受限空间内一维纳米材料的制备与生长机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对能满足21世纪要求且具有分子级性能材料的探索,引导了一维纳米结构的发展。几乎每种传统材料都有一种一维纳米材料的匹配物。一维纳米材料在纳米电子学、设备和系统、纳米复合材料、可替代能源和国家安全上都具有深远的影响。本论文紧跟时代要求,成功制备了具有集成图案的一维纳米材料阵列,如一维聚合物纳米材料、一维金属纳米材料,开拓了同轴金属纳米电缆和多层金属纳米材料体系,研究了这些一维纳米材料的制备,并探讨了在受限空间内一维纳米材料的生长机理,这一领域的系统性研究尚未见报道。
     本论文掌握了采用紫外光刻蚀技术制备纳米或微米图案的工艺。在众多的图案化制备技术中,紫外光刻技术被认为是一种制备大面图案、经济、易操作的技术。在紫外光刻技术中有五个主要步骤:涂胶、前烘、曝光、后烘和显影。对每一个步骤都做了详尽的分析和实验,最终找到了一个最适宜的工艺条件,在多孔氧化铝(AAO)模板的表面上成功制备了不同图案、不同尺寸的大面积、规整图案。
     首次以图案化模板为二次模板,通过物理浸润的方法,如溶液浸润法和熔体浸润法,成功制备了多种图案化的聚合物纳米管和纳米线阵列结构,如常规分子量的PS、PA6、PA66、PA11、ABS、PMMA等六种聚合物。微观形貌测试结果表明,两种方法都能获得结构完整的纳米管和纳米线结构,其直径与模板孔径相吻合。在溶液法中,纳米管壁厚随着溶液浓度的增加而增厚,当溶液浓度达到一定值时,制得纳米线结构,溶剂不同则溶液浓度不同,如以三氯甲烷为溶剂配制聚苯乙烯(PS)溶液,溶液浓度为10.0 wt%,则得到PS纳米线;以甲酸为溶剂配制聚酰胺6(PA6)溶液,溶液浓度为8.0 wt%,则可制得PA66纳米线。熔体法制备时,纳米管的壁厚与熔融温度有关,一般地,熔融温度越高,纳米管的壁厚越薄,反之,越厚。
     首次用高分辨电子透射电镜观察到了低结晶度聚合物(PS)和高结晶聚合物(PA6)纳米管的结晶现象,突破了以模型研究聚合物纳米管结晶的范畴。在纳米管外壁的部分区域观察到结晶条纹,其它区域为无定形区。通过与本体聚合物的X射线衍射对比,发现聚合物纳米管的X射线衍射图谱有较大的改变,这表明在受限空间内纳米管在形成过程中,有晶相转变现象发生,而PA6则发生了明显的转变,在本体中主要存在α晶相,而在纳米管中则转变成γ晶相。
     研究了金属纳米材料的制备及其性质。采用电化学沉积方法制备了非磁性金属纳米线体系(以Cu为代表),研究发现,纳米线随着沉积时间的延长而增长,但不成正比关系。高分辨与电子衍射花样显示Cu纳米线具有单晶结构;生长方向沿[220],首次观察到纳米线的断裂方向,分别沿着(202)和(022)两个晶面的方向断裂,断裂端呈规则的圆锥型;在外力作用下,Cu纳米线还显示出与块体材料相似的性质:柔韧性。
     同时,研究了磁性金属纳米材料(以Ni,Co,Fe为代表)的制备及磁性能。经过一系列的实验,通过高分辨透射电镜表征,首次观察到磁性纳米管的形成过程,发现在沉积时间低于15min,得到的全部是纳米管,高于40mmin得到的全部是纳米线,由此可知先生成纳米管,再形成纳米线。通过磁性测试发现磁性金属纳米管具有一定的磁性,在轴方向上易被磁化,却拥有较低的矫顽力。
     研究了Cu/Ni核/壳结构的同轴纳米电缆的制备方法和磁性。通过两步电沉积方法(先沉积Ni纳米管,再在Ni纳米管中沉积Cu纳米线)和一步共沉积方法(电解质溶液中既含有Ni离子也含有Cu离子),均能制备Cu/Ni核/壳结构的同轴纳米电缆结构。与Ni纳米管磁性能相比,Cu/Ni核/壳结构的同轴纳米电缆剩余磁化强度明显大于Ni纳米管的剩余磁化强度。
     开拓了Cu-Ni嵌段纳米线新体系。透射电镜照片显示了嵌段纳米线的竹节状结构,电子衍射花样显示界面处的物质具有单晶结构,与Ni纳米层的多晶结构不相符,对此,解释了可能的形成原因,是由于原子掺杂所致。
     首次提出了聚合物在受限空间内形成机理:bamboo-like和cylinder-shaped两种形成方式,并给予了充分的解释。根据此现象,首次提出了AAO模板对聚合物纳米管的形成具有诱导效应,可以导致聚合物在受限空间内成核时发生晶型和结晶度的改变,影响分子链的排列。同时,首次提出了磁性金属纳米管的形成机理:brick-stacked wirelike growth生长机理。
The quest for materials with molecular scale properties that can satisfy the demands of the 21st century has led to the development of one dimensional nanostructures, ODNS. Nearly, every class of traditional material has an ODNS counterpart. ODNS has a profound impact in nanoelectronics, nanodevices and systems, nanocomposite materials, alternative energy resources and national security. In the thesis, one dimensional nanomaterials arrays, such as polymer nanomaterials and metal nanomaterials, with integrated patterns have been successfully fabricated. Meanwhile, we developed new nanomaterials systems including metal coaxial nanocable and metal multilayer nanomaterials. However, only few systemic research works concerning the fabrication and growth mechanism in restricted spaces have been reported.
     Fabrication of nano- or micro- patterns with photolithographic technique has been marstered. Among those techniques, photolithography has been regarded as one of the most successful techniques in large-scale microfabrication, and the method is effective, low-cost and simple implementation. There are main 5 steps:coating, soft bake, exposure, hard bake and developing. The best experimental conditions have been found by systemic analysis and experiment. High-ordered large area patterns with different scales and patterns have been fabricated on the side of porous anodic aluminum oxide (AAO) templates.
     Patterned AAO template were used as a second template firstly to fabricate various patterned polymer (such ascommen molecular weight PS, PA6, PA66, PA11, ABS, PMMA) nanotube and nanowire arrays by polymer solution wetting and melt wetting templates. The diameters of the polymer nanotubes and nanowires are consistent with the pore diameters of the templates. The wall of the nanotubes increases with the solution concentration in solution wetting template. When the solution concentration reaches a certain value, nanowires are obtained. The concentration are different with the solvents, for example, trichloromethane was used as solvent in PS solution, and the concentration was 10.0 wt%, and PS nanowires were obtained. Whereas, if formic acid was used as solvent in PA6 solution, and the concentration was 8.0 wt%, then PA6 nanowires were obtained. With melt wetting templates, the wall of nanotubes is depended on the melt temperature. Generally, the more the melt temperature is, the thinner the wall of the nanotubes is, or, thicker.
     The crystallization phenomena of the low crystallinity PS and high crytallinity PA6 have been observed by high reolution transition electron microscope (HRTEM) firstly. The crystalline lattice fringes exist in some regions, while most regions show an amorphous nature. Compared with X-ray diffraction (XRD) patterns of the bulk polyer, the XRD patterns of polymer nanotubes are very different. It is proved that crystal phase have changed during the nanotubes growing in the restricted spaces. And, it was found that there is a crystal transformation from the a-form in bulk to theγ-form of PA6 in nanotubes.
     Fabrication and properties of metal nanomaterials were studied. Cu nanowires were prepared by the electrodeposition. The length of the Cu nanowires increases with the deposition time. HRTEM image and select area electron diffraction pattern show that the Cu nanowires have single crystal structure. The growth orientation is along [220] direction, and the broken orientation was obsvered firstly, it is along (202) and (022) directions, respectively. Regular cones were formed at the broken end of nanowires. Bent nanowires were also observed, this means that the copper nanowires have good mechanical properties when applied external force.
     In the meantime, ferromagnetic nanomaterials, such as Ni, Co and Fe, were studied on fabrication and magnetic property firstly. The process of the nanotube growth was observed by the HRTEM after a series of experiments. The deposition time is less than 15 min, nanotubes are obtained. While the deposition time is more than 40 min, nanowires are obtained. Come to the conclusion, the nanotubes are obtanined first, then nanowires. It was found that the nanotubes are magnetized along the long axis more, but have lower coercivity.
     Fabrication and magnetic property of Cu/Ni core/shell coaxial nanocables were investigated. There are two methods to obtain nanocables:the first method, Ni nanotubes were deposited first, and then deposited Cu naniwires in the obtained Ni nanotubes. The second method is codeposition. Compared with the magnetic property of Ni nanotubes, the remanent magnetization of the Cu/Ni nanocalbe is lager than that of Ni nanotubes.
     The new Cu-Ni block nanowire system was developed. TEM images show that the block nanowires have bamboo-like structure. SAED pattern at the interfaces between Ni and Cu layer shows where the matter possesses single crystal structure which is not consistent with polycrystal structure of Ni layer. The reasons for the formation may be caused by the atomic doping.
     Two growth mechanisms including bamboo-like and cylinder-shaped growth mechanism for the polymer nanotube forming in the restricted spaces were put forward firstly. According to the experimental results, the induction effect of the AAO templates for the polymer nanotubes formation was raised firstly. The induction effect can cause changes for crystal form and crystallinity, and affect molecular chains arrangement. For the magnetic metal nanotube formation, the Brick-Stacked Wirelike Growth (BSWG) mechanism was first proposed.
引文
了受限空间为纳米结构带来的某些效应。
    [1]Suryanarayana C. The structure and properties of nanocrystalline materials:Issues and concerns. JOM-J Miner Metals Mater Soc,2002,54:24-27.
    [2]Suryanarayana C. Nanocrystalline Materials. Int Mater Rev,1995,40:41-64.
    [3]Suryanarayana C, Koch CC. Nanocrystalline materials - Current research and future directions. Hyperfine Interactions,2000,130:5-44.
    [4]Kulinowski K. Nanotechnology:from wow to yuck. Bull Sci Technol Soc,2004,24:13-20.
    [5]lijima S. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [6]Tenne R. Fullerene-like structures and nanotubes from inorganic compounds. Endeavour,1996, 20(3):97-104.
    [7]Pauling L. The structure of the chlorites. PNAS,1930,16(9):578-582.
    [8]Mayers B, Gates B, Xia Y. One-dimensional nanostructures of chalcogens and chalcogenides. Int J Nanotechnol,2004,1:86-104.
    [9]Lieber CM. One-Dimensional Nanostructures:Chemistry, Physics & Applications. Solid State Commun,1998,107:607-616.
    [10]Kolmakov A, Moskovits M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res,2004,34:151-180.
    [11]Xia YN, Yang PD, Sun YG, Wu YY, Mayers B. One-Dimensional Nanostructures:Synthesis, Characterization, and Applications. Adv Mater,2003,15:353-389.
    [12]Rao CNR, Deepak FL, Gundiah G, Govindaraj A. Inorganic nanowires. Prog Solid State Chem, 2003,31:5-147.
    [13]Hu J, Odom TW, Lieber CM. Chemistry and Physics in One Dimension:Synthesis and Properties of Nanowires and Nanotubes. Acc Chem Res,1999,32:435-445.
    [14]Holmes JD, Johnston KP, Doty RC, Korgel BA. Control of Thickness and Orientation of Solution-Grown Silicon Nanowires. Science,2000,287:1471-1473.
    [15]Wang J, Gudiksen MS, Duan X, Cui Y, Lieber CM. Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires. Science,2001,293:1455-1457.
    [16]Mohamed MB, Volkov V, Link S, El-Sayed MA. The 'lightning' gold nanorods:fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett,2000,317:517-523.
    [17]El-Sayed MA. El-Sayed M. A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Accounts Chem Res 2001,34:257-264.
    [18]Shukla S, Ludwig L, Cho HJ, Duarte J, Seal S. Effect of air-pressure on room temperature hydrogen sensing characteristics of nanocrystalline doped tin oxide MEMS-based sensor. J Nanosci Nanotechnol 2005,5:1864-1874.
    [19]Shukla S, Seal S. Constitutive Equation for Gas Sensitivity of Nanocrystalline Tin Oxide Sensor. Sensor Lett 2004,2:125-130.
    [20]Shukla S, Seal S. Theoretical Model for Film Thickness Dependent Gas Sensitivity Variation in Nanocrystalline Tin Oxide Sensor. Sensor Lett 2004,2:260-264.
    [21]Shukla S, Seal S. Theoretical Model for Nanocrystallite Size Dependent Gas Sensitivity Enhancement in Nanocrystalline Tin Oxide Sensor. Sensor Lett 2004,2:73-77.
    [22]Shukla S, Agarwal R, Cho H J et al. Effect of ultraviolet radiation exposure on room-temperature hydrogen sensitivity of nanocrystalline doped tin oxide sensor incorporated into microelectromechanical system device. J Appl Phys 2005,97:1-13.
    [23]Shukla S, Ludwig L, Parrish C, Seal S. Inverse-catalyst-effect observed for nanocrystallinedoped tin oxide sensor at lower operating temperature. Sensor Actuat B:Chem 2005,104:223-231.
    [24]Shukla S, Patil S, KUIRY S C et al. Synthesis and characterization of sol-gel derived nano-crystalline tin oxide thin film as hydrogen sensor. Sensor Actuat B:Chem 2003,96:343-353.
    [25]Shukla S, Seal S. Room temperature hydrogen gas sensitivity of nanocrystalline pure tin oxide. J Nanosci Nanotechnol 2004,4:141-145.
    [26]Shukla S, Seal S, Ludwig L, Parish C. Nanocrystalline indium oxide-doped tin oxide thin film as low temperature hydrogen sensor. Sensor Actuat B:Chem 2004,97:256-265.
    [27]Shukla S, Zhang P, Cho H J et al. Hydrogen-discriminating nanocrystalline doped-tin-oxide room temperature microsensor. J Appl Phys 2005,98:1-15.
    [28]Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 2002,81:1869-1871.
    [29]Zong X, Kim K, Fang D, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002,43:4403-4412.
    [30]Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharmaceut Res 2003,20:810-817.
    [31]Zhihua Cai CRM. Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. J Am Chem Soc 1989,111:4138-4139.
    [32]Chun I, Reneker DH. Nanometer diameter fibers of polymer produced by electrospinning. Nanotechnology 1996,7:216-223.
    [33]Sun Z et al. Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater 2003, 15:1929-1932.
    [34]Martin CR. Membrane-Based Synthesis of Nanomaterials. Chem Mater 1996,8:1739-1746.
    [35]Bognitzki M, Hou HQ, Ishaque M, et al. Polymer, metal, and hybrid nano- and mesotubes by coating degradable polymer template fibers (TUFT process). Adv Mater 2000,12:637-640.
    [36]Joo J, Park KT, Kim BH, et al. Conducting Polymer Nanotube and Nanowire Synthesized by Using Nanoporous Template:Synthesis, Characteristics, and Applications.Synth Met 2003,135-136: 7-9.
    [37]Yang XM, Zhu ZX, Dai TY, Lu Y. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol Rapid Commun 2005,26:1736-1740.
    [38]Shen YQ, Wan MX. Tubular polypyrrole synthesized by in situ doping polymerization in the presence of organic function acids as dopants. J Polym Sci Part A:Polym Chem 1999,37:1443-1449.
    [39]Hulteen JC, Martin CR. A General Template-Based Method for the Preparation of Nanomaterials. J Mater Chem 1997,7:1075-1087.
    [40]Demoustier-Champagne S,Stavaux PY. Effect of electrolyte concentration and nature on the morphology and the electrical properties of electropolymerized polypyrrole nanotubules. Chem Mater 1999,11:829-834.
    [41]Masuda H, Fukuda K. Orederd metal nonohole Arrays made by a two-step replication of honeycomb structure of anodic alumina. Science 1995,268:1466-1468.
    [42]Lehmann V, Foil H. Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J Electrochem Soc 1990,137:653-659.
    [43]Jessensky O, Muller F, Gosele U. Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina. Appl Phys Lett 1998,72:1173-1175.
    [44]Lehmann V. The physics of macropore formation in low doped N-type silicon. J Electrochem Soc 1993,140:2836-2843.
    [45]Kim K, Jin JI. Preparation of PPV Nanotubes and Nanorods and Carbonized Products Derived Therefrom. Nano Lett 2001,1:631-638.
    [46]Dersch R, Steinhart M, Boudrio U, Greiner A, Wendorf JH. Nanoprocessing of polymers: applications in medicine, sensorics, catalysis, photonics. Polym Adv Technol 2005,16:276-282.
    [47]Martin Steinhart RBWUGJHW. Nanotubes by Template Wetting:A Modular Assembly System. Angew Chem Int Ed 2004,43:1334-1344.
    [48]M. Steinhart, S. Senz, R.B. Wehrspohn, U. Godrlr, and J.H. Wendorff. curvature-directed crystallization of poly(vinylidene difluride) in nanotube walls, Macromolecules 2003,36,3646-3651.
    [49]佘希林,宋国君,彭智,李建江,韩萍,王树龙,浸润AAO模板法制备EVA纳米管阵列, 现代化工,2007,S1,69-73.
    [50]G..J. Song, X.L. She, Z.F. Fu, J.J. Li, Preparation of good mechanical property polystyrene nanotubes with array structure in anodic aluminum oxide template using simple physical techniques, J. Mater. Res.,2004,11,3324-3328.
    [51]J.J. Li, G.J. Song, X.L.She, P. Han, Z. Peng, D. Chen, Assembly,Morphology and ThermalStability of Polyamide6 Nanotubes, Polymer Journal,2006,6,554-558
    [52]MacDiarmid AG. synthetic metals-a novel role for organic polymers. Rev Mod Phys 2001,73: 701-712.
    [53]Audrey Frenot ISC. Curr Opin Colloid Interface Sci 2003,8:64.
    [54]Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 2003,63:2223-2253.
    [55]Aleshin AN. Polymer Nanofibers and Nanotubes: Charge Transport and Device Applications. Adv Mater 2006,18:17-27.
    [56]Kleinmeyer J, Deitzel JM, Harris D, Tan NCB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001,42:261-272.
    [57]Hohman MM, Shin M, Rutledge G, Brenner MP. Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids 2001,13:2201-2220.
    [58]Kessick R, Tepper G. Microscale electrospinning of polymer nanofiber interconnections. Appl Phys Lett 2003,83:557-559.
    [59]MacDiarmid AQ Jones WE, Norris ID, Gao J, Johnson AT, Pinto NJ, et al. Electrostatically-generated nanofibres of electronic polymers. Synth Met 2001,119:27-30.
    [60]Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers Biomacromolecules 2002,3:232-238.
    [61]Norris ID, Shaker MM, Ko FK, MacDiarmid A.G. Electrostatic fabrication of ultrafine conducting fibers:polyaniline/polyethylene oxide blends. Synth Met 2000,114:109-114.
    [62]Shin YM, Hohman MM, Brenner MP; Rutledge GC. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 2001,42:09955-09967.
    [63]Zong X et al. Structure and process relationship of electrospun biodegradable nanofiber membrane. Polymer 2002,43:4403-4412.
    [64]Li D, Xia Y. Electrospinning of Nanofibers:Reinventing the Wheel. Adv Mater 2004,16: 1151-1170.
    [65]Bognitzki M, Frese T, Steinhart M. Prepartion of fibers with nanosealed Electrospinning of Polymer Blends. Polym Eng Sci 2001,41:982-989.
    [66]Zhou Y, Freitag M, Hone J, Staii C, Johnson A T, Pinto N J,MacDiarmid A G. Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm. Appl Phys Lett 2003,83:3800-3802.
    [67]Dersch R, Steinhart M, Boudriot U, Greiner A, Wendorff JH. Nanoprocessing of polymers: applications in medicine, sensorics, catalysis, photonics. Polym Adv Technol 2005,16:276-282.
    [68]Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 2000,87:4531-4547.
    [69]Mott DEA, Davis NF. Electronic processes in non-crystalline materials. Oxford, England: Clarendon Press; 1979,96-164.
    [70]Wei Z, Zhang Z, Wan M. Formation mechanism of self-assembled polyaniline micro/nanotubes. Langmuir 2002,18:917-921.
    [71]Jing Liu, Meixiang Wan. Studies on formation mechanism of polypyrrole microtubule synthesized by template-free method. J Polym Sci Part A:Polym Chem 2001,39:997-1004.
    [72]Zhang LJ, Wan MX. Synthesis and characterization of self-assembled polyaniline nanotubes doped with D-10-camphorsulfonic acid. Nanotechnology 2002,13:750-755.
    [73]Huang K, Wan M. Self-assembled Nanostructural Polyaniline Doped with Azobenzenesulfonic Acid. Synth Met 2003,135-136:173-174.
    [74]Wan MX, Wei Z, Zhang ZM, Zhang LJ, Huang K. Studies on Nanostructures of Conducting Polymers via Self-assembly Method. Synth Met 2003,135-136:175-176.
    [75]Zhang LJ, Wan MX. Chiral polyaniline nanotubes syn- thesized via a self-assembly process. Thin Solid Films 2005,477:24-31.
    [76]Huang J, Virji S, Weiller BH, Kaner RB. Polyaniline nanofibers:facile synthesis and chemical sensors. J Am Chem Soc,2003,125(2):314-315.
    [77]Jang MCHYJ. Chemical Sensor Based on Highly conductive Poly(3,4-ethylenedioxythiophene) Nanorods. Adv Mater 2005,17:1616-1620.
    [78]Zong X, Kim K, Fang D, Ran S, Hsiao B S and Chu B, Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002,43:4403-4412.
    [79]Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME. Preparation and Characterization of Nanofibers Containing Amorphous Drug Dispersions Generated by Electrostatic Spinning. Pharmaceut Res 2003,20:810-817.
    [80]Zeng J, Aigner A, Czubayko F, et al. Poly (vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules.2005,6:1484-8.
    [81]Matthews JA ; Wnek GE ; Simpson DG. Matthews JA,Wnek GE,Simpson DG,Bowlin GL.Electrospinning of collagen nanofibers.Biomacromolecules 2002,3:232-8.
    [82]Ma ZW, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 2005,11:101-109.
    [83]He W, Ma Z, Yong T, Teo WE, Ramakrishna S. Fabrication of collagen-coated biodegradable polymer and potential vascular graft for blood vessel tissue engineering. Tissue Eng 2005,11: 1574-1588.
    [84]Bull SR, Guler MO, Bras RE, Meade TJ, Stupp SI. Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents. Nano Letters.2005,5:1-4.
    [85]Zhou Y, Yu SH, Cui XP, Wang CY, Chen ZY. For- mation of silver nanowires by a novel solid-liquid phase arc discharge method. Chem Mater 1999,11:545-546.
    [86]Zhou Y, Yu SH, Wang CY, Li XG, Zhu YR, Chen ZY. A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites. Adv Mater 1999,11:850-852.
    [87]Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA. Laser photothermal melting and fragmentation of gold nanorods:energy and laser pulse-width dependence. J Phys Chem A 1999,103: 1165-1170.
    [88]Link S, Burda C, Nikoobakht B, El-Sayed MA. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 2000,104:6152-6163.
    [89]Kondo Y, Takayanagi K. Synthesis and characterization of helical multi-shell gold nanowires. Science 2000,289:606-608.
    [90]Sun,Y.; Gates, B.; Mayers, B.; Xia, Y. Crystalline silver nanowires by soft solution processing. Nano Lett.2002,2:165-168.
    [91]Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of high aspect ratio cylindrical gold nanorod. J Phys Chem B 2001,105:4065-4067.
    [92]Jana NR, Gearheart L, Murphy CJ. Wet Chemical Synthesis of Silver Nanorods and Nanowires of Controllable Aspect Ratio. Chem Commun 2001,7:617-618.
    [93]Shao P, Ji G, Chen P. Gold nanotube membranes:Preparation, characterization and application for enantioseparation. J Membr Sci 2005,255:1-11.
    [94]Sun Y, Mayers B, Herricks T, Xia Y. Polyol Synthesis of Uniform Silver Nanowires:A Plausible Growth Mechanism and the Supporting Evidence. Nano Lett 2003,3:955-960.
    [95]Martin CR. Nanomaterials:a membrane-based synthetic approach. Science 1994,266:1961-1966.
    [96]Brumlik CJ, Menon VP, Martin CR. Template Synthesis of Metal Microtubule Ensembles Utilizing Chemical, Electrochemical and Vacuum Deposition Techniques. J Mater Res 1994,9: 1174-1183.
    [97]Kohli P, Wharton JE, Braide O, Martin CR. Template Synthesis of Gold Nanotubes in an Anodic Alumina Membrane. J Nanosci Nanotechnol 2004,4:605-610.
    [98]Kohli P, Wirtz M, Martin CR. Nanotube Membrane Based Biosensors. Electroanalysis 2004,16: 9-18.
    [99]Lee SB, Martin CR. Controlling the Transport Properties of Gold Nanotubule Membranes Using Chemisorbed Thiols. Chem Mater 2001,13:3236-3244.
    [100]Wirtz M, Yu SF, Martin CR. Template Synthesized Gold Nanotube Membranes for Chemical Separations and Sensing. Analyst 2002,127:871-879.
    [101]Sun Y,Xia Y. Multiple-walled nanotubes made of metals. Adv Mater 2004,16:264-268.
    [102]Mu C, Yu YX, Wang RM, Wu K, Xu DS, Guo GL. Uniform metal nanotube arrays by multi-step template replication and electrodeposition. Adv Mater 2004,16:1550-1553.
    [103]Qu L, Shi G, Wu X, Fan B. Facile route to silver nanotubes. Adv Mater 2004,16:1200-1203.
    [104]Yoo WC, Lee JK. Field-Dependent Growth Patterns of Metals Electroplated in Nanoporous Alumina Membranes. Adv. Mater.2004,16,1097-1101
    [105]Bao J, Tie C, Xu Z, Zhou Q, Shen D, Ma Q. Template synthesis of an array of nickel nanotubules and its magnetic behavior. Adv Mater 2001,13:1631-1633.
    [106]Brumlik CJ, Martin CR. Template synthesis of metal microtubes. J Am Chem Soc 1991,113: 3174-3175.
    [107]S.H. Xue, C. B. Cao, H. S. Zhu, Electrochemically and template-synthesized nickel nanorod arrays and nanotubes. J. Mater. Sci.2006,41:5598-5601
    [108]Tian F, Zhu J, Wei D. Fabrication and Magnetism of Radial-easy-magnetized Ni Nanowire Arrays. J. Phys. Chem. C 2007,111,12669-12672.
    [109]F. Tian, J. Chen, J. Zhu, Magnetism of thin polycrystalline nickel nanowires, J. Appl. Phy.2008, 103:012903-012906.
    [110]MousaM.A.Imran, Structural and magnetic properties of electrodeposited Ninanowires. Journal of Alloy sand Compounds 2008,455:17-20.
    [111]Cao HQ, Wang LD, Qiu Y, Wu QZ, Wang G.Z, Zhang L, Liu XW. Generation and Growth Mechanism of Metal (Fe, Co, Ni) Nanotube Arrays. ChemPhysChem 2006,7,1500-1504.
    [112]Li XR, Wang YQ, Song GJ, Peng Z, Yu YM, She XL, Li JJ. Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires. Nanoscale Res Lett 2009,4:1015-1020.
    [113]Gelves GA, Murakami ZTM, Krantz M.J, Haber JA. Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates. J. Mater. Chem.,2006,16: 3075-3083.
    [114]Gerein NJ, Haber JA.. Effect of ac Electrodeposition Conditions on the Growth of High Aspect Ratio Copper Nanowires in Porous Aluminum Oxide Templates. J. Phys. Chem. B,2005,109: 17372-17385.
    [115]Gelves GA, Sundararaj U, Haber JA. Electrical and rheological percolation of polymer nanocomposites prepared with functionalized copper nanowires. Macromol. Rapid Commun.2005,26, 1677-1681.
    [116]Inguanta R, Piazza S, Sunseri C. Novel procedure for the template synthesis of metal nanostructures. Electrochemistry Communications 2008,10:506-509.
    [117]Kaempfe M, Graener H, Kiesow A, Heilmann A. Formation of Metal Particle Nanowires Induced by Ultrashort Laser Pulses. Appl Phys Lett 2001,79:1876-1879.
    [118]Jana NR. Gram-scale Synthesis of Soluble, Near-Monodisperse Gold Nanorods and Other Anisotropic Nanoparticles. Small 2005,1:875-882.
    [119]Peng X, Manna L, Yang W et al. Shape control of CdSe nanocrystals. Nature 2000;404:59-61.
    [120]Peng XG. Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals. Adv Mater 2003,15:459-463.
    [121]Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996,272:1924-1926.
    [122]Jana NR, Murphy CJ. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Adv Mater 2002,14:80-82.
    [123]Jana NR. Nanorod shape separation using surfactant assisted self-assembly. Chem Commun 2003,15:1950-1951.
    [124]Jana NR, Gearheart L, Murphy CJ. Seed-Mediated Growth Approach for Shape Controlled Synthesis of Spheroidal and Rodlike Gold Nanoparticles using a Surfactant Template. Adv Mater 2001, 13:1389-1393.
    [125]Jana NR, Gearheart L, Obare SO, Murphy CJ. Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir 2002,18:922-927.
    [126]Jana NR, Gearheart LA, Obare SO, Johnson CJ, Edler KJ, Mann S, Murphy CJ. Liquid Crystalline Assemblies of Ordered Gold Nanorods. J Mater Chem 2002,12:2909-2912.
    [127]Busbee BD, Obare SO, Murphy CJ. Improved Wet Chemical Synthesis of High Aspect Ratio Gold Nanorods. Adv Mater 2003,15:414-416.
    [128]Martin, C.R.; Nishizawa, M.; Jirage, K.B.; Kang, M.; Lee, S.B. Controlling Ion-Transport Selectivity in Gold Nanotubule Membranes. Adv. Mat.,2001,13:1351-1362.
    [129]Jirage, K.B., Hulteen, J.C., Martin, C.R. Nanotubule-based molecular-filtration membranes. Science 1997,278:655-658.
    [130]Zhan J, Bando Y, Hu J, Li Y, Golberg D. Synthesis and field-emission properties of Ga2O3-C nanocables. Chem Mater 2004,16:5158-5161.
    [131]Ku JR, Vidu R, Talroze R, Stroeve, P. Fabrication of nanocables by electrochemical deposition inside metal nanotubes. J Am Chem Soc 2004,126:15022-15023.
    [132]She XL, Song GJ, Peng Z, Li JJ, Lim CT, Tan EPS, Lv L, Zhao XS. Nanocables prepared from polyamide 66 nanotubes enveloping Pt nanowires by a secondary-template method. Polymer Journal, 2007,39:1025-1029.
    [133]Zhang J X, Chen F E. Aligned polythiophene coated gold nanowires. Synthetic Metals 2003, 135-136:217-219.
    [134]Xi Y. Enhanced photoluminescence in core-sheath CdS-PANI coaxial nanocables:a charge transfer mechanism. Chem Phys Lett 2005,412:60-64.
    [135]Zhang Y, Suenaga K, Colliex C, Iijima S. Coaxial nanocable:silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 1998,281:973-975.
    [136]吴兴材.同轴纳米线与半导体纳米线的制备及物性研究:[学位论文].合肥:中国科学院固体物理研究所,2001.
    [137]Yin YD, Lu Y, Sun YG, Xia YN.. Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett 2002,2:427-430.
    [138]Zou K, Zhang XH, Duan XF, Meng XM, Wu SK. Seed-mediated synthesis of silver to generate nanostructures and polymer/silver nanocables by UV irradiation. J Crystal Growth 2004,273: 285-291.
    [139]Guo YG, Wan LJ, Zhu CF, Yang DL, Chen DM, Bai CL. Ordered Ni-Cu nanowire array with enhanced coercivity. Chem. Mater.2003,15:664-667.
    [140]Miao Z, Xu DS, Ouyang JH, Guo GL, Zhao XS, Tang YQ. Electrochemically induced Sol-Gel Preparation of Single-Crystalline TiO2 Nanowires Nano Letters,2002,2:717-720.
    [141]Zhang XY, Zhang LD, Chen W, Meng GW, Zheng MJ, Zhao LX. Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays. Chem. Mater.2001,13:2511-2515.
    [142]Lee JH, Leu IC, Hsu MC, Chung YW, Hon MH. Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating. J. Phys. Chem. B,2005,109:13056-13059.
    [143]陈茂彬,彭智,宋国君,姜宁,邵增军,沈丽.模板渗透法制备氧化锌纳米管阵列.功能材料,2008,4(39):578-579.
    [144]Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of titanium oxide nanotube. Langmuir 1998,14:3160-3163.
    [145]Sun XM, Li YD. Synthesis and characterization of ion exchangeable titanate nanotubes Chem Eur J 2003,9:2229-2238.
    [146]Yuhas BD, Zitoun DO, Pauzauskie PJ, He R, Yang P. Transition-metal doped zinc oxide nanowires. Angew. Chem. Int. Ed.2006,45:420-423.
    [147]Huang MH, Mao S, Feick R, Yan H, Wu Y, Kind H. Room-temperature ultraviolet nanowire nanolasers. Science,2001,292:1897-1899.
    [148]Macak JM, Tsuchiya H, Ghicov A, Schmuki P. Dye-Sensitized Anodic TiO2 Nanotubes. Electrochem. Commun.2005,7:1133-1137.
    [149]Yoon JH, Jang SR, Vittal R, Lee J, Kim KJ. TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-seneitized solar cells. J. Photochem. Photobiol. A,2006,180: 184-188.
    [150]Kasuga T. Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. Thin Solid Films 2006,496:141-145.
    [151]Garcia JM, Thiaville A, Miltat J. MFM imaging of nanowires and elongated patterned elements. J. Magn. Magn. Mater.2002,249:163-169.
    [152]Muhl T, Ritschel M, Kozhuharova R, Elefant D, Graff A, Leonhardt A, Monch I, Schneider CM, Groudeva-Zotova S. Magnetic properties of aligned ferromagnetically filled carbon nanotubes. Highlights 2002,27-30.
    [153]Bao JC, Wang KY, Xu Z, Zhang H, Lu ZH. A novel nanostructure of nickel nanotubes encapsulated in carbon nanotubes. CHEM.COMMUN.2003,208-209.
    [154]Tao FF, Liang YY, Yin G, Xu DP, Jiang ZY, Li HB, Han M, Song Y. Concentric Sub-micrometer-Sized Cables Composed of Ni Nanowires and Sub-micrometer-Sized Fullerene Tubes. Adv. Funct. Mater.2007,17:1124-1130.
    [155]Myers D, Surfaces, Interfaces, and Colloids-Principles and Applications, Wiley-VCH, New York,2000,51:609-612.
    [156]Gennes PG. Wetting: statics and dynamics. Rev. Mod. Phys.1985,57:827-863.
    [157]Leger L, Joanny JF. Liquid spreading. Rep. Prog. Phys.1992,55:431-486.
    [158]Wu S. Polymer Interfaces and Adhesion. Marcel Dekker, New York,1982,133-165.
    [159]Zhang MF, Dobriyal P, Chen JT, Russell TP. Wetting transition in cylindrical alumina nanopores with polymer melts. Nano Letters.2006,6:1075-1079. 壁越厚,用挥发度大的二氯甲烷或二氯甲烷作为溶剂制备聚合物纳米管,当溶液浓度高达10.0 wt%时,得到的是纳米线阵列,用挥发度较小的甲酸作为溶剂制备的纳米管,溶液浓度为8.0 wt%,得到纳米线阵列;熔体浸润法制备的纳米管,熔融温度越高,得到的纳米管管壁越薄。
    3.首次用HRTEM观察到结晶度较低的PS纳米管结晶的现象,观察到少量区域有明显的衍射条纹,XRD分析亦证明了PS纳米管结晶现象,并根据布拉格方程计算出了晶面间距,与HRTEM显示的条纹间距相吻合。
    4.首次用HRTEM观察到结晶度较高的PA6纳米管结晶的现象,并通过傅立叶变换,得到了典型的晶体衍射圆环。XRD分析表明,在AAO模板纳米孔的诱导作用下得到的PA6纳米管的晶型由本体的主要晶型α型转变为γ晶型,DSC曲线也证明了这一事实。
    [1]Fox H W, Hare E F, Zisman W A. Wetting properties of organic liquids on high-energy surfaces. J. Phys. Chem.1955,59,1097-1106.
    [2]Steinhart M, Senz S, Wehrspohn RB, Go'sele U, Wendorff JH. Curvature-directed crystallization of poly(vinylidene difluoride) in nanotube walls. Macromolecules 2003,36:3646-3651.
    [3]Sufen Ai, Gang Lu, Qiang He, Junbai Li, Highly flexible Polyelectrolyte Nanotubes, J. AM. Chem. Soc.2003,125:11140-11141.
    [4]Li XR, Wang YQ, Song GJ, Peng Z, Li PD, Lin Q, Zhang N, Wang ZF, Duan XF. Fabrication of Patterned Polystyrene Nanotube Arrays in an Anodic Aluminum Oxide Template by Photolithography and the Multiwetting Mechanism. J. Phys. Chem. B 2009,113:12227-12230.
    [5]Li JJ, Song GJ, She XL, Han P, Peng Z, Chen D. Assembly,Morphology and ThermalStability of Polyamide6 Nanotubes. PolymerJournal 2006,38:554-558.
    [6]She XL, Song GJ, Peng Z, Li JJ, Lim CT, Tan EPS, Lv L, Zhao XS. Nanocables Prepared from Polyamide66 nanotubes Enveloping Pt nanowires by a Secondary-template Method. Polymer Journal 2007,39:1025-1029.
    [7]She XL, Song GJ, Jiang F, Yang SJ, Yang C, Zhou D. Preparation of ethylene vinyl acetate (EVA) copolymer nanotubes by wetting of anodic alumina oxide (AAO) method. J. Porous Mater.2008,16: 267-271.
    [8]Li F, Zhu M, Liu CG, Zhou WL, Wiley JB. Patterned metal nanowire arrays from photolithographically-modified templates. J. Am. Chem. Soc.2006,128:13342-13343.
    [9]Gates BD, Xu QB, Stewart M, Ryan D, Willson CG, Whitesides GM. New approaches to nanofabrication:Molding, printing, and other technique. Chem. Rev.2005,105:1171-1196.
    [10]Rothschild M. Projection Optical Lithography. Mater. Today 2005,8:18-24.
    [11]Lei M, Gu YD, Baldi A, Siegel RA, Ziaie B. High-Resolution Technique for Fabricating Environmentally Sensitive Hydrogel Microstructures. Langmuir 2004,20:8947-8951.
    [12]Elsner H, Meyer H G. Nanometer and high aspect ration patterning by electron beam lithography using a simple DUV negative tone resist, Microelectron. Eng.2001,57-58:291-296.
    [13]Yamazaki K, Namatsu H. Two-axis-of-rotation srive system in electrom-beam lithography apparatus for nanotechnology applications. Microelectron. Eng.2004,73:85-89.
    [14]Denoual M, Griscom L, Toshiyoshi H, Fujita H. Accurate double-height micromolding method for three-dimensional polydimethylsiloxane structures. Jpn. J. Appl. Phys. Part 1 2003,42: 4598-4601.
    [15]Goetting LB, Deng T, Whitesides GM. Microcontact Printing of Alkanephosphonic Acids on Aluminum:Pattern Transfer by Wet Chemical Etching. Langmuir 1999,15:1182-1191.
    [16]Schmid H, Michel B. Siloxane Polymers for High-Resolution, High-Accuracy Soft Lithography Schmid. Macromolecules.2000,33:3042-3049.
    [17]John PMSt., Craighead HG. Appl, Microcontact Printing and pattern transfer using trichlorosilanes on oxide substrates. Phys. Lett.1996,68:1022-1024.
    [18]Gyorvary ES. Biomimetic nanostructure fabrication: Non-lithographic lateral patterning and self-assembly of functional bacterial S-layers at silicon supports. Nano Lett.2003,3:315-319.
    [19]Kuwabara K, Ogino M, Motowaki S, Miyauchi A. Fluorescence measurements of nanopillars fabricated by high-aspect-ratio nanoprint technology. Microelectron. Eng.2004,73-74:752.
    [20]Christman KL, Requa MV, Enriquez-Rios VD, Ward SC, Bradley KA, Turner KL, Maynard HD. Submicron streptavidin patterns for protein assembly. Langmuir 2006,22:7444-7450.
    [21]Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007,318:426-430.
    [22]Wallraff GM, Hinsberg WD. Lithographic Imaging Techniques for the Formation or Nanoscopic Features. Chem. Rev.1999,99:1801-1821.
    [23]Li XR, Song GJ, Peng Z, She XL, Li JJ, Sun J, Zhou D, Li PD, Shao ZJ. Photolithographic Approaches for Fabricating Highly Ordered Nanopatterned Arrays. Nanoscale Res. Lett.2008,3: 521-523.
    [24]Xu CL, Li H, Xue T, Li HL. Fabrication of CoPd alloy nanowire arrays on an anodic aluminum oxide/Ti/Si substrate and their enhanced magnetic propertied. Scripta Mater.2006,54:1605-1609.
    [25]She XL, Song GJ, Li JJ, Han P, Yang SJ, Peng Z. Preparation and characterization of polyamide 66 nanotubes and nanowires on an anodic aluminum oxide template by a physical wetting method. J.Mater.Res.2006,21:1209-1214.
    [26]Muratoglu OK. Crystalline morphology of polyamide 6 near planar surfaces. Polymer 1995,36: 2143-2152.
    [27]Liu XH, Wu QJ. Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites. European Polymer Journal 2002,38:1383-1389.
    [28]Liu TX, Liu ZH, Ma KX, Shen L, Zeng KY, He CB. Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites. Composites Science and Technology 2003, 63:331-337.
    [29]Uhl FM, Yao Q, Nakajima H, Manias E, Wilkie CA. Expandable graphite/polyamide-6 nanocoposites. Polymer Degradation and Stability 2005,89:70-84.
    [30]Hedicke K, Wittich H, Mehler C, Gruber F, Altstadt V. Crystallisation Behaviour of Polyamide-6 and Polyamide-66-Nanocomposites. Composites Science and Technology 2006,66:571-575.
    [31]Africa YR, Pedro AL, Carolina C, Alejandro BRN. Crystalline properties of injection molded polyamide-6 and polyamide-6/montmorillonite nanocomposites. Applied Clay Science 2009,43: 91-100
    [32]Shan GF, Yang W, Yang MB, Xie BH, Li ZM, Feng JM. Effect of crystallinity level on the double yielding behavior of polyamide 6. Polymer Testing 2006,25:452-459.
    [33]Campoy I, Gomez MA, Marco C. Structure and thermal properties of blends of nylon 6 and a liquid crystal copolyester. Polymer 1998,39:6279-6288.
    [34]Liu XH, Wu QJ, Qi ZN. Investigation on unusual crystallization behavior in polyamide 6/montmorillonite nanocomposites. Macormol. Mater. Eng.2002,287:515-522.
    [35]Zhang WD, Shen L, Phang IY, Liu TX. Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macro-molecules. Macromolecules 2004,37:256-259.
    [36]Li J, Fang ZP, Tong LF, Gu AJ, Liu F. Effect of multi-walled carbon nanotubes on non-isothermal crystallization kinetics of polyamide. European Polymer Journal 2006,42:3230-3235.
    [37]Li LY, Li CY, Ni CY, Rong LX, Hsiao B. Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer 2007,48: 3452-3460.
    [38]Cai WW, Li CY, Lotz B, Keating N, Marks D. Submicrometer scoll/tubular lamellar crystals of nylon 66. Advancved Materials 2004,16:600-605.
    [39]Xenopoulos A, Clark ES. Physical Structures. In:Kochan, M.I. (Ed.), Nylon Plastics Handbook. Hanser Publishers, Munich,1995,108-137.
    [40]Dasgupta S, Hammond WB, Goddard WA. Crystal structures and properties of nylon polymers from theory. J. Am. Chem. Soc.1996,118:12291-12301.
    [41]Kohan MI. Nylon plastics handbook. New York: Hanser Publishers; 1995,316.
    [42]Wu TM, Wu JY. Structural analysis of polyamide/clay nanocomposites. J Macromol Sci Phys B 2002,41:17-31.
    1.采用电沉积与AAO模板相结合的方法,成功制备了高度有序的图案化金属Cu纳米线阵列,并研究了纳米线长与沉积时间的关系:线长随着沉积时间的延长而增长;高分辨与电子衍射花样显示Cu纳米线具有单晶结构;生长方向沿[220],而断裂方向则沿着(202)和(022)两个晶面的方向断裂,断裂端呈规则的圆锥型;在外力作用下,Cu纳米线还显示出与块体材料相似的性质:柔韧性。
    2.采用电沉积与AAO模板相结合的方法,制备了Ni纳米管和纳米线阵列。研究了在不同电沉积参数下能得到不同的微观结构,实验证明,电压低于-1.0V,沉积时间少于15 min,则得到Ni纳米管阵列;时间高于40 min,则得到Ni纳米线阵列。同时,研究了更小尺寸的Ni纳米结构,同样可以得出上述结论。同样,也制备了Co和Fe纳米管阵列。并对这些磁性纳米管进行了磁性测试,发现磁性金属纳米管具有一定的磁性,沿纳米管长轴方向易被磁化。3.本工作通过系统研究,发现磁性金属可以通过控制电沉积参数制备纳米管阵列或纳米线阵列,而非磁性金属铜却得不到纳米管阵列。
    [1]Pirota KR, Navas D, Hernandez-Velez M, Nielsch K, Vazquez M. Novel magnetic materials prepared by electrodeposition techniques: Arrays of nanowires and multi-layered microwires. J. Alloys Compd.2004,369:18-26.
    [2]Martin CR. Membrane-based synthesis nanomaterials. Chem. Mater.1996,8:1739-1746.
    [3]Li XR, Wang YQ, Song GJ, Peng Z, Yu YM, She XL, Li JJ. Synthesis and growth mechanism of Ni nanotubes and nanowires. Nanoscale Res. Lett.2009,4:1015-1020.
    [4]Li JJ, Song GJ, She XL, Han P, Peng Z, Chen D. Assembly, morphology and thermal stability of polyamide 6 nanotubes. Polymer Journal 2006,38:554-558.
    [5]Gerein N, Haber J. Effect of ac Electrodeposition Conditions on the Growth of High Aspect Ratio Copper Nanowires in Porous Aluminum Oxide Templates. J. Phys. Chem. B 2005,109:17372-17385.
    [6]Sun Y, Gates B, Mayers B, Xia Y. Synthesis and characterization of MgO nanowires through a vapor-phase. Nano Letters 2002,2:165-168.
    [7]Gates B, Yin Y, Xia Y. Magnetochromatic Microspheres:Rotating Photonic Crystals._J. Am. Chem. Soc.2000,122:12582-12583.
    [8]Krongelb S, Romankiw L T, Tomello JA. Pattern Generation in Metal Films Using Wet Chemical Techniques. J. Res. Dev.,1998,42:575-585.
    [9]Inguanta R, Piazza S, Sunseri C. Novel procedure for the template synthesis of metal nanostructures. Electrochemistry Communications 2008,10:506-509.
    [10]Chang YH, Wang HW, Chiu CW, Cheng DS, Yen MY, Chiu HT. Low-temperature synthesis of transition metal nanopaticles from metal complexes and organopolysilane oligomers. Chem. Mater. 2002,14:4334-4338.
    [11]Valenzuela K, Raghavan S, Deymier PA, Hoying J. Formation of Copper Nanowires by Electroless Deposition Using Microtubules as Templates. J. Nanosci. and Nanotechnol.2008,8:3416-3421.
    [12]Tian ML, Wang JG, Kurtz J, Mallouk TE, Chan HWM. Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Letters 2003,3: 919-923.
    [13]Liu XG, Zhou YH. Electrochemical synthsis and room temperature oxidation behavior of Cu nanowires. J.Mater. Res.2005,20:2371-2378.
    [14]Gelves GA, Murakami ZTM, Krantz MJ, Haber JA. Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminum oxide template. J. Mater. Chem.2006,16: 3075-3083.
    [15]Wang JG, Tian ML, Mallouk TE, Chan MHW. Microtwinning in template-synthesized single-crystal metal nanowires. J. Phys. Chem. B 2004,108:841-845.
    [16]Gao T, Meng GW, Zhang J, Wang YW, Liang CH, Fan JC, Zhang LD. Template synthesis of single-crystal Cu nanowire arrays by electrodeposition. Appl. Phys. A 2001,73:251-254.
    [17]Inguanta R, Piazza S, Sunseri C. Influence of the electrical parameters on the fabrication of copper nanowires into anodic alumina templates. Appl. Surf. Sci.2009,255:8816-8823.
    [18]陈东,宋国君,彭智,佘希林,李建江.模板法组装Ag纳米线阵列及微结构.化工科技,2006,14:6-8.
    [19]She XL, Song GJ, Peng Z, Li JJ, Lim CT, Tan EPS, Lv L, Zhao XS. Nanocables prepared from polyamide 66 nanotubes enveloping Pt nanowires by a secondary-template method. Polymer Journal, 2007,39:1025-1029.
    [20]Zeng H, Skomski R, Menon L, Liu Y, Bandyopadhyay S, Sellmyer DJ. Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Phys. ReV. B 2002,65: 134426-134428.
    [21]Skomski R, Zeng H, Zheng M, Sellmyer DJ. Magnetic localization in transition-metal nanowires. Phys. ReV. B 2000,62:3900-3904.
    [22]Lok JGS, Geim AK, Maan J, Dubonos SV, Theil Kuhn L, Lindelof PE. Memory effects in individual submicrometer ferromagnets. Phys. ReV. B 1998,58:12201-12206.
    [23]Whitney TM, Jiang JS, Searson PC, Chein CL. Fabrication and Magnetic Properties of Arrays of Metallic Nanowires. Science 1993,261:1316-1319.
    [24]Zhu YC, Yang Q, Zheng HG, Gao LS, Yang ZP, Qian YT. Zn-doped Ni nanotubes prepared by the chemical reduction method in ethanol solution. Materials Chemistry and Physics,2006,96,506
    [25]Cao HQ, Wang LD, Qiu Y, Wu QZ, Wang GZ, Zhang L, Liu XW. Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays. ChemPhysChem 2006,7:1500-1504.
    [26]Tian F, Chen J, Zhu J. Magnetism of thin polycrystalline nickel nanowires. J. Appl. Phys.2008, 103:013901-4.
    [27]Tian F, Zhu J, Wei D. Fabrication and magnetism of radial-easy-magnetized Ni nanowire arrays. J. Phys. Chem. C 2007,111:12669-12672.
    [28]Tian F, Zhu J, Wei D, Shen YT. Magnetic field assisting DC electrodeposition:General methods for high-performance Ni nanowire array fabrication. J. Phys. Chem. B 2005,109:14852-14854.
    [29]Su YK, Qin DH, Zhang HL. Microstructure and magnetic properties of bamboo-like CoPt/Pt multilayered nanowire arrays. Chem. Phys. Lett.2004,388:406-410.
    [30]Shi JB, Chen YC, Lee CW, Lin YT, Wu C, Chen CJ. Optical and magnetic properties of 30 and 60 nm Ni nanowires. Mater. Lett.2008,62:15-18.
    [31]Toimil Molares ME, Brotz J, Buschmann V, Dobrev D, Neumann R, Scholz R, Schuchert IU, Trautmann C, Vetter J. Etched heavy ion tracks in polycarbonate as template for copper nanowires. Methods Phys. Res. B 2001,185:192-197.
    [32]Toimil Molares ME, Buschmann V, Dobrev D, Neumann R, Scholz R, Schuchert IU, Vetter J. Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membrances. Adv. Mater.2001,13:62-65
    [33]Motoyama M, Fukunaka Y, Sakka T, Ogata YH. Initial stages of electrodeposition of metal nanowires in nanoporous templates. Electrochim. Acta 2007,53:205-212.
    [34]Gerein Nathan J, Haber Joel A. Effect of ac Electrodeposition Conditions on the Growth of High Aspect Ratio Copper Nanowires in Porous Aluminum Oxide Templates. J. Phys. Chem. B 2005,109: 17372-17385.
    [35]Sautter W, Ibe G, Meier J. Magnetic properties of Fe deposited into anodic aluminum. Aluminium 1974,50:143-149.
    [36]Sui YC, Cui BZ, Marti'nez L, Perez R, Sellmyer DJ. Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film. Thin Solid Films 2002,406:64-69.
    [37]Polymeropoulos EE. Electron tunneling through fatty-acid monolayers. J. Appl. Phys.1977,48: 2404-2407.
    [38]Qin DH, Wang CW, Sun QY, Li HL. The effects of annealing on the structure and magnetic properties of CoNi patterned nanowire arrays. Appl. Phys. A 2002,74,761-765.
    [39]Paulus PM, Luis F, Kroll M. Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. J. Magn. Magn. Mater.2001,224:180-196. 率明显大于Ni纳米管的剩余磁化率,表明了Cu/Ni纳米电缆更易磁化,具有更大的理论研究价值和实际应用价值。
    3.采用电沉积法制备了Cu-Ni嵌段纳米线阵列,在Cu纳米层和Ni纳米层界面处,电子衍射图片显示两种单晶结构的物质的掺杂,与Ni纳米层的多晶结构不相符,对此,解释了形成原因。通过TEM照片可以观察到AAO纳米隧道的微观结构可以影响Cu-Ni纳米线的形貌。
    [1]Ma RZ, Sasaki T, Bando Y. Layer-by-Layer Assembled Multilayer Films of Titanate Nanotubes, Ag- or Au-Loaded Nanotubes, and Nanotubes/Nanosheets with Polycations. J. Am. Chem. Soc.2004, 126:10382-10388.
    [2]Carpenter EE, Calvin S, Stroud RM, Harris VG. Passivated iron as core-shell nanoparticles. Chem. Mater.2003,15:3245-3246.
    [3]Zeng H, Li J, Liu JP, Wang ZL, Sun S. Shock compression response of magnetic nanocomposite powders. Nature 2002,420:395-398.
    [4]Chen Y, Yan H, Li XH, Li W. Zhang, J.W.; Zhang, X.Y. Assembly of Ni/y-Fe2O3 shell/core nanowires. Mater. Lett.2006,60:245-247.
    [5]Woo K, Lee HJ. Apparent split between magnetic and structural phase transitions in epitaxial MnAs films. J. Magn. Magn. Mater.2004,272-276:E1155-1156.
    [6]Hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. J. Am. Chem. Soc.2001,123: 12798-12081.
    [7]Baibich MN, Broto JM, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J. Giant Magnetoresistance of 001Fe/001Cr Magnetic Superlattices. Phys. Rev. Lett.1988, 61:2472-2475.
    [8]Binasch G, Grunberg P, Saurenbach F, Zinn W. Enhanced magnetoresistance in Fe-Cr layered structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1988,39:4828-4830.
    [9]Valet T, Fert A. Theory of Perpendicular Magnetoresistance in Magnetic Multilayers. Phys. Rev. B.1993,48:7099-7113.
    [10]Ohgai T, Hoffer X, Fabian A, Gravier L, Ansermet P. Electrichemical synthesis and magnetoresistance properties of Ni, Co and Co/Cu nanowires in a nanoporous anodic layer on metallic alumium. J. Mater. Chem.2003,13:2530-2534.
    [11]Liu RS, Chang SC, Huang CY. Highly ordermagnetic multilayer Ni/Cu nanowires. Phys. Stat. Sol. C 2006,3:1339-1342.
    [12]Guo YG, Wan LJ, Zhu CF, Yang DL, Chen DM, Bai CL. Ordered Ni-Cu nanowire array with enhanced coercivity. Chem. Mater.2003,15:664-667.
    [13]Wang QT, Wang GZ, Han XH, Wang XP, Hou JG. Controllable template synthesis of Ni/Cu nanocable and Ni nanotube arrays:a one-step coelectrodeposition and electrochemical etching method. J. Phys. Chem. B 2005,109:23326-23329.
    [14]Liu RS, Chang SC, Hu SF, Huang CY, Highly ordered magnetic multilayer Ni/Cu nanowires. phys. stat. sol. (c) 2006,3:1339-1342. brick-stacked wirelike Growth (BSWG)生长机理。认为Cu纳米线的形成机理符合由下向上的(bottom-up)生长机理。分步沉积法制备金属纳米电缆,不同金属的生长机理仍然符合各自独立的生长机理。
    [1]Steinhart M, Wendorff JH, Greiner A. Polymer nanotubes by wetting of ordered porous template. Science 2002,296:1997-1999.
    [2]Song G J, She X L, Fu Z F, Li J J. Preparation of Good Mechanical Property Polystyrene Nanotubes with Array Structure in Anodic Aluminum Oxide Template Using Simple Physical Techniques, Journal of Materials Research.2004,19(11):3324-3328.
    [3]Schonenberger C, vanderZande BMI, Fokkink LGJ, Henny M, Schmid C, Krllger M, Bachtold A, Huber R, Birk H, Staufer U. Template Synthesis of Nanowires in Porous Polycarbonate Membranes:Electrochemistry and Morphology. J. Phys. Chem. B,1997,101:5497-5505.
    [4]Tourillon G, Pontonnier L, Levy JP, Langlais V. Electrochemically Synthesized Co and Fe Nanowires and Nanotubes. Electrochem.Solid-State Lett.2000,3:20-23.
    [5]Verbeek J, Lebedev OI, Van Tendeloo G, Cagnon L, Bougerol C, Tourillon G. Fe and Co Nanowires and Nanotubes Synthesized by Template Electrodeposition. J. Electrochem. Soc.,2003, 150:E 468-472.
    [6]Whitney TM, Jiang JS, Searson PC, Chien CL. Fabrication and Magnetic Properties of Arrays of Metallic Nanowires. Science,1993,261:1316-1319.
    [7]Fukunaka Y, Motoyama M, Konishi Y, Ishii R. Producing Shape-controlled metal nanowires and nanotubes by an electroochemical method, Electrochemical and Solid-State Letters.2006,9:C62-64.
    [8]Shan G F, Yang W, Yang M B, Xie B, H Li, Z M, Feng J M. Polymer Testing 2006,25:452-459.
    [9]Campoy I, Gomez M A, Marco C. Structure and thermal properties of blends of nylon 6 and a liquid crystal copolyester. Polymer 1998,39:6279-6288.
    [10]Liu XH, Wu QJ, Qi ZN. Investigation on unusual crystallization behavior in polyamide 6/montmorillonite nanocomposites. Macormol. Mater. Eng.2002,287:515-522.
    [11]Garofalo E., Russo GM, DiMaio L, Incarnato L. Study on the effect of uniaxial elongational flow on polyamide based nanocomposites. Macromol. Symp.2007,247:110-119.
    [12]Fornes TD, Paul DR. Crystallization behavior of nylon 6 nanocomposites, Polymer 2003,44: 3945-3961.
    [13]Yoo WC, Lee JK. Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes. Adv. Mater.2004,16:1097-1101.
    [14]Modern Practical Electroplate Technique (Ed.:Y. Chen), National Defence Industry Press, Beijing,2003,15.
    [15]Lahav M, Sehayek T, Vaskevich A, Rubinstein I, Nanoparticle Nanotubes. Angew. Chem. Int. Ed.2003,42:5576-5579.
    [16]Wang QT, Wang GZ, Han XH, Wang XP, Hou JG. Controllable template synthesis of Ni/Cu nanocable and Ni nanotube arrays:a one-step coelectrodeposition and electrochemical etching method. J. Phys. Chem. B 2005,109:23326-23329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700