离子交换法海水提钾过程优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子交换法由于具有良好的选择性和较高的产品回收率,在海水提钾领域已得到广泛应用。随着离子交换设备的不断发展与更新,连续离子交换技术开始应用于海水提钾工艺中。计算机技术的迅猛发展使连续离子交换分离技术进行模拟研究成为可能。由于数学模型的设计和优化不受实验条件的限制,因此更有利于分离过程复杂机理的研究。连续离子交换法海水提钾过程模拟研究是以单柱吸附和洗脱过程的模拟为基础进行的,因此本文分别对单柱吸附和洗脱过程进行模拟研究,考察不同操作参数和因素对实验的影响,为连续离子交换法海水提钾工艺的模拟研究提供理论支持与参考。
     通过查阅文献选取数学模型和模拟所需的相关参数,在此基础上利用COMSOL仿真模拟软件对单柱钾离子吸附和洗脱过程分别进行模拟。将模拟结果与实验结果相对照,可见平衡扩散模型的模拟效果要优于理想模型。
     在单柱吸附模拟过程中,选定进料浓度、柱长、柱径和离子交换等温线方程的基础上,随着孔隙率的减小,穿透曲线的穿透时间基本保持不变,保留时间不断增大;而随着传质系数的增大,穿透曲线的穿透时间不断减小,保留时间基本不变;不同流速对穿透曲线的影响较为复杂,随着进料流速的增大,穿透时间不断减小,保留时间也不断减小。
     单柱洗脱模拟过程与吸附类似,但所得结果有不同。孔隙率的变化对模拟结果的影响不大,但使流出曲线发生平移的总趋势还是存在的,不影响其穿透时间;而随着传质系数的增大,穿透时间减小的速率不断减小。
The ion exchange method has been widely used in the field of extracting potassium from seawater, owning to the good selectivity and high product recovery. With the development of the ion exchange device, the technology of continuous ion exchange has applied to the process of extracting potassium from seawater. The rapid development of computer technology has made the simulation of continuous ion exchange possible. Design and optimization of mathematical models without restriction of experimental conditions, therefore, are propitious to the study of the complex mechanism of separation. Based on the simulation of batch adsorption and elution process, simulation of extraction potassium process from seawater by continuous ion exchange was researched. In this paper, the simulations of batch adsorption and elution process were studied, while the effects of different operating parameters and factors were investigated. The above research will provide theoretical support and reference for the simulation of extraction potassium process from seawater by continuous ion exchange.
     The mathematical models and simulation parameters were selected by referring to the literature. Base on the above, the simulations of batch adsorption and elution process were carried out with COMSOL software. Contrasting the simulation results with experiment data, it can been shown that the equilibrium diffusion model is better than the ideal model.
     When the feed concentration, length and diameter of column, and ion-exchange isotherm equation are selected, the process of batch adsorption was simulated through the mathematical model. It can be seen with the porosity decreases the penetration time of the breakthrough curve remain unchanged and retention time increasing. With the increasing of mass transfer coefficients, the through time of the curve gradually decreased and retention time basically unchanged. This paper also study the effect of different velocity on breakthrough curve, the results found the influence is very complicated. It was as follow with the increasing of incoming velocity, the through time and retention time also will decrease.
     The simulation of elution process is similar to the adsorption process, but the results are different. With the change in porosity, the results of simulation have little influence. The trend of making the elution curve translation still exists, but the penetration time was not been influenced. With the increasing of mass transfer coefficients, the rate of the penetrate time continuously decreased.
引文
[1]袁俊生,张林栋,刘燕兰,吕铮.我国海水钾资源开发利用技术现状与发展趋势.海湖盐与化工,2002,31(2): 1-6.
    [2] Kielland J. Ger Pat 619 [P], 1940,366.
    [3]成思危.试论用天然沸石由海水中直接提取钾盐的方法[J].无机盐工业,1980(6):1-6.
    [4]袁俊生,杨树娥,邓会宁.连续离子交换技术及其在海水提钾的应用.盐业与化工,2007,36(3):27-30.
    [5]姜志新,谌竟清,宋正孝.离子交换分离工程[M].天津:天津大学出版社,1992.
    [6]张铨昌,杨华蕊,韩成.天然沸石离子交换性能及其应用[M].北京:科学出版社,1986.185-191.
    [7]闻瑞梅.高纯水的制备及检测技术[M].北京:科学出版社,1999: 101-126.
    [8]马建标,何炳林.离子交换树脂在分析化学中的应用[[J].分析测试学报,1993, 12(1):79-86.
    [9]王秋萍,宋崇立,姜长印等.除Cs用无机离子交换剂的筛选[J].离子交换与吸附,2000,16(3):225-233.
    [10]李丹,邓天龙,孙柏.无机离子交换法从卤水中提锂的研究进展[J].广东微量元素科学;2007,1.
    [11]闫明,钟辉,张艳.卤水中分离提取铷、铯的研究进展[J].盐湖研究.2006,3.
    [12]徐世平,张继荣,宋崇立.用无机离子交换法从酸性高放废液中去除铯研究进展[J].辐射防护通讯;2000,6.
    [13] Kamatsu M, Potassium-selective adsorbent and its Production, JP 03一205315,1991.
    [14]孙汉章.从海水中提取钾盐.青岛海洋大学学报,1994,24(1):231一235
    [15]李艳,李涛,王丽娜等.离子筛材料的合及其对盐湖卤水中锂的选择吸附性[J].过程工程学报,2006,6(5):724-728.
    [16] Tanaka Y. Technology for removing potassium from concentrated seawater by electrodialysis and solar salt dissolved in brine. Separation Science and Technology, 1993,28(11):2023-2034.
    [17]中国科学院地质研究所:沸石矿物与应用研究(论文集).科学出版社,1979.
    [18] Nishita, H. and Haug R. M.. Influence of clinoptilolite on 90Sr and 137Cs uptakes by plants.Soil. Sci. 1972,114: 149-157.
    [19] L.,L., Jr..Zeolite extraction of cesium from aqueous solutions.U. S. At. Energy Comm.,H. W. ,1959,25:62607.
    [20] Nikashina,V. A., Zaborskaya, Ye. Yu., Mahalov, Ye. M. and Rubinshteen, R. N.. Selective solution of strontium by natural clinoptilolite from aqueous solutions. Radiokhimiya,1974,16:753-756.
    [21] Ames,L.,L.,Jr. The cation sieve properities of clinoptilolite. Amer. Miner, 1960,45:689-700.
    [22] Ames, L.,L., Jr. and B. W. Mercer..Scientific communications, The use of clinoptilolite to removal potassium selectively from aqueous solutions of mixed salts,Econ. Geol.,1967,56:1135-1136.
    [23] Ames. Some zeolites equilibria with alkali metal cations. Amer Miner,1964,49 (3):35-39.
    [24] Nikashina, VA, Zsborskays, YeYu, Mahalov, YeMandRubinshteen, RN. Selective solution of strontium by natural clinoptilolite from aqueous solutions [J], Radiokhimiya, 1974, (16):753-756.
    [25] KnollH. Ger (Wdst). 1971, 81-91.
    [26] Fujimori, KandMoriya, Y. Removal and treatment of heavy metallic industrial waste water,Ⅰ. Neutralizing method and solidification by zeolite [J], Asahi Gerasukogyo Gijutsu Shoreikai Kenkyu, Hokoku, 1973, (23):243-246.
    [27] Cohen, J M. Trace metal removal by waste water treatment, Tech. Transfer, U.S. Environ Protect Agency, 1977, (Jan):3-7.
    [28] Roberto T Pabalan and F Paul Bertetetti. Experimental and modeling study of ion exchange between aqueous solutions and the zeolite mineral clinoptilolite [J], Journal of solution chemistry, 1999, 4(28):367- 393.
    [29]王德华,费维扬.钠改型天然斜发沸石对铵离子的交换性能[J],离子交换与吸附,2002,18(2): 144-149.
    [30]温东辉,唐孝炎.天然斜发沸石对溶液中NH4+的物化作用机理[J],中国环境科学,200319(3): 257-260.
    [31] LiuYi-fan, WangYu-ying. Ammonium treatment of natural clinoptilolite and its character of ion- exchange [J]. Chinese journal of reactive polymers[J], (中国反应性高分子:英文版) 1998, 13(3): 274-279.
    [32]. R. Navarrete Casas, A. Navarrete-Guijosa. Study of lithium ion exchange by two synthetic zeolites: Kinetics and equilibrium [J], Journal of Colloid and Interface Science, 2007, 306 (2):345-353.
    [33]张金辉.连续离子交换装置原理和产品比较[J],化肥设计2001,39(2):34-35.
    [34] A. Navarro, H. Caruel, L. Rigal. Continuous chromatographic separation recess: simulated moving bed allowing simultaneous withdrawal of three fractions [J], Journal of Chromatography A, 1997 (770):39-50.
    [35] Mark C. B jorklund, Robert W. Carr, The simulated countercurrent moving bed chromatographic reactor: a catalytic and separative reactor [J], Catalysis Today, 1995 (25):159-168.
    [36]张有谟.美国连续式离子交换法( ISEP)新工艺技术[J],沈阳化工,1997(1):5-9.
    [37]张沂圭,王增平.连续式离子交换法生产硝酸钾[J],硫磷设计与粉体工程, 2000 (1): 30-32.
    [38] Botella, T. Gasos, P. Oterope La Gandara, J. L. Continuous ion exchange: loading breakthrough curves and calculation methods [J], Hydrometallurgy, 1986, 17(1):91-112.
    [39] Canon, Ron M. Beqovich, John. M. Continuous stationary-bed ion exchange: incomparable power for difficult separations involving higher-value products [J], Front Technol in Miner Process, 1985: 113-122.
    [40]蒋伟,栾振辉.连续型离子交换装置[J],煤矿机械,2002 (3):56-57.
    [41]张金辉.连续离子交换技术在硝酸钾生产中的应用[J],中氮肥,2001(5):29-30.
    [42]张俊先,任照元.应用ISEP系统回收氯化铵废液[J],现代化工,1997(6):22-23.
    [43]王学江,张全兴,等.连续离子分离系统在水杨酸生产废水处理中的应用[J],环境污染治理技术与装备,2002,3(12):85-88.
    [44]邓天龙,汪模辉,廖梦霞.从低品位铜矿浸出液中回收铜的技术进展[J],矿产综合利用,1992(1):19-21.
    [45] Francisco Jose Alguacil, Manuel Alonso, Luis Javier Lozano. Chromium (III) recovery from waste acid solution by ion exchange processing using Amberlite IR-120 resin: batch and continuous ion exchange modeling [J], Chemosphere, 2004 (57):789–793.
    [46]希姆斯利,李雁南,苏玉光.用连续离子交换法从浑浊液中回收铀,核原料,1978(03):1-8.
    [47] D·W·Boydell,张玉泰.连续离子交换回收铀及对五年来取得成就的评价,湿法冶金,1983(01):1-7.
    [48]卿石臣.连续离子交换法在甜菊糖生产中的应用,适用技术市场,2000(07):26-27.
    [49]吴峰,韩立邦等.离子交换法二清汁脱钙新工艺[J],中国甜菜糖业,1997(6):48-49.
    [50]徐昌洪,方家骥.连续离子交换色谱分离在赖氨酸精制过程中的应用,精细与专用化学品,2008(20):18-20.
    [51]王伟.浅谈我国赖氨酸工业生产技术现状[J],酿酒,2000(4):30-31.
    [52]张玫,相振昌.连续离子交换系统在山梨醇生产中的应用,化工矿物与加工,1999(03):14-15.
    [53]吴华,孙洪贵.连续逆流离子交换技术及其在抗生素生产中的应用[J],福建化工,2003(1):13-19.
    [54]潘琤,袁鹏,章志兰,薛翠燕.连续离子交换色谱分离维生素C和古龙酸,粮食与食品工业,2010(04):16-22
    [55]陈学玺,姜华,谷志勇,等.WQD-1沸石离子交换性能的研究[J],无机化学学报,1997,9(13):340-343.
    [56] J.G.Lu.A non-linear non-ideal model of simulated moving bed chromatography for chiral separations [J].Chines Journal of Chemical Engineering, 2003,11:234-239.
    [57] L.S.Pais,J.M.Louerior and A.E.Rodrigus.Modeling sarttegies for ennatiomers separation by SMB chromatography [J].AIChE Journal,1998,44(3):561-569.
    [58]孙云岳.模拟移动床吸附分离(Ⅰ)一计算模型.化学工程,1984,:348一54.
    [59]顾金生,蒋慰孙,顾幸生.模拟移动床Parxe过程动态模型,华东理工大学学报,23(6):725-730.
    [60]盖旭东,咚泽民,杨春育.C:芳烃吸附分离系统动态混合池模型,石油炼制与化工,1994,45(12):45-48.
    [61] D.Pavone and G.Hotier. System Approach Modeling Applied to the Eluxyl Process. Oil & Gas Science and Technology-Review IFP, 2000,55(4):437-446.
    [62] M.Minceva and A.E.Rodrigus. Modeling and simulation of a simulated moving bed for the separation of p-Xylene. Industrial and Engineering Chemistry Research, 2002,41:3451-3461.
    [63]王晨,马正飞,姚虎卿.分子筛脱蜡过程的模拟移动床计算,二石油化工,2002,31(10):827-830.
    [64]中仿科技.专业数值分析系统COMSOL Multiphysics, CAD/CAM与制造业信息化, 2008,9:40-44.
    [65]蒙茂洲. COMSOL Multiphysics 3.5新特征, CAD/CAM与制造业信息化.2009,4:33-36.
    [66] Heuer C.Design of the simulated moving bed process based on adsorption isotherm measurements using a perturbation method.Journal of Chromatography A,1998.827:175-191.
    [67] Mihlbachler K.Effect of the homogeneity of the column set on the performance of a simulated moving bed unit-II.Experimental study.Journal of Chromatography A,2002.944:3-22.
    [68] Mazzotti M.Storti G and Morbidelli M.Optimal operation of simulated moving bed units for nonlinear chromatographic separations.Journal of Chromatography A,1997. 769:3-24.
    [69] Houwing J,Billiet H A H,and van der Wielen L A M.Optimization of azeotropic protein separations in gradient and isocratic ion-exchange simulated moving bed chromatography.Journal of Chromatography A,2002.944:189-201.
    [70] Tracey Wilson S.Changes in detrusor smooth muscle myosin heavy chain mRNA expression following spinal cord injury in the mouse.Neurourology and Urodynamics, 2005.24(1):89-95.
    [71] Proll T,and Kusters E.Optimization strategy for simulated moving bed systems. Journal of Chromatography A,1998.800:135-150.
    [72] Strube J.Dynamic simulation of simulated moving-bed chromatographic processes for the optimization of chiral separations.Journal of Chromatography A,1997.769: 81-92.
    [73]刘建奇.柠檬酸模拟移动床色谱分离的模拟、优化和放大研究(D).江苏无锡,江南大学,2008.
    [74]杨树娥.基于BP神经网络的连续离子交换法海水提钾工艺的优化研究(D).天津,河北工业大学,2007.
    [75]郑素荣.河北赤城天然斜发沸石物化性能和K+-NH4+交换特性的研究(D).天津,河北工业大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700