (10 Pt2) : 3F-24F.
    [16] Stone GW,Ellis SG,Cox DA,et al. A polymer-based,paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med.2004,350(3):221-231
    [17] Drachman DE, Edelman ER, Seifert P, Groothuis AR, BornsteinDA, Kamath KR, et al. Neointimal thickening after stent delivery ofpaclitaxol: change in composision and arrest of growth over 6 months. J Am Coll Cardiol 2000;36:2325–32.
    [18] C.J.Pan,J.J.Tang,Z.Y.Shao,J.Wang,N.Huang. Improved blood compatibility of rapamycin-eluting stent by incorporating curcumin. Colloids and Surfaces B: Biointerfaces,2007,59:105-111
    [19]赵宏伟,血管内支架和支架内皮化[J],心血管病学进展,2007,28(5):60-62
    [20] E Regar, G Sianos, P W Serruys. Stent development and local drug delivery. British Medical Bulletin, 2001;59: 227-248
    [21] Alfonso F,Zueco J,Cequier A,et al. A randomized comparison of repeat stenting with balloon angioplasty in patients with in–stent restenosis.J Am Coll Cardiol,2003,42(5):796-805
    [22] Teirstein P.S, Massullo V, Jani S, et al. Three-year clinical and angiographic follow-up after intracoronary radiation: Results of a randomized clinical trial. Circulation 2000; 101:360-365
    [23] Welt FGP, Rogers C. Inlammation and restenosis in the stent era. Arterioscl Thromb Vasc Biol 2002;22:1769-1776
    [24] Regar E, Sianos G, Serruys P. W. Stent development and local drug delivery, Br. Med. Bull., 2001, 59: 227-248.
    [25] Poncinp P, Proft J. Stent Tubing: Understanding the Desired Attributes Materials & Processes for Medical Devices Conference 8-10, 2003, September.
    [26] B Heublein, R Rohde, V Kaese, M Niemeyer, W Hartung, Ahaverich. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart, 2003, Jun;89(6):651-656
    [27] HERRMANNHC. Early results with biodegradable stents[J]. J Watch Cardiol, 2000 ,9.
    [28] MCMAHON C J, EL2SAID H G, GRIFKA R G,et al . Redilation of endovascular stent s in congenital heart disease : factors implicated in t he development of restenosis and neointimal proliferation[J] . J Am Coll Cardiol , 2001 , 38 ( 2) : 521-526
    [29] Tamai H, Igaki K, Kyo E, et al. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans[J]. Circulation, 2000, 102(4):399 -404
    [30] Alexis F, Venkatraman SS, Rath SK, et al. In vitro study of release mechanisms of paclitaxel and rapamycin from drug-incorporated biodegradable stent matrices. J Control Release. 2004;98(1):67-74.
    [31] Frank A, Rath SK, Venkatraman SS.Controlled release from bioerodible polymers: effect of drug type and polymer composition.J Control Release. 2005;102(2):333-344
    [32] Nelson CL. The current status of material used for depot delivery of drug[J]. Clin Orthop Relat Res, 2004,427:72-78
    [33] Hehrlein C. Promises of biodegradable stents[J]. Catheter Cardiovasc Interv , 2007 ,69 (5) :739
    [34] Lincoff AM, Furst J G, Ellis SG, et al. Sustained local delivery of dexamethasone by a novel int ravascular eluting stent to prevent restenosis in the porcine coronary injury model [J]. J Am Coll Cardiol, 1997, 29 (4) :808-816
    [35] Tsuji T, Tamai H, Igaki K, et al.One year follow-up biodegradable self-expanding stent implantation in humans [J]. J Am Coll Cardiol,2001, 37 (Abstr):A47
    [36] Waksman R. PERSEUS. Presented at CRT. 2006. Washington, DC
    [37] Waksman R. Promise and chanllenges of bioabsorable stents[J]. Catheter Cardiovasc Interv ,2007 ,70 (3) :4072414.
    [38] Tanimoto S, Bruining N, van Domburg RT, et al. Late stent recoil of the bioabsorbable everolimus-eluting coronary stent and its relationship with plaque morphology [J]. J Am Coll Cardiol, 2008, 52(20):1616-1620
    [39] Uurto I , J uuti H , Parkkinen J , et al . Biodegradable self-expanding poly-L/ D-lactic acid vascular stent : a pilot study in canine and porcine iliac arteries [J] . J Endovasc Ther , 2004 , 11 (6) : 7122718.
    [40]庄瑜,刘俊,肖明第.可讲解冠状动脉支架的研究进展.现代生物医学进展,2009,9(15):2950-2953
    [41] Peuster M, Wohlsein P, Brugmann M, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits [J]. Heart, 2001,86 (5) :563-569
    [42] Peuster M, Hesse C, Schloo T, et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta [J]. Biomaterials, 2006, 27(28): 4955-4962
    [43] Waksman R., Pakala R, Baffour R,et al. Short-term effects of biocorrodible iron stents in porcine coronary arteries [J]. J Interv Cardiol,2008, 21(1): 15-20
    [44] Muellera PP, Maya T, Perzb A, et al. Control of smooth muscle cell proliferation by ferrous iron [J]. Biomaterials. 2006, 27 (10):2193-2200
    [45]吴大庆,心血管支架材料的生物相容性:特征及比较[J].,中国组织工程研究与临床康复, 2009,13(22):4325-4328
    [46] Erne P, Schier M, Resink TJ.The road to bioabsorbable stents: reaching clinical reality? Cardiovasc Intervent Radiol. 2006;29(1):11-16.
    [47] Guangling Song. Control of biodegradation of biocompatable magnesium alloys, Corrosion Science, 2007, 49:1696-1701
    [48] H. Zreiqat, C.R. Howlett, A. Zannettion, P. Evans, G. Schulze-Tanzil, C. Knabe, J. Biomed. Mater. Res. 62(2002) 175
    [49] Christensen CW, Rieder MA, Silverstein EL, et al. Magnesium sulfate reduces myocardial infarct size when administered before but not after coronary reperfusion in a canine model[J]. Circulation, 1995, 92(9):2617-2621
    [50] Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?Heart. 2003;89(6):651-656
    [51] Waksman R, Pakala R, Kuchulakanti PK, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries[J].Catheter Cardiovasc Interv, 2006, 68(4): 607-617
    [52] Bosiers M, Deloose K, Verbist J , et al. Percutaneous transluminal angioplasty for treatment of“below t he knee”critical limb ischemia : early outcomes following t he use of sirolimus-eluting stent s[J] . J Cardiovasc Surg ( Torino) ,2006 ,47 (2) :1712176.
    [53] Li L, Gao J, Wang Y. Evaluation of cyto2toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid [ J]. SurfCoat Technol, 2004, 185 (1) : 92 - 98.
    [54] Andreas Drynda, Nicole Deinet, Nicole Braun, Matthias Peuster. Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do include the upregulation of inflammatory genes. Journal of Biomedical Materials Research Part A, 2008,91A(2):360-369
    [55] Neite G,Kubota K,Higashi K,Hehmann F,Magnesium-based alloys.In:Cahn RW,Kramer EJ,editors.Materials science and technology.VCH Weinheim;1996
    [56] Makar GL,Kruger J. Corrosion of magnesium. Int Mater Rev,1993;38(3):138-153
    [57] Frank Witte, Norbert Hort, Carla Vogt, Smadar Cohen, Karl Ulrich Kainer, Regine Willumeit, Frank Feyerabend. Degradable bio materials based on magnesium corrosion, Current Opinton in Solid State and Materials Science, 2008,12:63-72
    [58] Xu LP, Yu GN, Zhang E, Pan F, Yang K. In vivo corrosion behavior of Mg-Mn-Znalloy for bone implant:application. J Biomed Mater Res A 2007;83A:703-11
    [59] Mordike BL. Creep-sesistant magnesium alloys. Mater Sci Eng A 2002;324:103-112
    [60]陈振华,严红革等,镁合金[M],化学工业出版社,2004,p31
    [61]刘敬肖,杨大智,王伟强等.表面改性在生物医用材料研究中的应用[J].材料研究学报,2000,14(3):225-233
    [62]曾展宇,赵乃勤,崔振铎等,金属生物材料表面改性研究的进展[J],材料保护,2000,33(1):5-8
    [63]王正平,叶贤富,生物材料的应用及进展[J],应用科技,2002,29(7):68-70
    [64]张文毓,生物体用金属材料研究进展,云南大学学报(自然科学版),2005,27(3A):291-296
    [65]曾荣昌,孙智富,陈君,丁立晰,刘和平,镁合金AM60表面改性及其在HanK’s溶液中的腐蚀,重庆工学院学报, 2007, 21(10):5-9
    [66]宫文彪,李于朋,马凯,孙大千.镁合金等离子喷涂Al/Al2O3涂层的耐腐蚀性能.材料热处理学报,2009, 30(6):164-168
    [67] ShirkhanzadehM. Bioactive Calcium Phosphate Coatings Prepared by Electrodeposition [J].J Mater Sci Lett, 1991(10) 141-147.
    [68] We,C.; Guan,S.;Peng,L.;Ren,C.;Wang,X.;Hu,Z., Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant application. Applied Surface Science, 2009,255(13-14),6433-6438
    [69] Song,Y.W.;Shan,D.Y.;Han,E.H., Electrodeposition of hydroxyapatite coating on AZ91D maganesium alloy for biomaterial application. Mater Lett 2008,62(17-18),3276-3279
    [70] X.M.Zhu, H.G.Yang, M.K.Lei. Corrosion resistance of Al ion implanted AZ31 maganesium alloy at elevated temperature. Surface & Coatings Technology,2007, 201:6663-6666
    [71] Xuemin Wang, Xiaoqin Zeng, Shoushan Yao, Guosong Wu, Yijian Lai. The corrosion behavior of Ce-implanted magnesium alloys, Materials Characterization, 2008 ,59:618-623
    [72] Y.Z. Wan, G.Y. Xiong, H.L. Luo, F. He, Y. Huang, Y.L. Wang. Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium-calcium alloys, 2008,254:5514-5516
    [73] P. Papakonstantinou, J.F. Zhao, P. Lenoine, E.T. McAdame, J.A. McLaughlin,Diamond Relat. Mater. 11 (2002) 1074.
    [74] M. Yatsuzuka, J. Tateiwa, H. Uchida, Vaccum 80 (2006) 135
    [75] R. Sharma, P.K. Barhai, N. Kumari, Thin Solid Films 516 (2008) 5397
    [76]张津,章宗和等,镁合金及应用,化学工业出版社,2004,p232
    [77]马威,时惠英,刘宝林等.成骨细胞在微弧氧化处理后纯钛表面的附着、增殖及ALP活性[J],实用口腔医学杂志,2005,21(l):106-110.
    [78] Zhang Rongfa, Shan Dayong, Han Enhou. Development of micro-arc oxidation p rocess to imp rove corrosion resistance on AZ91 HP magnesium alloy[J]. Trans NonferrousMet. Soc. , 2006, 16: 685– 688
    [79]薛文彬,来永春,邓志威等,镁合金微等离子体氧化膜的特性[ J],材料科学与工艺,1997,5(2):89- 92.
    [80] Phani A R, Gammel F J, Hack T. Surf. Coat. Technol., 2006,56(2):77-82
    [81] Phani A R, Gammel F J, Hack T. Surf. Coat. Technol., 2006, 201(6):3299-3306
    [82] Lamaka S V, Montermor M F, Galio A F,et al.Electrochim.Acta,2008, 53(14):4773-4783
    [83]郭兴华,安茂忠,杨培霞,李海先,SNAP溶胶组成对镁合金涂层耐蚀性的影响,无机化学学报,2009,25(7):1254-1261
    [84]唐智荣,黄虹等,待聚羟基丙酸乙酸膜的降解,华东理工学报[J],2002,4(28):383-386
    [85] Jong Min Kim,Kwang Su Seo, et al. Co-effect of aqueous solubility of drugs and glycolide monomer on in vitro release rates from poly(D,L-lactide-co-glycolide) discs polymer degradation journal of Biomaterials Science[J],Polymer Edition August, 2005,8(116):87102
    [86] Duane T. Bimbarum and Lisa Brannon-Peppas. Molecular weight distribution changes during degradation and release of PLGA nanoparticles containing epirubicin HCl journal of Biomaterials Science[J],Polymer Edition January,2003,1(14):8702
    [87] Zhu K J, Hendren R W, Jensen K et al. Synthesis, Properties and Biodegradation of Poly (1-3-trimethylene carbonate).Macromolecules,1991,24:1736-1740.
    [88] Gibbons D F. Tissue response to resorbable synthetic polymers. In Degradation Phenomena on Polymeric Biomaterials (Plank Hed) Germany: Spring-Verlag Berlin Heidelberg, 1992, 97-104.
    [89] Menei P, Daniel V, Benoit J P. Biodegradation and brain tissue reaction to poly(DL-lactide-co-glycolide) microspheres, Biomaterials, 1993, 14:470-478.
    [90] Nakamura T, Hitomi S, Watanabe S et al. Bioabsorption of polylactides with different molecular properties. J Biomed Mater Res, 1989, 23(10): 1115-1130.
    [91] Yingying Huang, Subbu S.Venkatraman, Freddy Y.C.Boey, Eeva M.Lahti, P.R.Umashankar, Mira Mohanty, Sabareeswaran Arumugam,Laxmikant Khanolkar, Sudhir Vaishnav. In vitro and in vivo performance of a dual drug- eulting stent (DDES). Biomaterials,2010,xxx:1-10
    [92] Chang-Jiang Pan, Jia-Ju Tang, Ya-Jun Weng, Jin Wang, Nan Huang. Preparation and in vitro release profiles of drug-eluting controlled biodegradable polymer coating stents. Colloids and Surfaces B:Biointerfaces, 2009, 73:199-206
    [93] Song G, Song S. Adv Eng Mater, 2007,9(4):298
    [94]张新平,熊守美,许庆彦等,微弧氧化工艺参数对覆盖层厚度的影响规律模型,材料保护,2004,37(8):19
    [95]王吉会,杨静,镁合金在硅酸盐体系微弧氧化膜层的性能研究,材料热处理学报,2006,27(3):95-99
    [96]孔祥瑞,必需微量元素的营养,生理及临床意义,合肥:安徽科学技术出版社,1987
    [97] Krysmann W., Kruze P., Diltrich K.H., Schneider H.G. Process characteristics and Parameters of Andoic Oxidation by spark Discharge (ANOF) [J]. Cryst.Res.Technol.,1984,19(7):973-979
    [98] Wirtz G.P.,Brown S.D.,Knven W.M. Ceramic Coatings by Anodic spark Deposition[J],Mater.Manuf.Process.,1991,6(1):87-115
    [99]蒋百灵,吴国建,张淑芬等,镁合金微弧氧化陶瓷层生长过程及微观结构的研究[J],材料热处理学报,2002,3(1):5-8
    [100]福谷英二,郭玉贞译,金属腐蚀速度的电化学测量方法,防蚀技术,1978,27(7):348-355
    [101] G.T. Burstein. A hundred years of Tafel’s Equation.Corrosion Science,2005,47(12):2858-2870
    [102] Farb A, Heller PF, Shroff S, et al. Pathological analysis of local delivery of paclitaxel via a polymer-coated stent, Circulation, 2001, 104:473-479
    [103] Axel DI, Kunert W, Goggelmann C, etal. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery, Circulation, 1997, 96: 636-645
    [104] Baumbach A, Herdeg C, Kluge M, et al. Local drug delivery: impact of pressure, substance characteristics, and stenting on drug transfer into the arterial wall, Catheter Cardiovasc Interv, 1999, 47: 102-106
    [105] Tze Man Ko, Jui Che Lin, Styart L, et al. Surface characterization and platelet adhesion studies of Plasma-sulphonated polyethylene. Biomaterials. 1993,14(9):657-664
    [106] Six, K. Verreck, G. Peeters, J. Brewster, M, Mooter, G.V.D. Increased Physical Stability and Improved Disolution Properties of Itraconazole, a classⅡdrug, by solid dispersions that combine Fast-and Slow-Dissolving Polymer, J Pharmaceutical Sciences, 2004, 93, 124-131
    [107] Raghuvanshi R.S,Singh M,Talwar GP.Biodegradable delivery system for single step immunization with tetanus toxoid.Int J Pharm,1993,93:R1-5
    [108]尹光福,王昌祥,郑昌琼等,新型人工关节替换材料血液相容性评价,功能材料增刊,1998,10:925-927
    [109] Kaelbe DH,Moacanin J.A surface energy analysis of bioadhesion[J]. Polymer,1977,18(5):475-482

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700