猪链球菌毒力因子与免疫原性蛋白的筛选及斑马鱼模型转录组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪链球菌(Streptococcus suis)是猪的重要致病菌,在全世界广泛分布,可以引起猪的急性败血症、脑膜炎、关节炎及急性死亡,也可导致生猪从业人员感染和死亡。根据荚膜多糖抗原的不同,猪链球菌分为35个血清型(1-34型,1/2型),其中猪链球菌2型(SS2)流行最广,从发病动物中分离率最高。此外,猪链球菌9型(SS9)也是一个重要致病血清型,与断奶仔猪的败血症、脑膜炎和肺炎的爆发有关,在澳大利亚、荷兰、比利时、德国等国家SS9流行较广。流行病学调查表明,在中国SS9也经常从病猪中分离到,并逐步呈上升趋势。目前,猪链球菌毒力因子及免疫原性蛋白的研究大都限于SS2, SS9的相关研究很少。本研究应用蛋白质组学方法筛选SS9毒力因子、SS9免疫原性蛋白、SS2与SS9共同抗原及基因芯片方法对猪链球菌斑马鱼模型的验证。
     1 SS9分泌蛋白比较蛋白组学研究
     应用比较蛋白组学方法,从两株不同毒力的SS9菌株分泌蛋白中检测致病性差异相关蛋白,以期发现SS9新的候选毒力因子。SS9菌株GZ0565与SH040917分别分离自病猪与健康猪。用斑马鱼模型评价两株细菌毒力,GZ0565对斑马鱼半数致死量为3.8×105cfu/鱼,而SH040917对斑马鱼不致病。同时,这两株细菌在猪链球菌已知毒力因子分布方面也存在差异。将病猪分离株GZ0565中有而健康猪分离株SH040917中没有的差异分泌蛋白经基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS),或MALDI-TOF-TOF-MS鉴定,分属于13种蛋白。其中5种蛋白报道与毒力相关(DNA核酸酶、O-乙酰丝氨酸裂解酶、含LysM结构的肽聚糖结合蛋白、磷酸甘油酸变位酶、5’-核苷酸酶),再用Southern杂交从基因水平验证,其中4种候选毒力因子对应基因在健康猪分离株SH040917中没有,这些蛋白的发现有助于进一步了解SS9的致病机制。
     2 SS9表面蛋白免疫蛋白组学研究
     利用免疫蛋白组学方法,以SPF小鼠抗SS9免疫血清作为一抗,与通过二维凝胶转印到PVDF膜上的SS9菌株GZ0565细胞壁蛋白杂交,从中鉴定12个免疫反应性蛋白斑点。从凝胶中切割相应的蛋白斑点,经MALDI-TOF-MS或MALDI-TOF-TOF-MS鉴定,属于8种免疫原性蛋白。它们分别是:精氨酸脱亚氨酸酶、胞外溶解物结合蛋白、延长因子TS、脑啡肽、多肽ABC运载体多肽结合蛋白、丙酮酸激酶、磷酸转乙酰酶、果糖二磷酸醛缩酶。上述免疫原性蛋白对应基因在SS9菌株中较保守,可作为SS9亚单位疫苗的候选成分。
     3应用免疫蛋白组学方法筛选SS2与SS9共同抗原
     SS2及SS9都可致猪链球菌病。研制共同疫苗是防控由SS2与SS9引起猪链球菌病的有效手段。采用免疫蛋白组学的方法,鉴定SS2与SS9共同抗原,为研制共同疫苗提供理论基础。分别以SPF小鼠抗SS2免疫血清、SS9免疫血清及免疫前对照血清作为一抗,与通过二维凝胶转印到PVDF膜上的SS2菌株HA9801细胞壁蛋白杂交,通过比较免疫转印蛋白图谱的差异,从中鉴定7个共同免疫反应性蛋白斑点。从二维凝胶中切割相应的蛋白斑点,经MALDI-TOF-MS分析鉴定,分属于4种蛋白:精氨酸脱亚氨酸酶、延长因子TS、O-乙酰丝氨酸裂解酶和1-磷酸果糖激酶。从SS9菌株GZ0565中克隆表达这4种蛋白,用SPF微型猪SS2康复血清通过免疫转印方法进一步验证其免疫原性。上述免疫原性蛋白对应基因在SS2和SS9菌株中相当保守,可作为SS2和SS9疫苗的候选成分。
     4斑马鱼感染猪链球菌后转录水平的变化
     猪链球菌是猪的重要致病菌,然而,用普通猪判定细菌的毒力问题较多,结果不确定,阻碍了猪链球菌致病机理的研究。与猪相比,斑马鱼价廉易得、体型小、操作方便,特别适合于突变库中突变株毒力的判定。本实验室已经成功地将斑马鱼作为猪链球菌的感染模型,并且被国际兽疫局所引用。应用Affymetrix斑马鱼芯片研究斑马鱼感染SS2菌株HA9801后基因表达的变化。在总共有14900转录本的芯片中,有189个基因发生变化,其中125个基因上调表达,64个基因下调表达。在上调的基因中,若干基因的功能与免疫和炎症反应、凝血过程、补体激活及急性阶段反应及应激或防御反应有关,研究表明其中有三个基因(编码血清淀粉样蛋白A、基质金属蛋白酶9和凋亡相关半胱氨酸蛋白酶)在其它物种中与猪链球菌感染后的反应相同。下调基因有肌肉特异基因和与运动或行为的正调控有关的基因。挑选12个基因应用实时定量PCR对芯片数据进行验证,结果与芯片的数据吻合。上述发现有助于用斑马鱼模型进一步探索猪链球菌的致病机理。
Streptococcus suis is a common pathogen in swine farms worldwide and is associated with a variety of diseases such as meningitis, arthritis, bronchopneumonia, and septicemia in piglets. It is also recognized as a zoonotic agent in humans especially those occupationally exposed to pigs or swine byproducts. Based on the capsular type,35 serotypes of S. suis have been described, and they are designated from 1 to 34 and 1/2. While S. suis serotype 2 (SS2) is the most widely isolated serotype, S. suis serotype 9 (SS9) is also a prevalent serotype that is frequently isolated from diseased pigs in countries such as Australia, Holland, Belgium, and Germany. Several epidemiological studies have reported that SS9 is also frequently isolated from the organs of diseased pigs in China. Furthermore, these studies have indicated that the prevalence of SS9 has increased during the last few years.
     1 Comparative proteome analysis of secreted proteins of ss9 isolates from diseased and healthy pigs
     Investigations of virulence factors have focused on SS2. Unlike SS2, little is known about virulence factors for SS9. The two SS9 strains, GZ0565 and SH040917, were isolated from a diseased pig and a healthy pig, respectively. The virulence of these two SS9 strains was evaluated in zebrafish. The 50% lethal dose value of strain GZ0565 was 3.8×105 cfu/fish, while zebrafish injected with strain SH040917 exhibited no mortalities. For revealing proteins probably involved in different pathogenicity, a comparative proteomics approach was used to distinguish between the two-dimensional electrophoresis profiles of secreted proteins in two strains. With the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MALDI-TOF/TOF-MS, protein spots that were unique to strain GZ0565 were identified, and led to the identification of 13 candidate proteins. The largest proportion of these proteins was metabolism-related. Five of the proteins are putative virulence-associated factors:DNA nuclease, o-acetylserine lyase, peptidoglycan-binding LysM, phosphoglycerate mutase, and putative 5'-nucleotidase. These findings contribute to the understanding of SS9 pathogenic mechanisms.
     2 Immunoproteomic assay of surface protein of SS9
     Studies on vaccine have focused on S. suis serotype 2 strains. However, little is known about immunogenic proteins for SS9. Therefore, an immunoproteomic-based approach was developed to identify immunogenic proteins of SS9. Cell wall proteins extracted from SS9 strain GZ0565 isolated from a diseased pig with meningitis were screened by two-dimensional Western blotting using anti-SS9 sera pooled from Specific Pathogen Free mice. Protein spots were excised from preparative gels and identified by MALDI-TOF-MS or MALDI-TOF-TOF-MS, which led to the identification of 8 immunogenic proteins (arginine deiminase, extracellular solute-binding protein, translation elongation factor Ts, neprilysin, peptide ABC transporter peptide-binding protein, pyruvate kinase, phosphate acetyltransferase, and fructose-bisphosphate aldolase). These immunogenic proteins, which are encoded by genes that are reasonably conserved among SS9 strains, could be developed as vaccine candidates.
     3 Identification of antigens common to SS2 and SS9 by immunoproteomic analysis
     In addition to SS2, SS9 is another prevalent serotype, which is frequently isolated from the organs of diseased pigs in China. An immunoproteomic-based approach was developed to identify antigens common to SS2 and SS9 for vaccine development. Cell wall proteins extracted from SS2 strain HA9801 were screened by two-dimensional Western blotting using anti-SS2 sera, anti-SS9 sera, or pre-immune sera pooled from SPF mice. Protein spots on preparative gels were excised and identified by MALDI-TOF-MS, which led to the identification of four shared immunogenic proteins (arginine deiminase, translation elongation factor-Ts,1-phosphofructokinase, o-acetylserine lyase). The genes encoding these four proteins from SS9 strain GZ0565 were cloned and their proteins were overexpressed in E. coli. Western blot analysis of these recombinant proteins using the convalescent serum of an SPF mini-pig inoculated with the SS2 strain further confirmed the immunogenicity of these proteins. These immunogenic proteins, which are encoded by genes that are reasonably conserved among SS2 and SS9 strains, could be developed as vaccine candidates.
     4 Transcriptome profiling of zebrafish due to S. suis infection
     Lack of a common experimental infection model has hampered the studies on this bacterial species. Different research groups use different animal species, pigs with different ages and different immunological status, or different routes of infection. This may result in the important discrepancies regarding the virulence of even the same strain. Zebrafish as infection model for S. suis has been demonstrated by our groups, which has been cited by OIE. Here, an Affymetrix Zebrafish GeneChip was used to identify alterations in gene expression of zebrafish injected with SS2 strain HA9801. Among the 14900 transcripts in the microarray,189 genes were differentially expressed, of which 125 genes were upregulated and 64 genes were downregulated. Upregulated genes included many known components of the immune and inflammatory response, coagulation factors, complement activation and acute phase response, and stress and/or defense response. Three genes (encoding serum amyloid protein A, matrix metalloproteinase 9 and apoptosis-related cysteine protease), which have previously been implicated in the response to S. suis infection in other organisms, were also upregulated. Many of the genes we observed to be downregulated play roles in the positive regulation of locomotion or behavior, others are muscle specific. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR on 12 representative genes. The data may provide further validation of this disease model, which will contribute to an understanding of S. suis pathogenic mechanisms.
引文
[1]Staats JJ, Feder I, Okwumabua O, et al. Streptococcus suis:past and present. Vet Res Commun 1997Aug;21:381-407.
    [2]Gottschalk M, Segura M. The pathogenesis of the meningitis caused by Streptococcus suis:the unresolved questions. Vet Microbiol 2000 Oct 1;76:259-72.
    [3]Flores JL, Higgins R, D'Allaire S, et al. Distribution of the different capsular types of Streptococcus suis in nineteen swine nurseries. Can Vet J 1993 Mar;34:170-1.
    [4]Orr J, Copeland S, Chirino-Trejo M. Saskatchewan. Streptococcus suis type 9 outbreak in swine. Can Vet J 1989 Aug;30:680.
    [5]Gogolewski RP, Cook RW, O'Connell CJ. Streptococcus suis serotypes associated with disease in weaned pigs. Aust Vet J 1990 Jun;67:202-4.
    [6]Wisselink HJ, Smith HE, Stockhofe-Zurwieden N, et al. Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries. Vet Microbiol 2000 Jun 1;74:237-48.
    [7]Allgaier A, Goethe R, Wisselink HJ, et al. Relatedness of Streptococcus suis isolates of various serotypes and clinical backgrounds as evaluated by macrorestriction analysis and expression of potential virulence traits. J Clin Microbiol 2001 Feb;39:445-53.
    [8]Wu Z, Zhang W, Lu C. Comparative proteome analysis of secreted proteins of Streptococcus suis serotype 9 isolates from diseased and healthy pigs. Microb Pathog 2008 Sep;45:159-66.
    [9]Wu Z, Zhang W, Lu C. Immunoproteomic assay of surface proteins of Streptococcus suis serotype 9. FEMS Immunol Med Microbiol 2008 May;53:52-9.
    [10]余炜烈,李春玲,王贵平,等.猪链球菌2型和9型广东分离株的病原特性.中国兽医科学2007;37:650-4.
    [11]刘军,冯书章,尹铁勇,等.猪链球菌2型和9型菌株的多重PCR检测.中国人兽共患病杂志2005:21:510-4.
    [12]Devriese LA, Hommez J, Pot B, et al. Identification and composition of the streptococcal and enterococcal flora of tonsils, intestines and faeces of pigs. J Appl Bacteriol 1994 Jul;77:31-6.
    [13]Baele M, Chiers K, Devriese LA, et al. The gram-positive tonsillar and nasal flora of piglets before and after weaning. J Appl Microbiol 2001 Dec;91:997-1003.
    [14]Cloutier G, D'Allaire S, Martinez G, et al. Epidemiology of Streptococcus suis serotype 5 infection
    in a pig herd with and without clinical disease. Vet Microbiol 2003 Dec 2;97:135-51.
    [15]Robertson ID, Blackmore DK, Hampson DJ, et al. A longitudinal study of natural infection of piglets with Streptococcus suis types 1 and 2. Epidemiol Infect 1991 Aug;107:119-26.
    [16]Amass SF, SanMiguel P, Clark LK. Demonstration of vertical transmission of Streptococcus suis in swine by genomic fingerprinting. J Clin Microbiol 1997 Jun;35:1595-6.
    [17]Berthelot-Herault F, Gottschalk M, Labbe A, et al. Experimental airborne transmission of Streptococcus suis capsular type 2 in pigs. Vet Microbiol 2001 Sep 3;82:69-80.
    [18]Clifton-Hadley FA, Enright MR. Factors affecting the survival of Streptococcus suis type 2. Vet Rec1984Jun16;114:584-6.
    [19]Clifton-Hadley FA, Alexander TJ, Upton I, et al. Further studies on the subclinical carrier state of Streptococcus suis type 2 in pigs. Vet Rec 1984 May 26;114:513-8.
    [20]Iglesias JG, Trujano M, Xu J. Inoculation of pigs with Streptococcus suis type 2 alone or in combination with pseudorabies virus. Am J Vet Res 1992 Mar;53:364-7.
    [21]Zimmerman JJ, Yoon KJ, Wills RW, et al. General overview of PRRSV:a perspective from the United States. Vet Microbiol 1997 Apr;55:187-96.
    [22]Quessy S, Busque P, Higgins R, et al. Description of an albumin binding activity for Streptococcus suis serotype 2. FEMS Microbiol Lett 1997 Feb 15;147:245-50.
    [23]Clifton-Hadley FA, Enright MR, Alexander TJ. Survival of Streptococcus suis type 2 in pig carcases. Vet Rec 1986 Mar 8;118:275.
    [24]Smith HE, Vecht U, Gielkens AL, et al. Cloning and nucleotide sequence of the gene encoding the 136-kilodalton surface protein (muramidase-released protein) of Streptococcus suis type 2. Infect Immun 1992 Jun;60:2361-7.
    [25]Vecht U, Wisselink HJ, Jellema ML, et al. Identification of two proteins associated with virulence of Streptococcus suis type 2. Infect Immun 1991 Sep;59:3156-62.
    [26]Jacobs AA, Loeffen PL, van den Berg AJ, et al. Identification, purification, and characterization of a thiol-activated hemolysin (suilysin) of Streptococcus suis. Infect Immun 1994 May;62:1742-8.
    [27]de Greeff A, Buys H, Verhaar R, et al. Contribution of fibronectin-binding protein to pathogenesis of Streptococcus suis serotype 2. Infect Immun 2002 Mar;70:1319-25.
    [28]Salasia SI, Lammler C, Herrmann G. Properties of a Streptococcus suis isolate of serotype 2 and two capsular mutants. Vet Microbiol 1995 Jul;45:151-6.
    [29]Brazeau C, Gottschalk M, Vincelette S, et al. In vitro phagocytosis and survival of Streptococcus suis capsular type 2 inside murine macrophages. Microbiology 1996 May;142 (Pt 5):1231-7.
    [30]Smith HE, Damman M, van der Velde J, et al. Identification and characterization of the cps locus of
    Streptococcus suis serotype 2:the capsule protects against phagocytosis and is an important virulence factor. Infect Immun 1999 Apr;67:1750-6.
    [31]Charland N, Harel J, Kobisch M, et al. Streptococcus suis serotype 2 mutants deficient in capsular expression. Microbiology 1998 Feb;144 (Pt 2):325-32.
    [32]曾巧英,陆承平.用单克隆抗体展示猪链球菌2型溶菌酶释放蛋白在菌体表面的形态和分布.中国农业科学2004;37:143-7.
    [33]曾巧英,陆承平.猪链球菌2型溶菌酶释放蛋白诱导上皮细胞融合和凋亡.微生物学报2003;43:407-12.
    [34]Smith HE, Wisselink HJ, Stockhofe-Zurwieden N, et al. Virulence markers of Streptococcus suis type 1 and 2. Adv Exp Med Biol 1997;418:651-5.
    [35]Galina L, Vecht U, Wisselink HJ, et al. Prevalence of various phenotypes of Streptococcus suis isolated from swine in the U.S.A. based on the presence of muraminidase-released protein and extracellular factor. Can J Vet Res 1996 Jan;60:72-4.
    [36]Gottschalk M, Lebrun A, Wisselink H, et al. Production of virulence-related proteins by Canadian strains of Streptococcus suis capsular type 2. Can J Vet Res 1998 Jan;62:75-9.
    [37]Berthelot-Herault F, Morvan H, Keribin AM, et al. Production of muraminidase-released protein (MRP), extracellular factor (EF) and suilysin by field isolates of Streptococcus suis capsular types 2,1/2,9,7 and 3 isolated from swine in France. Vet Res 2000 Sep-Oct;31:473-9.
    [38]Segers RP, Kenter T, de Haan LA, et al. Characterisation of the gene encoding suilysin from Streptococcus suis and expression in field strains. FEMS Microbiol Lett 1998 Oct 15;167:255-61.
    [39]Norton PM, Rolph C, Ward PN, et al. Epithelial invasion and cell lysis by virulent strains of Streptococcus suis is enhanced by the presence of suilysin. FEMS Immunol Med Microbiol 1999 Oct;26:25-35.
    [40]Allen AG, Bolitho S, Lindsay H, et al. Generation and characterization of a defined mutant of Streptococcus suis lacking suilysin. Infect Immun 2001 Apr;69:2732-5.
    [41]Okwumabua O, O'Connor M, Shull E. A polymerase chain reaction (PCR) assay specific for Streptococcus suis based on the gene encoding the glutamate dehydrogenase. FEMS Microbiol Lett 2003 Jan 21;218:79-84.
    [42]Maguire M, Coates AR, Henderson B. Chaperonin 60 unfolds its secrets of cellular communication. Cell Stress Chaperones 2002 Oct;7:317-29.
    [43]Pancholi V, Fischetti VA. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 1992 Aug 1;176:415-26.
    [44]Lottenberg R, Broder CC, Boyle MD, et al. Cloning, sequence analysis, and expression in Escherichia coli of a streptococcal plasmin receptor. J Bacteriol 1992 Aug;174:5204-10.
    [45]Gase K, Gase A, Schirmer H, et al. Cloning, sequencing and functional overexpression of the Streptococcus equisimilis H46A gapC gene encoding a glyceraldehyde-3-phosphate dehydrogenase that also functions as a plasmin(ogen)-binding protein. Purification and biochemical characterization of the protein. Eur J Biochem 1996 Jul 1;239:42-51.
    [46]Hughes MJ, Moore JC, Lane JD, et al. Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 2002 Mar;70:1254-9.
    [47]Brassard J, Gottschalk M, Quessy S. Cloning and purification of the Streptococcus suis serotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin. Vet Microbiol 2004 Aug 19;102:87-94.
    [48]Brassard J, Gottschalk M, Quessy S. Decrease of the adhesion of Streptococcus suis serotype 2 mutants to embryonic bovine tracheal cells and porcine tracheal rings. Can J Vet Res 2001 Jul;65:156-60.
    [49]Winterhoff N, Goethe R, Gruening P, et al. Identification and characterization of two temperature-induced surface-associated proteins of Streptococcus suis with high homologies to members of the Arginine Deiminase system of Streptococcus pyogenes. J Bacteriol 2002 Dec;184:6768-76.
    [50]Curran TM, Ma Y, Rutherford GC, et al. Turning on and turning off the arginine deiminase system in oral streptococci. Can J Microbiol 1998 Nov;44:1078-85.
    [51]Degnan BA, Fontaine MC, Doebereiner AH, et al. Characterization of an isogenic mutant of Streptococcus pyogenes Manfredo lacking the ability to make streptococcal acid glycoprotein. Infect Immun 2000 May;68:2441-8.
    [52]Marouni MJ, Ziomek E, Sela S. Influence of group A streptococcal acid glycoprotein on expression of major virulence factors and internalization by epithelial cells. Microb Pathog 2003 Aug;35:63-72.
    [53]Gruening P, Fulde M, Valentin-Weigand P, et al. Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol 2006 Jan;188:361-9.
    [54]Smith HE, Buijs H, Wisselink HJ, et al. Selection of virulence-associated determinants of Streptococcus suis serotype 2 by in vivo complementation. Infect Immun 2001 Mar;69:1961-6.
    [55]李干武,姚火春,陆承平.在猪链球菌2型江苏分离株中发现新的orr2毒力相关基因.农业生物技术学报2003;11:295-8.
    [56]Matsumoto M, Sakae K, Hashikawa S, et al. Close correlation of streptococcal DNase B (sdaB) alleles with emm genotypes in Streptococcus pyogenes. Microbiol Immunol 2005;49:925-9.
    [57]Bisno AL, Brito MO, Collins CM. Molecular basis of group A streptococcal virulence. Lancet Infect Dis 2003 Apr;3:191-200.
    [58]Fontaine MC, Perez-Casal J, Willson PJ. Investigation of a novel DNase of Streptococcus suis serotype 2. Infect Immun 2004 Feb;72:774-81.
    [59]Wang C, Li M, Feng Y, et al. The involvement of sortase A in high virulence of STSS-causing Streptococcus suis serotype 2. Arch Microbiol 2009 Jan;191:23-33.
    [60]Severi E, Hood DW, Thomas GH. Sialic acid utilization by bacterial pathogens. Microbiology 2007 Sep;153:2817-22.
    [61]董瑞萍,王长军,功程,等.猪链球菌2型唾液酸合成酶neu B基因敲除突变株的构建及其生物学特性.微生物学通报2009;36::238-44.
    [62]Baums CG, Kaim U, Fulde M, et al. Identification of a novel virulence determinant with serum opacification activity in Streptococcus suis. Infect Immun 2006 Nov;74:6154-62.
    [63]Chen C, Tang J, Dong W, et al. A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS ONE 2007;2:e315.
    [64]Li M, Wang C, Feng Y, et al. SalK/SalR, a two-component signal transduction system, is essential for full virulence of highly invasive Streptococcus suis serotype 2. PLoS ONE 2008;3:e2080.
    [65]Tikkanen K, Haataja S, Finne J. The galactosyl-(alpha 1-4)-galactose-binding adhesin of Streptococcus suis:occurrence in strains of different hemagglutination activities and induction of opsonic antibodies. Infect Immun 1996 Sep;64:3659-65.
    [66]Serhir B, Higgins R, Foiry B, et al. Detection of immunoglobulin-G-binding proteins in Streptococcus suis. J Gen Microbiol 1993 Dec;139:2953-8.
    [67]de Greeff A, Buys H, van Alphen L, et al. Response regulator important in pathogenesis of Streptococcus suis serotype 2. Microb Pathog 2002 Oct;33:185-92.
    [68]Madsen LW, Svensmark B, Elvestad K, et al. Streptococcus suis serotype 2 infection in pigs:new diagnostic and pathogenetic aspects. J Comp Pathol 2002 Jan; 126:57-65.
    [69]Busque P, Higgins R, Senechal S, et al. Simultaneous flow cytometric measurement of Streptococcus suis phagocytosis by polymorphonuclear and mononuclear blood leukocytes. Vet Microbiol 1998 Oct;63:229-38.
    [70]Williams AE, Blakemore WF. Pathology of Streptococcal meningitis following intravenous intracisternal and natural routes of infection. Neuropathol Appl Neurobiol 1990 Aug; 16:345-56.
    [71]Tang J, Wang C, Feng Y, et al. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med 2006 May;3:e151.
    [72]Holt ME, Enright MR, Alexander TJ. Immunisation of pigs with live cultures of Streptococcus suis type 2. Res Vet Sci 1988 Nov;45:349-52.
    [73]Elliott SD, Clifton-Hadley F, Tai J. Streptococcal infection in young pigs. V. An immunogenic polysaccharide from Streptococcus suis type 2 with particular reference to vaccination against streptococcal meningitis in pigs. J Hyg (Lond) 1980 Oct;85:275-85.
    [74]Li Y, Martinez G, Gottschalk M, et al. Identification of a surface protein of Streptococcus suis and evaluation of its immunogenic and protective capacity in pigs. Infect Immun 2006 Jan;74:305-12.
    [75]Li Y, Gottschalk M, Esgleas M, et al. Immunization with Recombinant Sao Protein Confers Protection against Streptococcus suis Infection. Clin Vaccine Immunol 2007 Aug; 14:937-43.
    [76]Tan C, Fu S, Liu M, et al. Cloning, expression and characterization of a cell wall surface protein, 6-phosphogluconate-dehydrogenase, of Streptococcus suis serotype 2. Vet Microbiol 2008 Mar 6.
    [77]Zhang A, Xie C, Chen H, et al. Identification of immunogenic cell wall-associated proteins of Streptococcus suis serotype 2. Proteomics 2008 Sep;8:3506-15.
    [78]Jing HB, Yuan J, Wang J, et al. Proteome analysis of Streptococcus suis serotype 2. Proteomics 2008 Jan;8:333-49.
    [79]Zhang A, Chen B, Mu X, et al. Identification and characterization of a novel protective antigen, Enolase of Streptococcus suis serotype 2. Vaccine 2009 Feb 25;27:1348-53.
    [80]Esgleas M, Dominguez-Punaro Mde L, Li Y, et al. Immunization with SsEno fails to protect mice against challenge with Streptococcus suis serotype 2. FEMS Microbiol Lett 2009 May;294:82-8.
    [81]Okwumabua O, Chinnapapakkagari S. Identification of the gene encoding a 38-kilodalton immunogenic and protective antigen of Streptococcus suis. Clin Diagn Lab Immunol 2005 Apr;12:484-90.
    [82]Gottschalk M, Higgins R, Quessy S. Dilemma of the virulence of Strptococcus suis strains. J Clin Microbiol 1999 Dec;37:4202-3.
    [83]Berthelot-Herault F, Gottschalk M, Morvan H, et al. Dilemma of virulence of Streptococcus suis: Canadian isolate 89-1591 characterized as a virulent strain using a standardized experimental model in pigs. Can J Vet Res 2005 Jul;69:236-40.
    [84]Vecht U, Wisselink HJ, Stockhofe-Zurwieden N, et al. Characterization of virulence of the Streptococcus suis serotype 2 reference strain Henrichsen S 735 in newborn gnotobiotic pigs. Vet Microbiol 1996 Jul;51:125-36.
    [85]Williams AE, Blakemore WF, Alexander TJ. A murine model of Streptococcus suis type 2 meningitis in the pig. Res Vet Sci 1988 Nov;45:394-9.
    [86]Dominguez-Punaro Mde L, Segura M, Radzioch D, et al. Comparison of the susceptibilities of C57BL/6 and A/J mouse strains to Streptococcus suis serotype 2 infection. Infect Immun 2008 Sep;76:3901-10.
    [87]Vecht U, Stockhofe-Zurwieden N, Tetenburg BJ, et al. Virulence of Streptococcus suis type 2 for mice and pigs appeared host-specific. Vet Microbiol 1997 Oct 31;58:53-60.
    [88]Vecht U, Arends JP, van der Molen EJ, et al. Differences in virulence between two strains of Streptococcus suis type II after experimentally induced infection of newborn germ-free pigs. Am J Vet Res 1989 Jul;50:1037-43.
    [89]Salles MW, Perez-Casal J, Wilson P, et al. Changes in the leucocyte subpopulations of the palatine tonsillar crypt epithelium of pigs in response to Streptococcus suis type 2 infection. Vet Immunol Immunopathol 2002 Aug;87:51-63.
    [90]Lun S, Willson PJ. Expression of green fluorescent protein and its application in pathogenesis studies of serotype 2 Streptococcus suis. J Microbiol Methods 2004 Mar;56:401-12.
    [91]Swildens B, Stockhofe-Zurwieden N, van der Meulen J, et al. Intestinal translocation of Streptococcus suis type 2 EF+in pigs. Vet Microbiol 2004 Oct 5;103:29-33.
    [92]王姝优,华修国,朱建国,等.猪链球菌2型感染动物模型研究进展.中国畜牧兽医2007;34:98-100.
    [93]Zhang W, Lu CP. Immunoproteomic Assay of Membrane-associated Proteins of Streptococcus suis Type 2 China Vaccine Strain HA9801. Zoonoses Public Health 2007 Sep;54:253-9.
    [94]Zhang W, Lu CP. Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics 2007 Dec;7:4468-76.
    [95]van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CM, et al. A star with stripes:zebrafish as an infection model. Trends Microbiol 2004 Oct;12:451-7.
    [96]Novoa B, Romero A, Mulero V, et al. Zebrafish (Danio rerio) as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV). Vaccine 2006 Jul 26;24:5806-16.
    [97]Neely MN, Pfeifer JD, Caparon M. Streptococcus-zebrafish model of bacterial pathogenesis. Infect Immun 2002 Jul;70:3904-14.
    [98]Lin B, Chen S, Cao Z, et al. Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection:striking similarities and obvious differences with mammals. Mol Immunol 2007 Jan;44:295-301.
    [99]Phelps HA, Neely MN. Evolution of the zebrafish model:from development to immunity and infectious disease. Zebrafish 2005;2:87-103.
    [100]Miller JD, Neely MN. Zebrafish as a model host for streptococcal pathogenesis. Acta Trop 2004 Jun;91:53-68.
    [101]van der Sar AM, Musters RJ, van Eeden FJ, et al. Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 2003 Sep;5:601-11.
    [102]Davis JM, Clay H, Lewis JL, et al. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 2002 Dec;17:693-702.
    [103]Lowe BA, Miller JD, Neely MN. Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implications in virulence. Infect Immun 2007 Mar;75:1255-64.
    [104]濮俊毅,黄新新,陆承平.用斑马鱼检测猪链球菌2型的致病力.中国农业科学2007;40:2655-8.
    [105]http://www.oie.int/eng/info/hebdo/AIS_54.HTM
    [106]吴全忠,田云,陆承平.猪链球菌2型引致脑炎及败血症的豚鼠模型.中国兽医学报2002;22:228-30.
    [1]Ideker T, Thorsson V, Ranish JA, et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 2001 May 4;292:929-34.
    [2]Krah A, Jungblut PR. Immunoproteomics. Methods Mol Med 2004;94:19-32.
    [3]Shin GW, Palaksha KJ, Kim YR, et al. Application of immunoproteomics in developing a Streptococcus iniae vaccine for olive flounder (Paralichthys olivaceus). J Chromatogr B Analyt Technol Biomed Life Sci 2007 Apr 15;849:315-22.
    [4]Zhang W, Lu CP. Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics 2007 Dec;7:4468-76.
    [5]Celis JE, Gromov P.2D protein electrophoresis:can it be perfected? Curr Opin Biotechnol 1999 Feb;10:16-21.
    [6]Wu Z, Zhang W, Lu C. Immunoproteomic assay of surface proteins of Streptococcus suis serotype 9. FEMS Immunol Med Microbiol 2008 May;53:52-9.
    [7]McAtee CP, Lim MY, Fung K, et al. Identification of potential diagnostic and vaccine candidates of Helicobacter pylori by two-dimensional gel electrophoresis, sequence analysis, and serum profiling. Clin Diagn Lab Immunol 1998 Jul;5:537-42.
    [8]Hendrickson RC, Douglass JF, Reynolds LD, et al. Mass spectrometric identification of mtb81, a novel serological marker for tuberculosis. J Clin Microbiol 2000 Jun;38:2354-61.
    [9]Ling E, Feldman G, Portnoi M, et al. Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol 2004 Nov;138:290-8.
    [10]Kurupati P, Teh BK, Kumarasinghe G, et al. Identification of vaccine candidate antigens of an ESBL producing Klebsiella pneumoniae clinical strain by immunoproteome analysis. Proteomics 2006 Feb;6:836-44.
    [11]Jungblut PR. Proteome analysis of bacterial pathogens. Microbes Infect 2001 Aug;3:831-40.
    [12]Ziebandt AK, Weber H, Rudolph J, et al. Extracellular proteins of Staphylococcus aureus and the role of SarA and sigma B. Proteomics 2001 Apr; 1:480-93.
    [13]Jungblut PR, Schaible UE, Mollenkopf HJ, et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains:towards functional genomics of microbial pathogens. Mol Microbiol 1999 Sep;33:1103-17.
    [14]张艳,范学工,仁陈.幽门螺杆菌对人肝细胞系HepG2细胞蛋白质组的影响.世界华人消化杂志2006;12:1325-8.
    [15]Cash P, Argo E, Ford L, et al. A proteomic analysis of erythromycin resistance in Streptococcus pneumoniae. Electrophoresis 1999 Aug;20:2259-68.
    [16]Linton D, Lawson AJ, Owen RJ, et al. PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples. J Clin Microbiol 1997 Oct;35:2568-72.
    [17]刘正祥,邹全明.基因芯片在病原微生物检测中的应用评价.国外医学临床生物化学与检验学分册2003:24:66-9.
    [18]Chatterjee SS, Hossain H, Otten S, et al. Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 2006 Feb;74:1323-38.
    [19]Israel DA, Salama N, Arnold CN, et al. Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses. J Clin Invest 2001 Mar;107:611-20.
    [20]Rosenberger CM, Scott MG, Gold MR, et al. Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. J Immunol 2000 Jun 1; 164:5894-904.
    [21]Meijer AH, Verbeek FJ, Salas-Vidal E, et al. Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Mol Immunol 2005 Jun;42:1185-203.
    [1]Silva LM, Baums CG, Rehm T, et al. Virulence-associated gene profiling of Streptococcus suis isolates by PCR. Vet Microbiol 2006 Jun 15;115:117-27.
    [2]Staats JJ, Feder I, Okwumabua O, et al. Streptococcus suis:past and present. Vet Res Commun 1997 Aug;21:381-407.
    [3]Gottschalk M, Segura M. The pathogenesis of the meningitis caused by Streptococcus suis:the unresolved questions. Vet Microbiol 2000 Oct 1;76:259-72.
    [4]Wisselink HJ, Smith HE, Stockhofe-Zurwieden N, et al. Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries. Vet Microbiol 2000 Jun 1;74:237-48.
    [5]Allgaier A, Goethe R, Wisselink HJ, et al. Relatedness of Streptococcus suis isolates of various serotypes and clinical backgrounds as evaluated by macrorestriction analysis and expression of potential virulence traits. J Clin Microbiol 2001 Feb;39:445-53.
    [6]Liu J, Feng SZ, Yin TY, et al. Multiplex PCR assay for the detection of serotype 2 and 9 of Streptococcus suis. Chinese Journal of Zoonoses 2005;21:510-4.
    [7]Zhao R, Sun JH, Lu CP. Distributional Characteristics of Virulence-associated Gene of Streptococcus suis Strains Isolated from China. Journal of Shanghai Jiaotong University (Agricultural Science) 2006;24:495-8.
    [8]Yu WL, Li CL, Wang GP, et al. Pathogenic characteristics of Streptococcus suis type 2 and type 9 isolated from Guangdong province. Veterinary Science in China 2007 2007.08;37:650-4.
    [9]Smith HE, Vecht U, Gielkens AL, et al. Cloning and nucleotide sequence of the gene encoding the 136-kilodalton surface protein (muramidase-released protein) of Streptococcus suis type 2. Infect Immun 1992 Jun;60:2361-7.
    [10]Vecht U, Wisselink HJ, Jellema ML, et al. Identification of two proteins associated with virulence of Streptococcus suis type 2. Infect Immun 1991 Sep;59:3156-62.
    [11]Jacobs AA, Loeffen PL, van den Berg AJ, et al. Identification, purification, and characterization of a thiol-activated hemolysin (suilysin) of Streptococcus suis. Infect Immun 1994 May;62:1742-8.
    [12]de Greeff A, Buys H, Verhaar R, et al. Contribution of fibronectin-binding protein to pathogenesis of Streptococcus suis serotype 2. Infect Immun 2002 Mar;70:1319-25.
    [13]Trost M, Wehmhoner D, Karst U, et al. Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics 2005 Apr;5:1544-57.
    [14]Cordwell SJ, Nouwens AS, Walsh BJ. Comparative proteomics of bacterial pathogens. Proteomics 2001 Apr;1:461-72.
    [15]Jungblut PR. Proteome analysis of bacterial pathogens. Microbes Infect 2001 Aug;3:831-40.
    [16]Jing HB, Yuan J, Wang J, et al. Proteome analysis of Streptococcus suis serotype 2. Proteomics 2008 Jan;8:333-49.
    [17]Zhang W, Lu CP. Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics 2007 Dec;7:4468-76.
    [18]Aziz RK, Pabst MJ, Jeng A, et al. Invasive M1T1 group A Streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB. Mol Microbiol 2004 Jan;51:123-34.
    [19]Lamonica JM, Wagner M, Eschenbrenner M, et al. Comparative secretome analyses of three Bacillus anthracis strains with variant plasmid contents. Infect Immun 2005 Jun;73:3646-58.
    [20]Neely MN, Pfeifer JD, Caparon M. Streptococcus-zebrafish model of bacterial pathogenesis. Infect Immun 2002 Jul;70:3904-14.
    [21]Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. American Journal of Hygiene 1938;27:493-7.
    [22]Gruening P, Fulde M, Valentin-Weigand P, et al. Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol 2006 Jan;188:361-9.
    [23]Brassard J, Gottschalk M, Quessy S. Cloning and purification of the Streptococcus suis serotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin. Vet Microbiol 2004 Aug 19;102:87-94.
    [24]King SJ, Allen AG, Maskell DJ, et al. Distribution, genetic diversity, and variable expression of the gene encoding hyaluronate lyase within the Streptococcus suis population. J Bacteriol 2004 Jul; 186:4740-7.
    [25]Smith HE, Buijs H, Wisselink HJ, et al. Selection of virulence-associated determinants of Streptococcus suis serotype 2 by in vivo complementation. Infect Immun 2001 Mar;69:1961-6.
    [26]Li GW, Yao HC, Lu CP. Detection of a New Virulence Associated Gene in Streptococcus suis Type 2 Jiangsu Isolate. Journal of Agricultural Biotechnology 2003;11:295-8.
    [27]Zhang W, Lu CP. Immunoproteomic Assay of Membrane-associated Proteins of Streptococcus suis Type 2 China Vaccine Strain HA9801. Zoonoses Public Health 2007 Sep;54:253-9.
    [28]Wang K, Lu C. Adhesion activity of glyceraldehyde-3-phosphate dehydrogenase in a Chinese Streptococcus suis type 2 strain. Berl Munch Tierarztl Wochenschr 2007 May-Jun; 120:207-9.
    [29]Wang Y, Yang L, Xu H, et al. Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 2005 Nov;5:4496-503.
    [30]Xu H, Yang L, Xu P, et al. cTrans:generating polypeptide databases from cDNA sequences. Proteomics 2007 Jan;7:177-9.
    [31]van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CM, et al. A star with stripes:zebrafish as an infection model. Trends Microbiol 2004 Oct;12:451-7.
    [32]Novoa B, Romero A, Mulero V, et al. Zebrafish (Danio rerio) as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV). Vaccine 2006 Jul 26;24:5806-16.
    [33]Lin B, Chen S, Cao Z, et al. Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection:striking similarities and obvious differences with mammals. Mol Immunol 2007 Jan;44:295-301.
    [34]Lowe BA, Miller JD, Neely MN. Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implications in virulence. Infect Immun 2007 Mar;75:1255-64.
    [35]Phelps HA, Neely MN. Evolution of the zebrafish model:from development to immunity and infectious disease. Zebrafish 2005;2:87-103.
    [36]Pu JY, Huang XX, Lu CP. Virulence Detection of Streptococcus suis Type 2 in Zebrafish. Scientia Agricultura Sinica 2007;40:2655-8.
    [37]http://www.oie.int/eng/info/hebdo/AIS_54.HTM
    [38]Liao X, Ying T, Wang H, et al. A two-dimensional proteome map of Shigella flexneri. Electrophoresis 2003 Aug;24:2864-82.
    [39]Wang J, Ying T, Wang H, et al.2-D reference map of Bacillus anthracis vaccine strain A16R proteins. Proteomics 2005 Nov;5:4488-95.
    [40]Jing HB, Yuan J, Wang J, et al. Proteome analysis of Streptococcus suis serotype 2. Proteomics 2007 Dec 17.
    [41]Antelmann H, Tjalsma H, Voigt B, et al. Aproteomic view on genome-based signal peptide predictions. Genome Res 2001 Sep; 11:1484-502.
    [42]Maguire M, Coates AR, Henderson B. Chaperonin 60 unfolds its secrets of cellular communication. Cell Stress Chaperones 2002 Oct;7:317-29.
    [43]Matsumoto M, Sakae K, Hashikawa S, et al. Close correlation of streptococcal DNase B (sdaB) alleles with emm genotypes in Streptococcus pyogenes. Microbiol Immunol 2005;49:925-9.
    [44]Bisno AL, Brito MO, Collins CM. Molecular basis of group A streptococcal virulence. Lancet Infect Dis 2003 Apr;3:191-200.
    [45]Fontaine MC, Perez-Casal J, Willson PJ. Investigation of a novel DNase of Streptococcus suis serotype 2. Infect Immun 2004 Feb;72:774-81.
    [46]Walker J, Vasquez JJ, Gomez MA, et al. Identification of developmentally-regulated proteins in
    Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Mol Biochem Parasitol 2006 May;147:64-73.
    [47]Heilmann C, Hartleib J, Hussain MS, et al. The multifunctional Staphylococcus aureus autolysin aaa mediates adherence to immobilized fibrinogen and fibronectin. Infect Immun 2005 Aug;73:4793-802.
    [48]Steen A, Buist G, Leenhouts KJ, et al. Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem 2003 Jun 27;278:23874-81.
    [49]Downer R, Roche F, Park PW, et al. The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. J Biol Chem 2002 Jan 4;277:243-50.
    [50]Shuttleworth HL, Duggleby CJ, Jones SA, et al. Nucleotide sequence analysis of the gene for protein A from Staphylococcus aureus Cowan 1 (NCTC8530) and its enhanced expression in Escherichia coli. Gene 1987;58:283-95.
    [51]Bateman A, Bycroft M. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol 2000 Jun 16;299:1113-9.
    [52]Poltermann S, Kunert A, von der Heide M, et al. Gpmlp is a factor H, FHL-1 and plasminogen-binding surface protein of Candida albicans. J Biol Chem 2007 Oct 24.
    [53]Zaborina O, Dhiman N, Ling Chen M, et al. Secreted products of a nonmucoid Pseudomonas aeruginosa strain induce two modes of macrophage killing:external-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis. Microbiology 2000 Oct;146(Pt10):2521-30.
    [1]Staats JJ, Feder I, Okwumabua O, et al. Streptococcus suis:past and present. Vet Res Commun 1997 Aug;21:381-407.
    [2]Arends JP, Zanen HC. Meningitis caused by Streptococcus suis in humans. Rev Infect Dis 1988 Jan-Feb;10:131-7.
    [3]Francois B, Gissot V, Ploy MC, et al. Recurrent septic shock due to Streptococcus suis. J Clin Microbiol 1998Aug;36:2395.
    [4]Segura M, Vanier G, Al-Numani D, et al. Proinflammatory cytokine and chemokine modulation by Streptococcus suis in a whole-blood culture system. FEMS Immunol Med Microbiol 2006 Jun;47:92-106.
    [5]Wisselink HJ, Smith HE, Stockhofe-Zurwieden N, et al. Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries. Vet Microbiol 2000 Jun 1;74:237-48.
    [6]Beineke A, Bennecke K, Neis C, et al. Comparative evaluation of virulence and pathology of Streptococcus suis serotypes 2 and 9 in experimentally infected growers. Vet Microbiol 2008 Apr 30;128:423-30.
    [7]余炜烈,李春玲,王贵平,等.猪链球菌2型和9型广东分离株的病原特性.中国兽医科学2007;37:650-4.
    [8]刘军,冯书章,尹铁勇,等.猪链球菌2型和9型菌株的多重PCR检测.中国人兽共患病杂志2005;21:510-4.
    [9]白昀,覃伦,龙剑明,等.猪链球菌9型的分离与鉴定.上海畜牧兽医通讯2001:36-7.
    [10]Wisselink HJ, Vecht U, Stockhofe-Zurwieden N, et al. Protection of pigs against challenge with virulent Streptococcus suis serotype 2 strains by a muramidase-released protein and extracellular factor vaccine. Vet Rec 2001 Apr 14;148:473-7.
    [11]Jacobs AA, van den Berg AJ, Loeffen PL. Protection of experimentally infected pigs by suilysin, the thiol-activated haemolysin of Streptococcus suis. Vet Rec 1996 Sep 7;139:225-8.
    [12]Li Y, Gottschalk M, Esgleas M, et al. Immunization with Recombinant Sao Protein Confers Protection against Streptococcus suis Infection. Clin Vaccine Immunol 2007 Aug; 14:937-43.
    [13]Lei B, Mackie S, Lukomski S, et al. Identification and immunogenicity of group A Streptococcus culture supernatant proteins. Infect Immun 2000 Dec;68:6807-18.
    [14]Cole JN, Ramirez RD, Currie BJ, et al. Surface analyses and immune reactivities of major cell wall-associated proteins of group a streptococcus. Infect Immun 2005 May;73:3137-46.
    [15]Romer TG, Boyle MD. Application of immunoproteomics to analysis of post-translational processing of the antiphagocytic M protein of Streptococcus. Proteomics 2003 Jan;3:29-35.
    [16]Ling E, Feldman G, Portnoi M, et al. Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol 2004 Nov;138:290-8.
    [17]Shin GW, Palaksha KJ, Kim YR, et al. Application of immunoproteomics in developing a Streptococcus iniae vaccine for olive flounder (Paralichthys olivaceus). J Chromatogr B Analyt Technol Biomed Life Sci 2007 Apr 15;849:315-22.
    [18]Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970 Aug 15;227:680-5.
    [19]Wang Y, Yang L, Xu H, et al. Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 2005 Nov;5:4496-503.
    [20]Xu H, Yang L, Xu P, et al. cTrans:generating polypeptide databases from cDNA sequences. Proteomics 2007 Jan;7:177-9.
    [21]Pizza M, Scarlato V, Masignani V, et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 2000 Mar 10;287:1816-20.
    [22]Maione D, Margarit I, Rinaudo CD, et al. Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 2005 Jul 1;309:148-50.
    [23]Lapointe L, D'Allaire S, Lebrun A, et al. Antibody response to an autogenous vaccine and serologic profile for Streptococcus suis capsular type 1/2. Can J Vet Res 2002 Jan;66:8-14.
    [24]Krah A, Jungblut PR. Immunoproteomics. Methods Mol Med 2004;94:19-32.
    [25]Curran TM, Ma Y, Rutherford GC, et al. Turning on and turning off the arginine deiminase system in oral streptococci. Can J Microbiol 1998 Nov;44:1078-85.
    [26]Gruening P, Fulde M, Valentin-Weigand P, et al. Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol 2006 Jan;188:361-9.
    [27]Winterhoff N, Goethe R, Gruening P, et al. Identification and characterization of two temperature-induced surface-associated proteins of Streptococcus suis with high homologies to members of the Arginine Deiminase system of Streptococcus pyogenes. J Bacteriol 2002 Dec; 184:6768-76.
    [28]Zhang W, Lu CP. Immunoproteomic Assay of Membrane-associated Proteins of Streptococcus suis Type 2 China Vaccine Strain HA9801. Zoonoses Public Health 2007 Sep;54:253-9.
    [29]Overweg K, Pericone CD, Verhoef GG, et al. Differential protein expression in phenotypic variants of Streptococcus pneumoniae. Infect Immun 2000 Aug;68:4604-10.
    [30]Wilkins JC, Beighton D, Homer KA. Effect of acidic pH on expression of surface-associated proteins of Streptococcus oralis. Appl Environ Microbiol 2003 Sep;69:5290-6.
    [31]Martinez G, Harel J, Lacouture S, et al. Cloning and partial characterization of the gene encoding the putative elongation factor Ts of Streptococcus suis serotype 2. Arch Microbiol 2003 Oct; 180:298-302.
    [32]Dion N, Le Moual H, Fournie-Zaluski MC, et al. Evidence that Asn542 of neprilysin (EC 3.4.24.11) is involved in binding of the P2'residue of substrates and inhibitors. Biochem J 1995 Oct 15;311 (Pt 2):623-7.
    [33]Froeliger EH, Oetjen J, Bond JP, et al. Streptococcus parasanguis pepO encodes an endopeptidase with structure and activity similar to those of enzymes that modulate peptide receptor signaling in eukaryotic cells. Infect Immun 1999 Oct;67:5206-14.
    [34]Samen U, Gottschalk B, Eikmanns BJ, et al. Relevance of peptide uptake systems to the physiology and virulence of Streptococcus agalactiae. J Bacteriol 2004 Mar; 186:1398-408.
    [35]Taylor DL, Ward PN, Rapier CD, et al. Identification of a differentially expressed oligopeptide binding protein (OppA2) in Streptococcus uberis by representational difference analysis of cDNA. J Bacteriol 2003 Sep;185:5210-9.
    [36]Garault P, Le Bars D, Besset C, et al. Three oligopeptide-binding proteins are involved in the oligopeptide transport of Streptococcus thermophilus. J Biol Chem 2002 Jan 4;277:32-9.
    [37]Xu QS, Shin DH, Pufan R, et al. Crystal structure of a phosphotransacetylase from Streptococcus pyogenes. Proteins 2004 May 1;55:479-81.
    [38]Jado I, Fenoll A, Cepeda T, et al. Cloning, sequencing, and chromosomal location of a putative class-II aldolase gene from Streptococcus pneumoniae. Curr Microbiol 1999 Jul;39:31-6.
    [1]Staats JJ, Feder I, Okwumabua O, et al. Streptococcus suis:past and present. Vet Res Commun 1997 Aug;21:381-407.
    [2]Gottschalk M, Segura M. The pathogenesis of the meningitis caused by Streptococcus suis:the unresolved questions. Vet Microbiol 2000 Oct 1;76:259-72.
    [3]Arends JP, Zanen HC. Meningitis caused by Streptococcus suis in humans. Rev Infect Dis 1988 Jan-Feb;10:131-7.
    [4]Francois B, Gissot V, Ploy MC, et al. Recurrent septic shock due to Streptococcus suis. J Clin Microbiol 1998 Aug;36:2395.
    [5]Tang J, Wang C, Feng Y, et al. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med 2006 May;3:e151.
    [6]Wisselink HJ, Smith HE, Stockhofe-Zurwieden N, et al. Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries. Vet Microbiol 2000 Jun 1;74:237-48.
    [7]Allgaier A, Goethe R, Wisselink HJ, et al. Relatedness of Streptococcus suis isolates of various serotypes and clinical backgrounds as evaluated by macrorestriction analysis and expression of potential virulence traits. J Clin Microbiol 2001 Feb;39:445-53.
    [8]余炜烈,李春玲,王贵平,等.猪链球菌2型和9型广东分离株的病原特性.中国兽医科学2007;37:650-4.
    [9]刘军,冯书章,尹铁勇,等.猪链球菌2型和9型菌株的多重PCR检测.中国人兽共患病杂志2005;21:510-4.
    [10]白昀,覃伦,龙剑明,等.猪链球菌9型的分离与鉴定.上海畜牧兽医通讯2001:36-7.
    [11]Maione D, Margarit I, Rinaudo CD, et al. Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 2005 Jul 1;309:148-50.
    [12]Morsczeck C, Prokhorova T, Sigh J, et al. Streptococcus pneumoniae:proteomics of surface proteins for vaccine development. Clin Microbiol Infect 2008 Jan; 14:74-81.
    [13]Rimler RB, Brogden KA. Ultrastructural location of the cross-protection factor on in vivo and in vitro grown Pasteurella multocida. Avian Dis 2001 Oct-Dec;45:946-52.
    [14]Ling E, Feldman G, Portnoi M, et al. Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol 2004 Nov;138:290-8.
    [15]Overweg K, Kerr A, Sluijter M, et al. The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect Immun 2000 Jul;68:4180-8.
    [16]Tart RC, McDaniel LS, Ralph BA, et al. Truncated Streptococcus pneumoniae PspA molecules elicit cross-protective immunity against pneumococcal challenge in mice. J Infect Dis 1996 Feb; 173:380-6.
    [17]Brodeur BR, Boyer M, Charlebois I, et al. Identification of group B streptococcal Sip protein, which elicits cross-protective immunity. Infect Immun 2000 Oct;68:5610-8.
    [18]Pizza M, Scarlato V, Masignani V, et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 2000 Mar 10;287:1816-20.
    [19]Portnoi M, Ling E, Feldman G, et al. The vaccine potential of Streptococcus pneumoniae surface lectin-and non-lectin proteins. Vaccine 2006 Mar 10;24:1868-73.
    [20]Hughes MJ, Moore JC, Lane JD, et al. Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 2002 Mar;70:1254-9.
    [21]Cole JN, Ramirez RD, Currie BJ, et al. Surface analyses and immune reactivities of major cell wall-associated proteins of group a streptococcus. Infect Immun 2005 May;73:3137-46.
    [22]Shin GW, Palaksha KJ, Kim YR, et al. Application of immunoproteomics in developing a Streptococcus iniae vaccine for olive flounder (Paralichthys olivaceus). J Chromatogr B Analyt Technol Biomed Life Sci 2007 Apr 15;849:315-22.
    [23]Zhang W, Lu CP. Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics 2007 Dec;7:4468-76.
    [24]Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970 Aug 15;227:680-5.
    [25]Wang Y, Yang L, Xu H, et al. Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 2005 Nov;5:4496-503.
    [26]Xu H, Yang L, Xu P, et al. cTrans:generating polypeptide databases from cDNA sequences. Proteomics 2007 Jan;7:177-9.
    [27]Smith HE, Veenbergen V, van der Velde J, et al. The cps genes of Streptococcus suis serotypes 1,2, and 9: development of rapid serotype-specific PCR assays. J Clin Microbiol 1999 Oct;37:3146-52.
    [28]Elliott SD, Clifton-Hadley F, Tai J. Streptococcal infection in young pigs. V. An immunogenic polysaccharide from Streptococcus suis type 2 with particular reference to vaccination against streptococcal meningitis in pigs. J Hyg (Lond) 1980 Oct;85:275-85.
    [29]Leon IR, Neves-Ferreira AG, Valente RH, et al. Improved protein identification efficiency by mass spectrometry using N-terminal chemical derivatization of peptides from Angiostrongylus costaricensis, a nematode with unknown genome. J Mass Spectrom 2007 Jun;42:781-92.
    [30]Wang K, Lu C. Adhesion activity of glyceraldehyde-3-phosphate dehydrogenase in a Chinese Streptococcus suis type 2 strain. Berl Munch Tierarztl Wochenschr 2007 May-Jun; 120:207-9.
    [31]Lapointe L, D'Allaire S, Lebrun A, et al. Antibody response to an autogenous vaccine and serologic profile for Streptococcus suis capsular type 1/2. Can J Vet Res 2002 Jan;66:8-14.
    [32]Krah A, Jungblut PR. Immunoproteomics. Methods Mol Med 2004;94:19-32.
    [33]Wei Y, Zhou H, Sun Y, et al. Insight into the catalytic mechanism of arginine deiminase:functional studies on the crucial sites. Proteins 2007 Feb 15;66:740-50.
    [34]Curran TM, Ma Y, Rutherford GC, et al. Turning on and turning off the arginine deiminase system in oral streptococci. Can J Microbiol 1998 Nov;44:1078-85.
    [35]Degnan BA, Fontaine MC, Doebereiner AH, et al. Characterization of an isogenic mutant of Streptococcus pyogenes Manfredo lacking the ability to make streptococcal acid glycoprotein. Infect Immun 2000 May;68:2441-8.
    [36]Marouni MJ, Ziomek E, Sela S. Influence of group A streptococcal acid glycoprotein on expression of major virulence factors and internalization by epithelial cells. Microb Pathog 2003 Aug;35:63-72.
    [37]Gruening P, Fulde M, Valentin-Weigand P, et al. Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol 2006 Jan;188:361-9.
    [38]Winterhoff N, Goethe R, Gruening P, et al. Identification and characterization of two temperature-induced surface-associated proteins of Streptococcus suis with high homologies to members of the Arginine Deiminase system of Streptococcus pyogenes. J Bacteriol 2002 Dec; 184:6768-76.
    [39]Zhang JQ, Lu CP. [Cloning, expression and characterization analysis of the arginine deiminase of Streptococcus suis of China isolates]. Wei Sheng Wu Xue Bao 2007 Oct;47:860-4.
    [40]Martinez G, Harel J, Lacouture S, et al. Cloning and partial characterization of the gene encoding the putative elongation factor Ts of Streptococcus suis serotype 2. Arch Microbiol 2003 Oct;180:298-302.
    [41]Hwang YW, Sanchez A, Miller DL. Mutagenesis of bacterial elongation factor Tu at lysine 136. A conserved amino acid in GTP regulatory proteins. J Biol Chem 1989 May 15;264:8304-9.
    [42]Overweg K, Pericone CD, Verhoef GG, et al. Differential protein expression in phenotypic variants of Streptococcus pneumoniae. Infect Immun 2000 Aug;68:4604-10.
    [43]Seshadri R, Hendrix LR, Samuel JE. Differential expression of translational elements by life cycle variants of Coxiella burnetii. Infect Immun 1999 Nov;67:6026-33.
    [44]Wilkins JC, Beighton D, Homer KA. Effect of acidic pH on expression of surface-associated proteins of Streptococcus oralis. Appl Environ Microbiol 2003 Sep;69:5290-6.
    [45]Jing HB, Yuan J, Wang J, et al. Proteome analysis of Streptococcus suis serotype 2. Proteomics 2008 Jan;8:333-49.
    [46]Liao X, Ying T, Wang H, et al. A two-dimensional proteome map of Shigella flexneri. Electrophoresis 2003 Aug;24:2864-82.
    [47]Wang J, Ying T, Wang'H, et al.2-D reference map of Bacillus anthracis vaccine strain A16R proteins. Proteomics 2005 Nov;5:4488-95.
    [48]Loo CY, Mitrakul K, Voss IB, et al. Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation. J Bacteriol 2003 Nov;185:6241-54.
    [49]Hill CE, Metcalf DS, MacInnes JI. A search for virulence genes of Haemophilus parasuis using differential display RT-PCR. Vet Microbiol 2003 Oct 17;96:189-202.
    [50]Duche O, Tremoulet F, Glaser P, et al. Salt stress proteins induced in Listeria monocytogenes. Appl Environ Microbiol 2002 Apr;68:1491-8.
    [51]Stancik LM, Stancik DM, Schmidt B, et al. pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol 2002 Aug; 184:4246-58.
    [52]Metcalf DS, MacInnes JI. Differential expression of Haemophilus parasuis genes in response to iron restriction and cerebrospinal fluid. Can J Vet Res 2007 Jul;71:181-8.
    [1]Staats JJ, Feder I, Okwumabua O, et al. Streptococcus suis:past and present. Vet Res Commun 1997 Aug;21:381-407.
    [2]Gottschalk M, Segura M. The pathogenesis of the meningitis caused by Streptococcus suis:the unresolved questions. Vet Microbiol 2000 Oct 1;76:259-72.
    [3]Lun ZR, Wang QP, Chen XG, et al. Streptococcus suis:an emerging zoonotic pathogen. Lancet Infect Dis 2007 Mar;7:201-9.
    [4]Fittipaldi N, Gottschalk M, Vanier G, et al. Use of selective capture of transcribed sequences to identify genes preferentially expressed by Streptococcus suis upon interaction with porcine brain microvascular endothelial cells. Appl Environ Microbiol 2007 Jul;73:4359-64.
    [5]Gottschalk M, Higgins R, Quessy S. Dilemma of the virulence of Strptococcus suis strains. J Clin Microbiol 1999 Dec;37:4202-3.
    [6]Berthelot-Herault F, Gottschalk M, Morvan H, et al. Dilemma of virulence of Streptococcus suis: Canadian isolate 89-1591 characterized as a virulent strain using a standardized experimental model in pigs. Can J Vet Res 2005 Jul;69:236-40.
    [7]Charland N, Harel J, Kobisch M, et al. Streptococcus suis serotype 2 mutants deficient in capsular expression. Microbiology 1998 Feb;144 (Pt 2):325-32.
    [8]Vecht U, Wisselink HJ, Stockhofe-Zurwieden N, et al. Characterization of virulence of the Streptococcus suis serotype 2 reference strain Henrichsen S 735 in newborn gnotobiotic pigs. Vet Microbiol 1996 Jul;51:125-36.
    [9]van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CM, et al. A star with stripes:zebrafish as an infection model. Trends Microbiol 2004 Oct; 12:451-7.
    [10]Phelps HA, Neely MN. Evolution of the zebrafish model:from development to immunity and infectious disease. Zebrafish 2005;2:87-103.
    [11]Neely MN, Pfeifer JD, Caparon M. Streptococcus-zebrafish model of bacterial pathogenesis. Infect Immun 2002 Jul;70:3904-14.
    [12]Miller JD, Neely MN. Zebrafish as a model host for streptococcal pathogenesis. Acta Trop 2004 Jun;91:53-68.
    [13]van der Sar AM, Musters RJ, van Eeden FJ, et al. Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 2003 Sep;5:601-11.
    [14]Davis JM, Clay H, Lewis JL, et al. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 2002 Dec;17:693-702.
    [15]Wu Z, Zhang W, Lu C. Comparative proteome analysis of secreted proteins of Streptococcus suis serotype 9 isolates from diseased and healthy pigs. Microb Pathog 2008 Sep;45:159-66.
    [16]濮俊毅,黄新新,陆承平.用斑马鱼检测猪链球菌2型的致病力.中国农业科学2007;40:2655-8.
    [17]http://www.oie.int/eng/info/hebdo/AIS_54.HTM
    [18]Wang K, Lu C. Adhesion activity of glyceraldehyde-3-phosphate dehydrogenase in a Chinese Streptococcus suis type 2 strain. Berl Munch Tierarztl Wochenschr 2007 May-Jun; 120:207-9.
    [19]Zhang W, Lu CP. Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics 2007 Dec;7:4468-76.
    [20]Zhang W, Lu CP. Immunoproteomic Assay of Membrane-associated Proteins of Streptococcus suis Type 2 China Vaccine Strain HA9801. Zoonoses Public Health 2007 Sep;54:253-9.
    [21]Zheng Q, Wang XJ. GOEAST:a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 2008 Jul 1;36:W358-63.
    [22]Dennis G, Jr., Sherman BT, Hosack DA, et al. DAVID:Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003;4:P3.
    [23]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001 Dec;25:402-8.
    [24]Lowe BA, Miller JD, Neely MN. Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implications in virulence. Infect Immun 2007 Mar;75:1255-64.
    [25]Jiang H, Fan HJ, Lu CP. Identification and distribution of putative virulent genes in strains of Streptococcus suis serotype 2. Vet Microbiol 2009 Feb 2;133:309-16.
    [26]de Greeff A, van Alphen L, Smith HE. Selection of recombinant antibodies specific for pathogenic Streptococcus suis by subtractive phage display. Infect Immun 2000 Jul;68:3949-55.
    [27]Xiu F. Virulence Charicterization of Streptococcus suis serotype 9 Isolated in China. Nanjing:Nanjing Agricultural University; 2008.
    [28]Jobin MC, Gottschalk M, Grenier D. Upregulation of prostaglandin E2 and matrix metalloproteinase 9 production by human macrophage-like cells:synergistic effect of capsular material and cell wall from Streptococcus suis. Microb Pathog 2006 Jan;40:29-34.
    [29]Tenenbaum T, Essmann F, Adam R, et al. Cell death, caspase activation, and HMGB1 release of porcine choroid plexus epithelial cells during Streptococcus suis infection in vitro. Brain Res 2006 Jul 19;1100:1-12.
    [30]Vanier G, Fittipaldi N, Slater JD, et al. New putative virulence factors of Streptococcus suis involved in invasion of porcine brain microvascular endothelial cells. Microb Pathog 2009 Jan;46:13-20.
    [31]Kolb SA, Lahrtz F, Paul R, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in viral meningitis:upregulation of MMP-9 and TIMP-1 in cerebrospinal fluid. J Neuroimmunol 1998 Apr 15;84:143-50.
    [32]Leib SL, Leppert D, Clements J, et al. Matrix metalloproteinases contribute to brain damage in experimental pneumococcal meningitis. Infect Immun 2000 Feb;68:615-20.
    [33]Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004 Aug;4:617-29.
    [34]Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis:mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005 Apr;73:1907-16.
    [35]Sorensen NS, Tegtmeier C, Andresen LO, et al. The porcine acute phase protein response to acute clinical and subclinical experimental infection with Streptococcus suis. Vet Immunol Immunopathol 2006 Sep15;113:157-68.
    [36]Campbell FM, Waterston M, Andresen LO, et al. The negative acute phase response of serum transthyretin following Streptococcus suis infection in the pig. Vet Res 2005 Jul-Aug;36:657-64.
    [37]Hulten C, Johansson E, Fossum C, et al. Interleukin 6, serum amyloid A and haptoglobin as markers of treatment efficacy in pigs experimentally infected with Actinobacillus pleuropneumoniae. Vet Microbiol 2003 Aug29;95:75-89.
    [38]Segura M, Vanier G, Al-Numani D, et al. Proinflammatory cytokine and chemokine modulation by Streptococcus suis in a whole-blood culture system. FEMS Immunol Med Microbiol 2006 Jun;47:92-106.
    [39]Chabot-Roy G, Willson P, Segura M, et al. Phagocytosis and killing of Streptococcus suis by porcine neutrophils. Microb Pathog 2006 Jul;41:21-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700