代谢损伤与胰岛素信号通路在阿尔茨海默病发病中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病的非转基因鼠模型(icv-STZ鼠):与转基因鼠模型(3xTg-AD鼠)的异同点
     背景阿尔茨海默病(Alzheimer’s Disease, AD)可以被分为散发性AD和家族性AD。绝大多数AD病例是散发性的,其发病原因非常多元化,包括环境因素,基因和代谢功能等,而家族性AD主要是由于早老素(presenilin,PS)或者是β淀粉样蛋白前体蛋白(amyloid-β precursor protein, APP)基因突变所致。目前,使用非常广泛的一个FAD动物模型是3xTg-AD转基因鼠。这种小鼠具有突变的人PS1, APP, tau基因。但是这个领域仍需要建立针对不同AD发病机制的的动物模型。只有这样,各种可能的治疗AD的药物才能在合适的动物模型上进行临床前期研究。
     方法经侧脑室注射链脲霉素(streptozocin,STZ),建立SAD小鼠模型(icv-STZ小鼠)。在本研究中,我们比较了icv-STZ小鼠与3xTg-AD小鼠在情感,认知行为学,生化以及免疫组化上的异同点。
     结果我们发现,两种模型小鼠都存在探索行为活跃,学习及记忆障碍。两种模型小鼠脑内都存在着神经炎性反应,突触蛋白的改变,胰岛素通路的异常,以及高度磷酸化的tau。但是,在icv-STZ小鼠脑内,神经炎性反应更加明显,而在3xTg-AD小鼠脑内,高度磷酸化的tau尤为显著。
     结论这些发现证实了icv-STZ小鼠与3xTg-AD小鼠在行为学和神经病理上的异同点。将为AD药物的研发在选择动物模型上提供指导。
     散发性(icv-STZ小鼠)与家族性(3xTg-AD小鼠)阿尔茨海默病小鼠模型脑内AD相关基因的比较
     研究背景阿尔茨海默病(Alzheimer’s Disease, AD)可以被分为散发性AD(Sporadic AD, SAD)以及家族性AD(Familial AD, FAD)。绝大多数的AD病例都是散发性的,其发病原因可能是多病因的,包括环境,基因和代谢因素。而FAD主要是由于早老素(Presenilin, PS)和β淀粉样前体蛋白(amyloid-β precursorprotein, APP)基因的突变所致。目前,使用非常广泛的一个FAD动物模型是3xTg-AD转基因鼠。这种小鼠具有突变的人PS1, APP, tau基因。而另外还有一种非转基因动物模型,即经侧脑室给予注射链脲霉素(streptozocin,STZ),建立的模型(icv-STZ小鼠)具有SAD的很多特征,得到了越来越多的关注。尽管这两种模型目前都得到了广泛的关注和应用,其在基因表达上的异同点,仍未有研究。
     方法我们通过定量PCR比较了icv-STZ小鼠与3xTg-AD小鼠在海马以及皮层的84个AD相关基因的表达情况。这些基因涉及APP的处理,tau/细胞骨架蛋白,突触功能,凋亡以,自噬,AD相关激酶,糖代谢,胰岛素通路以及mTOR通路。
     结果我们发现,在以上所列的范围内,两种模型各有大约有20来个基因的表达发生了改变。很多基因的改变与已经被报道的在AD大脑内的改变一致。海马绝大多数有变化的基因为下调,这两种小鼠模型皮层的基因表达改变差异性更大,在3xTg-AD小鼠内,与突触相关的基因改变较多,而在icv-STZ小鼠内,与胰岛素通路以及糖代谢相关的基因下调更明显。
     结论我们的研究证实了icv-STZ小鼠与3xTg-AD小鼠在AD相关基因表达上的异同点,并提供了非常详细的资料。此项研究也为将来基于此两种小鼠模型而进行的AD药物研究提供参考与指导。
     经侧脑室注射链脲霉素进一步加重了3xTg-AD小鼠的认知功能障碍以及其他脑功能异常
     目的研究代谢异常在AD疾病发生发展中的作用
     方法我们将链脲霉素(streptozocin,STZ)(一种经腹腔注射可以诱导动物糖尿病的药物)注射到6个月龄的3xTg-AD小鼠侧脑室,3-6周后,研究其认知功能改变,tau的磷酸化,Aβ的聚集以及其他相关的生化改变。
     结果我们发现,STZ加重了3xTg-AD小鼠的短时记忆以及长时空间记忆障碍。我们还发现,STZ注射后,3xTg-AD小鼠的海马tau磷酸化水平进一步增高,脑内胰岛素通路异常,突触蛋白水平降低,以及β淀粉样蛋白水平改变。我们还通过定量PCR检测与AD相关的84个基因的表达情况,这些基因涉及APP的处理,tau/细胞骨架蛋白,突触功能,凋亡以,自噬,AD相关激酶,糖代谢,胰岛素通路以及mTOR通路。其中有20个基因的表达水平发生了变化。
     结论这些结果提示了STZ可以损害3xTg-AD小鼠脑内的代谢以及其他细胞信号通路,证实了代谢损伤在AD疾病中的作用。
     经鼻吸入胰岛素减轻了propofol麻醉3xTg-AD小鼠引起的tau高度磷酸化
     目的探索经鼻吸入胰岛素对propofol导致的3xTg-AD小鼠tau高度磷酸化的影响。
     方法我们通过给予3xTg-AD经鼻吸入(intranasal delivery, IND)胰岛素7天,于第七天IND结束后30分钟,给予propofol注射麻醉,麻醉后通过免疫蛋白印迹检测tau的磷酸化水平,相关激酶磷酸酶的激活,以及胰岛素信号通路的改变。
     结果我们发现,propofol麻醉后30分钟,引起了tau在Thr181, Ser199, Thr205,Thr212, Thr231, Ser262/356, Ser396/404, Ser409位点的高度磷酸化,2小时候仍然存在。胰岛素IND增强了胰岛素信号通路各分子的表达与活性,降低了tau在Thr212, Ser262/356, Ser396/404, Ser409位点的磷酸化。同时胰岛素IND抑制了某些激酶的表达与激活,以及促进了PP2A的表达与激活。
     结论我们的发现为术后认知功能障碍提供了可能的预防治疗途径
A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’sdisease: Similarities to and differences from the transgenic model(3xTg-AD mouse)
     Background Alzheimer’s disease (AD) can be divided into sporadic AD (SAD) andfamilial AD (FAD). Most AD cases are sporadic and result from multiple etiologicfactors, including environmental, genetic and metabolic factors, whereas FAD iscaused by mutations in the presenilins or amyloid-β (Aβ) precursor protein (APP)genes. The most commonly used animal model for AD is the3xTg-AD transgenicmouse model, which harbors mutated presenilin1, APP and tau genes and thusrepresents a model of FAD. There is an unmet need to in the field to characterizeanimal models representing different AD mechanisms, so that potential drugs for SADcan be evaluated preclinically in these animal models.
     Method A mouse model generated by intracerebroventricular (icv) administration ofstreptozocin (STZ), the icv-STZ mouse, shows many aspects of SAD. In this study,we compared the non-cognitive and cognitive behaviors as well as biochemical andimmunohistochemical alterations between the icv-STZ mouse and the3xTg-ADmouse.
     Results We found that both mouse models showed increased exploratory activity aswell as impaired learning and spatial memory. Both models also demonstratedneuroinflammation, altered synaptic proteins and insulin/IGF-1(insulin-like growthfactor-1) signaling, and increased hyperphosphorylated tau in the brain. The mostprominent brain abnormality in the icv-STZ mouse was neuroinflammation, and in the3xTg-AD mouse it was elevation of hyperphosphorylated tau.
     Conclusion These observations demonstrate the behavioral and neuropathologicalsimilarities and differences between the icv-STZ mouse and the3xTg-AD mouse models and will help guide future studies using these two mouse models for thedevelopment of AD drugs.
     Brain gene expression of a sporadic (icv-STZ mouse) and a familialmouse model (3xTg-AD mouse) of Alzheimer’s disease
     Background Alzheimer’s disease (AD) can be divided into sporadic AD (SAD) andfamilial AD (FAD). Most AD cases are sporadic and may result from multipleetiologic factors, including environmental, genetic and metabolic factors, whereasFAD is caused by mutations of presenilins or amyloid-β (Aβ) precursor protein (APP).The most commonly used mouse model for AD is3xTg-AD mouse, which isgenerated by over-expression of mutated presenilin1, APP and tau in the brain andthus represents a mouse model of FAD. A mouse model generated byintracerebroventricular (icv) administration of streptozocin (STZ), icv-STZ mouse,shows many aspects of SAD and has also been widely reported. Despite the wide useof these two models for AD research, differences in gene expression between them arenot known.
     Method We report a comparison of expression profile of84AD-related genes in thehippocampus and the cerebral cortex between icv-STZ mice and3xTg-AD mice usinga custom-designed qPCR array. These genes are involved in APP processing,tau/cytoskeleton, synapse function, apoptosis and autophagy, AD-related proteinkinases, glucose metabolism, insulin signaling, and mTOR pathway.
     Results We found altered expression of around20genes in both mouse models,which affected each of above categories. Many of these gene alterations wereconsistent with what was observed in AD brain previously. The expression of most ofthese altered genes was decreased or tended to be decreased in the hippocampus ofboth mouse models. Significant diversity in gene expression was found in the cerebralcortex between these two AD mouse models. More genes related to synaptic function were dysregulated in the3xTg-AD mice, whereas more genes related to insulinsignaling and glucose metabolism were down-regulated in the icv-STZ mice.
     Conclusion Our observations demonstrate the similarities and differences betweenthe icv-STZ and the3xTg-AD mice, as well as provide detailed knowledge about thealterations of AD-related gene expression in these two mouse models. The presentstudy provides important fundamental knowledge of these two AD mouse models andwill help guide future studies using these two mouse models for the development ofAD drugs.
     Intracerebroventricular administration of streptozotocin exacerbatescognitive deficits and brain abnormalities of3xTg-AD mice
     Objective To investigate the role of metabolic insults in AD.
     Method we injected streptozotocin (STZ), a diabetogenic compound if used in theperiphery, into the lateral ventricle of the6-month old3xTg-AD mice and studied thecognitive function, as well as tau phosphorylation, Aβ accumulation, and other relatedabnormalities in the mouse brains3-6weeks later.
     Results We found that STZ exacerbated impairment of short-term and spatialreference memory in3xTg-AD mice. We also observed an increase of tauhyperphosphorylation and neuroinflammation, a disturbance of brain insulin signaling,and a decrease of synaptic plasticity and amyloid β peptides in the brain after STZtreatment. The expression of20AD-related genes, including those involved in theprocessing of amyloid precursor protein, cytoskeleton, glucose metabolism, insulinsignaling, synaptic function, protein kinases and apoptosis, was altered, suggestingthat STZ disturbs multiple metabolic and cell signaling pathways in the brain.
     Conclusion These findings demonstrate the role of metabolic insult in AD. Intranasal insulin prevents anesthesia induced hyperphosphorylationof tau in3xTg-AD miceObjective To investigate the effect of intranasal delivery of insulin onpropofol-induced hyperphosphorylation of tau in3xTg-AD mouse.Method3xTg-AD mice were given intranasal delivery of insulin or0.9%saline for7days.30minutes following the last doze, mice were subjected to intrapertonealinjection of propofol or the equivalent amount of vehicle. The phosphorylation of tau,activation of tau kinases and phosphatase, and activation of insulin signalingpathway were detected by western blots30minutes or2hours after propofoladministration.Results We found a significant increase in tau phosphorylation at Thr181, Ser199,Thr205, Thr212, Thr231, Ser262/356, Ser396/404, and Ser40930minutes followingpropofol injection in the frontal brain of the3xTg-AD mice. And thehyperphosphorylation at all these epitopes persisted for at least2hours. Intranasaldelivery of insulin ameliorated propofol induced hyperhosphorylation of tau atThr212, Ser262/356, Ser396/404, Ser409, which appeared to result from theinhibition of tau kinases and the activation of PP2A. We also confirmed theenhancement of insulin signaling pathway by intranasal delivery of insulin in thefrontal brain of the3xTg-AD mice.Conclusion Our findings provide a possible therapeutic way to treat anesthesiainduced post-operative cognitive decline.
引文
1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting theglobal burden of Alzheimer's disease. Alzheimers Dement3(3):186-191.doi:10.1016/j.jalz.2007.04.381S1552-5260(07)00475-X [pii]
    2. Rocchi A, Pellegrini S, Siciliano G, Murri L (2003) Causative and susceptibilitygenes for Alzheimer's disease: a review. Brain research bulletin61(1):1-24.doi:S0361923003000674[pii]
    3. Margolis RU, Altszuler N (1967) Insulin in the cerebrospinal fluid. Nature215(5108):1375-1376
    4. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors andinsulin action in the brain: review and clinical implications. Neurosci Biobehav Rev24(8):855-872. doi:S0149763400000403[pii]
    5. Schechter R, Yanovitch T, Abboud M, Johnson G,3rd, Gaskins J (1998) Effects ofbrain endogenous insulin on neurofilament and MAPK in fetal rat neuron cell cultures.Brain Res808(2):270-278. doi:S0006-8993(98)00842-7[pii]
    6. Schechter R, Sadiq HF, Devaskar SU (1990) Insulin and insulin mRNA are detectedin neuronal cell cultures maintained in an insulin-free/serum-free medium. JHistochem Cytochem38(6):829-836
    7. Schechter R, Holtzclaw L, Sadiq F, Kahn A, Devaskar S (1988) Insulin synthesis byisolated rabbit neurons. Endocrinology123(1):505-513
    8. Schechter R, Whitmire J, Holtzclaw L, George M, Harlow R, Devaskar SU (1992)Developmental regulation of insulin in the mammalian central nervous system. BrainRes582(1):27-37. doi:0006-8993(92)90313-X [pii]
    9. Havrankova J, Roth J, Brownstein M (1978) Insulin receptors are widelydistributed in the central nervous system of the rat. Nature272(5656):827-829
    10. Sara VR, Hall K, Von Holtz H, Humbel R, Sjogren B, Wetterberg L (1982)Evidence for the presence of specific receptors for insulin-like growth factors1(IGE-1) and2(IGF-2) and insulin throughout the adult human brain. Neurosci Lett34(1):39-44
    11. Potau N, Escofet MA, Martinez MC (1991) Ontogenesis of insulin receptors inhuman cerebral cortex. J Endocrinol Invest14(1):53-58
    12. Marks JL, Porte D, Jr., Stahl WL, Baskin DG (1990) Localization of insulinreceptor mRNA in rat brain by in situ hybridization. Endocrinology127(6):3234-3236
    13. Garcia-Segura LM, Rodriguez JR, Torres-Aleman I (1997) Localization of theinsulin-like growth factor I receptor in the cerebellum and hypothalamus of adult rats:an electron microscopic study. J Neurocytol26(7):479-490
    14. Caselli RJ, Chen K, Lee W, Alexander GE, Reiman EM (2008) Correlatingcerebral hypometabolism with future memory decline in subsequent converters toamnestic pre-mild cognitive impairment. Arch Neurol65(9):1231-1236.doi:10.1001/archneurol.2008.165/9/1231[pii]
    15. Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, Pirraglia E, DeSanti S, Reisberg B, Wisniewski T, de Leon MJ (2009) FDG-PET changes in brainglucose metabolism from normal cognition to pathologically verified Alzheimer'sdisease. Eur J Nucl Med Mol Imaging36(5):811-822.doi:10.1007/s00259-008-1039-z
    16. Hoyer S, Nitsch R, Oesterreich K (1991) Predominant abnormality in cerebralglucose utilization in late-onset dementia of the Alzheimer type: a cross-sectionalcomparison against advanced late-onset and incipient early-onset cases. Journal ofneural transmission3(1):1-14
    17. Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J, Yonekura Y,Konishi J (1994) Altered cerebral energy metabolism in Alzheimer's disease: a PETstudy. J Nucl Med35(1):1-6
    18. Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction inAlzheimer disease. Eur J Pharmacol490(1-3):115-125
    19. Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005)Insulin and insulin-like growth factor expression and function deteriorate withprogression of Alzheimer's disease: link to brain reductions in acetylcholine. JAlzheimers Dis8(3):247-268
    20. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, WandsJR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expressionand signaling mechanisms in Alzheimer's disease--is this type3diabetes? JAlzheimers Dis7(1):63-80
    21. Braak H, Braak E (1997) Diagnostic criteria for neuropathologic assessment ofAlzheimer's disease. Neurobiol Aging18(4Suppl):S85-88
    22. Nagy Z, Yilmazer-Hanke DM, Braak H, Braak E, Schultz C, Hanke J (1998)Assessment of the pathological stages of Alzheimer's disease in thin paraffin sections:a comparative study. Dement Geriatr Cogn Disord9(3):140-144. doi:dem09140[pii]
    23. Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger forsporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl(72):217-233
    24. Salkovic-Petrisic M, Osmanovic J, Grunblatt E, Riederer P, Hoyer S (2009)Modeling sporadic Alzheimer's disease: the insulin resistant brain state generatesmultiple long-term morphobiological abnormalities including hyperphosphorylatedtau protein and amyloid-beta. J Alzheimers Dis18(4):729-750.doi:10.3233/jad-2009-1184
    25. Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, Kern W (2004)Intranasal insulin improves memory in humans. Psychoneuroendocrinology29(10):1326-1334. doi:10.1016/j.psyneuen.2004.04.003S0306453004000526[pii]
    26. Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, PlymateSR, Cherrier MM, Schellenberg GD, Frey WH,2nd, Craft S (2008) Intranasal insulinadministration dose-dependently modulates verbal memory and plasma amyloid-betain memory-impaired older adults. J Alzheimers Dis13(3):323-331
    27. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, ArbuckleM, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012)Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitiveimpairment: a pilot clinical trial. Arch Neurol69(1):29-38.doi:10.1001/archneurol.2011.233
    1. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986)Abnormal phosphorylation of the microtubule-associated protein tau (tau) inAlzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A83(13):4913-4917
    2. Iqbal K, Grundke-Iqbal I (2010) Alzheimer's disease, a multifactorial disorderseeking multitherapies. Alzheimers Dement6(5):420-424.doi:10.1016/j.jalz.2010.04.006
    3. Waring SC, Rosenberg RN (2008) Genome-wide association studies in Alzheimerdisease. Arch Neurol65(3):329-334. doi:10.1001/archneur.65.3.329
    4. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R,Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer'sdisease with plaques and tangles: intracellular Abeta and synaptic dysfunction.Neuron39(3):409-421
    5. Mastrangelo MA, Bowers WJ (2008) Detailed immunohistochemicalcharacterization of temporal and spatial progression of Alzheimer's disease-relatedpathologies in male triple-transgenic mice. BMC Neurosci9:81.doi:10.1186/1471-2202-9-81
    6. Grunblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Braininsulin system dysfunction in streptozotocin intracerebroventricularly treated ratsgenerates hyperphosphorylated tau protein. J Neurochem101(3):757-770.doi:10.1111/j.1471-4159.2006.04368.x
    7. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cellsof the rat pancreas. Physiol Res50(6):537-546
    8. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F,Minoshima S, Schwaiger M, Kurz A (2003) Cerebral metabolic changesaccompanying conversion of mild cognitive impairment into Alzheimer's disease: aPET follow-up study. Eur J Nucl Med Mol Imaging30(8):1104-1113.doi:10.1007/s00259-003-1194-1
    9. Duarte AI, Moreira PI, Oliveira CR (2012) Insulin in central nervous system: morethan just a peripheral hormone. J Aging Res2012:384017. doi:10.1155/2012/384017
    10. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulinsignalling pathway in Alzheimer's disease and diabetes. J Pathol225(1):54-62.doi:10.1002/path.2912
    11. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL,Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA,Bennett DA, Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulinresistance in Alzheimer's disease patients is associated with IGF-1resistance, IRS-1dysregulation, and cognitive decline. J Clin Invest122(4):1316-1338.doi:10.1172/jci59903
    12. Salkovic-Petrisic M, Osmanovic J, Grunblatt E, Riederer P, Hoyer S (2009)Modeling sporadic Alzheimer's disease: the insulin resistant brain state generatesmultiple long-term morphobiological abnormalities including hyperphosphorylatedtau protein and amyloid-beta. J Alzheimers Dis18(4):729-750.doi:10.3233/jad-2009-1184
    13. Tatebayashi Y, Iqbal K, Grundke-Iqbal I (1999) Dynamic regulation of expressionand phosphorylation of tau by fibroblast growth factor-2in neural progenitor cellsfrom adult rat hippocampus. J Neurosci19(13):5245-5254
    14. Pei JJ, Gong CX, Iqbal K, Grundke-Iqbal I, Wu QL, Winblad B, Cowburn RF(1998) Subcellular distribution of protein phosphatases and abnormallyphosphorylated tau in the temporal cortex from Alzheimer's disease and control brains.J Neural Transm105(1):69-83
    15. Gimenez-Llort L, Blazquez G, Canete T, Johansson B, Oddo S, Tobena A,LaFerla FM, Fernandez-Teruel A (2007) Modeling behavioral and neuronalsymptoms of Alzheimer's disease in mice: a role for intraneuronal amyloid. NeurosciBiobehav Rev31(1):125-147. doi:10.1016/j.neubiorev.2006.07.007
    16. Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM (2005)Lipopolysaccharide-induced inflammation exacerbates tau pathology by acyclin-dependent kinase5-mediated pathway in a transgenic model of Alzheimer'sdisease. J Neurosci25(39):8843-8853. doi:10.1523/jneurosci.2868-05.2005
    17. Shoham S, Bejar C, Kovalev E, Schorer-Apelbaum D, Weinstock M (2007)Ladostigil prevents gliosis, oxidative-nitrative stress and memory deficits induced byintracerebroventricular injection of streptozotocin in rats. Neuropharmacology52(3):836-843. doi:10.1016/j.neuropharm.2006.10.005
    18. Javed H, Khan MM, Ahmad A, Vaibhav K, Ahmad ME, Khan A, Ashafaq M,Islam F, Siddiqui MS, Safhi MM (2012) Rutin prevents cognitive impairments byameliorating oxidative stress and neuroinflammation in rat model of sporadicdementia of Alzheimer type. Neuroscience210:340-352.doi:10.1016/j.neuroscience.2012.02.046
    19. Selkoe DJ (2002) Alzheimer's disease is a synaptic failure. Science298(5594):789-791. doi:10.1126/science.1074069
    20. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloiddeposition precedes tangle formation in a triple transgenic model of Alzheimer'sdisease. Neurobiol Aging24(8):1063-1070
    1. Reddy PH, McWeeney S (2006) Mapping cellular transcriptosomes in autopsiedAlzheimer's disease subjects and relevant animal models. Neurobiol Aging27(8):1060-1077. doi:10.1016/j.neurobiolaging.2005.04.014
    2. Salkovic-Petrisic M, Osmanovic-Barilar J, Bruckner MK, Hoyer S, Arendt T,Riederer P (2011) Cerebral amyloid angiopathy in streptozotocin rat model ofsporadic Alzheimer's disease: a long-term follow up study. J Neural Transm118(5):765-772. doi:10.1007/s00702-011-0651-4
    3. Plaschke K, Kopitz J, Siegelin M, Schliebs R, Salkovic-Petrisic M, Riederer P,Hoyer S Insulin-resistant brain state after intracerebroventricular streptozotocininjection exacerbates Alzheimer-like changes in Tg2576AbetaPP-overexpressingmice. J Alzheimers Dis19(2):691-704
    4. Chen Q, Nakajima A, Choi SH, Xiong X, Tang YP (2008) Loss of presenilinfunction causes Alzheimer's disease-like neurodegeneration in the mouse. J NeurosciRes86(7):1615-1625. doi:10.1002/jnr.21601
    5. Shen J, Kelleher RJ,3rd (2007) The presenilin hypothesis of Alzheimer's disease:evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci U S A104(2):403-409. doi:10.1073/pnas.0608332104
    6. Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana RaoBS, Chattarji S, Kelleher RJ,3rd, Kandel ER, Duff K, Kirkwood A, Shen J (2004)Loss of presenilin function causes impairments of memory and synaptic plasticityfollowed by age-dependent neurodegeneration. Neuron42(1):23-36
    7. Arendt T (2009) Synaptic degeneration in Alzheimer's disease. Acta Neuropathol118(1):167-179. doi:10.1007/s00401-009-0536-x
    8. Katzman R, Saitoh T (1991) Advances in Alzheimer's disease. FASEB J5(3):278-286
    9. Muller M, Cardenas C, Mei L, Cheung KH, Foskett JK (2011) Constitutive cAMPresponse element binding protein (CREB) activation by Alzheimer's diseasepresenilin-driven inositol trisphosphate receptor (InsP3R) Ca2+signaling. Proc NatlAcad Sci U S A108(32):13293-13298. doi:10.1073/pnas.1109297108
    10. Raynaud F, Marcilhac A (2006) Implication of calpain in neuronal apoptosis. Apossible regulation of Alzheimer's disease. FEBS J273(15):3437-3443
    11. Heiss WD, Szelies B, Kessler J, Herholz K (1991) Abnormalities of energymetabolism in Alzheimer's disease studied with PET. Ann N Y Acad Sci640:65-71
    12. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F,Minoshima S, Schwaiger M, Kurz A (2003) Cerebral metabolic changesaccompanying conversion of mild cognitive impairment into Alzheimer's disease: aPET follow-up study. Eur J Nucl Med Mol Imaging30(8):1104-1113.doi:10.1007/s00259-003-1194-1
    13. Brooks WM, Lynch PJ, Ingle CC, Hatton A, Emson PC, Faull RL, Starkey MP(2007) Gene expression profiles of metabolic enzyme transcripts in Alzheimer'sdisease. Brain Res1127(1):127-135. doi:10.1016/j.brainres.2006.09.106
    14. Ciavardelli D, Silvestri E, Del Viscovo A, Bomba M, De Gregorio D, Moreno M,Di Ilio C, Goglia F, Canzoniero LM, Sensi SL (2010) Alterations of brain andcerebellar proteomes linked to Abeta and tau pathology in a female triple-transgenicmurine model of Alzheimer's disease. Cell Death Dis1:e90.doi:10.1038/cddis.2010.68
    15. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Brain glucosetransporters, O-GlcNAcylation and phosphorylation of tau in diabetes andAlzheimer's disease. J Neurochem111(1):242-249.doi:10.1111/j.1471-4159.2009.06320.x
    16. Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX (2008) Decreased glucosetransporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease.FEBS Lett582(2):359-364. doi:10.1016/j.febslet.2007.12.035
    17. El Messari S, Leloup C, Quignon M, Brisorgueil MJ, Penicaud L, Arluison M(1998) Immunocytochemical localization of the insulin-responsive glucose transporter4(Glut4) in the rat central nervous system. J Comp Neurol399(4):492-512
    18. Bakirtzi K, Belfort G, Lopez-Coviella I, Kuruppu D, Cao L, Abel ED, BrownellAL, Kandror KV (2009) Cerebellar neurons possess a vesicular compartmentstructurally and functionally similar to Glut4-storage vesicles from peripheralinsulin-sensitive tissues. J Neurosci29(16):5193-5201.doi:10.1523/jneurosci.0858-09.2009
    19. Grillo CA, Piroli GG, Hendry RM, Reagan LP (2009) Insulin-stimulatedtranslocation of GLUT4to the plasma membrane in rat hippocampus is PI3-kinasedependent. Brain Res1296:35-45. doi:10.1016/j.brainres.2009.08.005
    20. Gerozissis K (2008) Brain insulin, energy and glucose homeostasis; genes,environment and metabolic pathologies. Eur J Pharmacol585(1):38-49.doi:10.1016/j.ejphar.2008.01.050
    21. de la Monte SM (2012) Brain insulin resistance and deficiency as therapeutictargets in Alzheimer's disease. Curr Alzheimer Res9(1):35-66
    22. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulinsignalling pathway in Alzheimer's disease and diabetes. J Pathol225(1):54-62.doi:10.1002/path.2912
    23. de la Monte SM (2009) Insulin resistance and Alzheimer's disease. BMB Rep42(8):475-481
    1. Tatebayashi Y, Iqbal K, Grundke-Iqbal I (1999) Dynamic regulation of expressionand phosphorylation of tau by fibroblast growth factor-2in neural progenitor cellsfrom adult rat hippocampus. J Neurosci19(13):5245-5254
    2. Pei JJ, Gong CX, Iqbal K, Grundke-Iqbal I, Wu QL, Winblad B, Cowburn RF(1998) Subcellular distribution of protein phosphatases and abnormallyphosphorylated tau in the temporal cortex from Alzheimer's disease and control brains.J Neural Transm105(1):69-83
    3. Gimenez-Llort L, Blazquez G, Canete T, Johansson B, Oddo S, Tobena A, LaFerlaFM, Fernandez-Teruel A (2007) Modeling behavioral and neuronal symptoms ofAlzheimer's disease in mice: a role for intraneuronal amyloid. Neurosci Biobehav Rev31(1):125-147. doi:10.1016/j.neubiorev.2006.07.007
    4. Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, Grundke-Iqbal I, Iqbal K,Liu F, Gong CX (2012) A Non-transgenic Mouse Model (icv-STZ Mouse) ofAlzheimer's Disease: Similarities to and Differences from the Transgenic Model(3xTg-AD Mouse). Mol Neurobiol. doi:10.1007/s12035-012-8375-5
    5. Mastrangelo MA, Bowers WJ (2008) Detailed immunohistochemicalcharacterization of temporal and spatial progression of Alzheimer's disease-relatedpathologies in male triple-transgenic mice. BMC Neurosci9:81.doi:10.1186/1471-2202-9-81
    6. Heneka MT, O'Banion MK (2007) Inflammatory processes in Alzheimer's disease.J Neuroimmunol184(1-2):69-91. doi:S0165-5728(06)00470-X [pii]10.1016/j.jneuroim.2006.11.017
    7. Plaschke K, Kopitz J, Siegelin M, Schliebs R, Salkovic-Petrisic M, Riederer P,Hoyer S Insulin-resistant brain state after intracerebroventricular streptozotocininjection exacerbates Alzheimer-like changes in Tg2576AbetaPP-overexpressingmice. J Alzheimers Dis19(2):691-704
    8. Selkoe DJ (2002) Alzheimer's disease is a synaptic failure. Science298(5594):789-791. doi:10.1126/science.1074069
    9. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R,Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer'sdisease with plaques and tangles: intracellular Abeta and synaptic dysfunction.Neuron39(3):409-421
    10. Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease-a brief reviewof the basic science and clinical literature. Cold Spring Harb Perspect Med2(1):a006346. doi:10.1101/cshperspect.a006346
    11. Arnaud L, Robakis NK, Figueiredo-Pereira ME (2006) It may take inflammation,phosphorylation and ubiquitination to 'tangle' in Alzheimer's disease. NeurodegenerDis3(6):313-319. doi:000095638[pii]10.1159/000095638
    12. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulinsignalling pathway in Alzheimer's disease and diabetes. J Pathol225(1):54-62.doi:10.1002/path.2912
    13. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, ArbuckleM, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012)Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitiveimpairment: a pilot clinical trial. Arch Neurol69(1):29-38.doi:10.1001/archneurol.2011.233
    14. Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, Tuor UI, Glazner G,Hanson LR, Frey WH,2nd, Toth C (2008) Intranasal insulin prevents cognitivedecline, cerebral atrophy and white matter changes in murine type I diabeticencephalopathy. Brain131(Pt12):3311-3334
    1. Monk TG, Weldon BC, Garvan CW, Dede DE, van der Aa MT, Heilman KM,Gravenstein JS (2008) Predictors of cognitive dysfunction after major noncardiacsurgery. Anesthesiology108(1):18-30. doi:10.1097/01.anes.0000296071.19434.1e00000542-200801000-00007[pii]
    2. Lee TA, Wolozin B, Weiss KB, Bednar MM (2005) Assessment of the emergenceof Alzheimer's disease following coronary artery bypass graft surgery or percutaneoustransluminal coronary angioplasty. J Alzheimers Dis7(4):319-324
    3. Run X, Liang Z, Gong CX (2010) Anesthetics and tau protein: animal modelstudies. J Alzheimers Dis22Suppl3:49-55. doi:10.3233/JAD-2010-100813P70037V438V45172[pii]
    4. Run X, Liang Z, Zhang L, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Anesthesiainduces phosphorylation of tau. J Alzheimers Dis16(3):619-626.doi:10.3233/JAD-2009-1003549M633456804L08[pii]
    5. Whittington RA, Virag L, Marcouiller F, Papon MA, El Khoury NB, Julien C,Morin F, Emala CW, Planel E (2011) Propofol directly increases tau phosphorylation.PLoS One6(1):e16648. doi:10.1371/journal.pone.0016648
    6. Bennecib M, Gong CX, Grundke-Iqbal I, Iqbal K (2000) Role of proteinphosphatase-2A and-1in the regulation of GSK-3, cdk5and cdc2and thephosphorylation of tau in rat forebrain. FEBS Lett485(1):87-93
    7. Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K (2000)Phosphorylation of microtubule-associated protein tau is regulated by proteinphosphatase2A in mammalian brain. Implications for neurofibrillary degeneration inAlzheimer's disease. J Biol Chem275(8):5535-5544
    8. Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, Kern W (2004)Intranasal insulin improves memory in humans. Psychoneuroendocrinology29(10):1326-1334. doi:10.1016/j.psyneuen.2004.04.003S0306453004000526[pii]
    9. Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, Plymate SR,Cherrier MM, Schellenberg GD, Frey WH,2nd, Craft S (2008) Intranasal insulinadministration dose-dependently modulates verbal memory and plasma amyloid-betain memory-impaired older adults. J Alzheimers Dis13(3):323-331
    10. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, ArbuckleM, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012)Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitiveimpairment: a pilot clinical trial. Arch Neurol69(1):29-38.doi:10.1001/archneurol.2011.233
    11. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, ViolaKL, Zhao WQ, Ferreira ST, Klein WL (2009) Protection of synapses againstAlzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abetaoligomers. Proc Natl Acad Sci U S A106(6):1971-1976.doi:10.1073/pnas.08091581060809158106[pii]
    12. Lee CC, Kuo YM, Huang CC, Hsu KS (2009) Insulin rescues amyloidbeta-induced impairment of hippocampal long-term potentiation. Neurobiol Aging30(3):377-387. doi:S0197-4580(07)00254-0[pii]
    10.1016/j.neurobiolaging.2007.06.014
    1. Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA (1922) PancreaticExtracts in the Treatment of Diabetes Mellitus. Can Med Assoc J12(3):141-146
    2. Woods SC, Lotter EC, McKay LD, Porte D, Jr.(1979) Chronicintracerebroventricular infusion of insulin reduces food intake and body weight ofbaboons. Nature282(5738):503-505
    3. Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA,Klein WL (2008) Amyloid beta oligomers induce impairment of neuronal insulinreceptors. FASEB J22(1):246-260. doi:fj.06-7703com [pii]
    10.1096/fj.06-7703com
    4. Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J,Galldiks N, Kustermann E, Arndt S, Jacobs AH, Krone W, Kahn CR, Bruning JC(2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc NatlAcad Sci U S A101(9):3100-3105. doi:10.1073/pnas.03087241010308724101[pii]
    5. Ott A, Stolk RP, Hofman A, van Harskamp F, Grobbee DE, Breteler MM (1996)Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia39(11):1392-1397
    6. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, KawaguchiKR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA,Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulin resistance inAlzheimer's disease patients is associated with IGF-1resistance, IRS-1dysregulation,and cognitive decline. J Clin Invest122(4):1316-1338. doi:10.1172/jci59903
    7. Negash S, Bennett DA, Wilson RS, Schneider JA, Arnold SE (2011) Cognition andneuropathology in aging: multidimensional perspectives from the Rush ReligiousOrders Study and Rush Memory And Aging Project. Curr Alzheimer Res8(4):336-340. doi:BSP/CAR/0125[pii]
    8. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA,Katzman R (1991) Physical basis of cognitive alterations in Alzheimer's disease:synapse loss is the major correlate of cognitive impairment. Ann Neurol30(4):572-580. doi:10.1002/ana.410300410
    9. Bjorklund NL, Reese LC, Sadagoparamanujam VM, Ghirardi V, Woltjer RL,Taglialatela G (2012) Absence of amyloid beta oligomers at the postsynapse andregulated synaptic Zn2+in cognitively intact aged individuals with Alzheimer'sdisease neuropathology. Mol Neurodegener7:23. doi:10.1186/1750-1326-7-231750-1326-7-23[pii]
    10. Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, KleinWL (2003) Alzheimer's disease-affected brain: presence of oligomeric A beta ligands(ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad SciU S A100(18):10417-10422. doi:10.1073/pnas.18343021001834302100[pii]
    11. Xia W, Yang T, Shankar G, Smith IM, Shen Y, Walsh DM, Selkoe DJ (2009) Aspecific enzyme-linked immunosorbent assay for measuring beta-amyloid proteinoligomers in human plasma and brain tissue of patients with Alzheimer disease. ArchNeurol66(2):190-199. doi:10.1001/archneurol.2008.56566/2/190[pii]
    12. Fukumoto H, Tokuda T, Kasai T, Ishigami N, Hidaka H, Kondo M, Allsop D,Nakagawa M (2010) High-molecular-weight beta-amyloid oligomers are elevated incerebrospinal fluid of Alzheimer patients. FASEB J24(8):2716-2726.doi:10.1096/fj.09-150359fj.09-150359[pii]
    13. Ferreira ST, Klein WL (2011) The Abeta oligomer hypothesis for synapse failureand memory loss in Alzheimer's disease. Neurobiology of learning and memory96(4):529-543. doi:10.1016/j.nlm.2011.08.003S1074-7427(11)00147-X [pii]
    14. Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, Hudspeth B,Chen C, Zhao Y, Vinters HV, Frautschy SA, Cole GM (2009) Beta-amyloid oligomersinduce phosphorylation of tau and inactivation of insulin receptor substrate via c-JunN-terminal kinase signaling: suppression by omega-3fatty acids and curcumin. JNeurosci29(28):9078-9089. doi:10.1523/JNEUROSCI.1071-09.200929/28/9078[pii]
    15. Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, DeckerH, Silverman MA, Kazi H, Melo HM, McClean PL, Holscher C, Arnold SE, Talbot K,Klein WL, Munoz DP, Ferreira ST, De Felice FG (2012) An anti-diabetes agentprotects the mouse brain from defective insulin signaling caused by Alzheimer'sdisease-associated Abeta oligomers. J Clin Invest122(4):1339-1353.doi:10.1172/JCI5725657256[pii]
    16. Puig KL, Floden AM, Adhikari R, Golovko MY, Combs CK (2012) Amyloidprecursor protein and proinflammatory changes are regulated in brain and adiposetissue in a murine model of high fat diet-induced obesity. PLoS One7(1):e30378.doi:10.1371/journal.pone.0030378PONE-D-11-05432[pii]
    17. Cheng Z, Tseng Y, White MF (2010) Insulin signaling meets mitochondria inmetabolism. Trends Endocrinol Metab21(10):589-598.doi:10.1016/j.tem.2010.06.005S1043-2760(10)00099-8[pii]
    18. Picone P, Giacomazza D, Vetri V, Carrotta R, Militello V, San Biagio PL, Di CarloM (2011) Insulin-activated Akt rescues Abeta oxidative stress-induced cell death byorchestrating molecular trafficking. Aging cell10(5):832-843.doi:10.1111/j.1474-9726.2011.00724.x
    19. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, ViolaKL, Zhao WQ, Ferreira ST, Klein WL (2009) Protection of synapses againstAlzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abetaoligomers. Proc Natl Acad Sci U S A106(6):1971-1976
    20. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics. Science297(5580):353-356
    21. Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, MattsonMP (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticityand cognition in middle-aged rats. Hippocampus18(11):1085-1088
    22. Barlow KM, Thomson E, Johnson D, Minns RA (2005) Late neurologic andcognitive sequelae of inflicted traumatic brain injury in infancy. Pediatrics116(2):e174-185. doi:116/2/e174[pii]10.1542/peds.2004-2739
    23. Uryu K, Laurer H, McIntosh T, Pratico D, Martinez D, Leight S, Lee VM,Trojanowski JQ (2002) Repetitive mild brain trauma accelerates Abeta deposition,lipid peroxidation, and cognitive impairment in a transgenic mouse model ofAlzheimer amyloidosis. J Neurosci22(2):446-454. doi:22/2/446[pii]
    24. Johnson VE, Stewart W, Smith DH (2010) Traumatic brain injury andamyloid-beta pathology: a link to Alzheimer's disease? Nat Rev Neurosci11(5):361-370. doi:10.1038/nrn2808nrn2808[pii]
    25. Gil-Bea FJ, Solas M, Solomon A, Mugueta C, Winblad B, Kivipelto M, RamirezMJ, Cedazo-Minguez A (2010) Insulin levels are decreased in the cerebrospinal fluidof women with prodomal Alzheimer's disease. J Alzheimers Dis22(2):405-413.doi:10.3233/JAD-2010-100795055HQ3659121L817[pii]
    26. Bayer-Carter JL, Green PS, Montine TJ, VanFossen B, Baker LD, Watson GS,Bonner LM, Callaghan M, Leverenz JB, Walter BK, Tsai E, Plymate SR, Postupna N,Wilkinson CW, Zhang J, Lampe J, Kahn SE, Craft S (2011) Diet intervention andcerebrospinal fluid biomarkers in amnestic mild cognitive impairment. Arch Neurol68(6):743-752. doi:10.1001/archneurol.2011.12568/6/743[pii]
    27. Benedict C, Brooks SJ, Kullberg J, Burgos J, Kempton MJ, Nordenskjold R,Nylander R, Kilander L, Craft S, Larsson EM, Johansson L, Ahlstrom H, Lind L,Schioth HB (2012) Impaired insulin sensitivity as indexed by the HOMA score isassociated with deficits in verbal fluency and temporal lobe gray matter volume in theelderly. Diabetes Care35(3):488-494. doi:10.2337/dc11-2075dc11-2075[pii]
    28. Karmi A, Iozzo P, Viljanen A, Hirvonen J, Fielding BA, Virtanen K, Oikonen V,Kemppainen J, Viljanen T, Guiducci L, Haaparanta-Solin M, Nagren K, Solin O,Nuutila P (2010) Increased brain fatty acid uptake in metabolic syndrome. Diabetes59(9):2171-2177. doi:10.2337/db09-0138db09-0138[pii]
    29. De La Monte SM (2012) Metabolic derangements mediate cognitive impairmentand Alzheimer's disease: role of peripheral insulin-resistance diseases. PanminervaMed54(3):171-178. doi:R41122730[pii]
    30. Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, Runz H,Kuhl S, Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, Hartmann T (2001)Simvastatin strongly reduces levels of Alzheimer's disease beta-amyloid peptidesAbeta42and Abeta40in vitro and in vivo. Proc Natl Acad Sci U S A98(10):5856-5861. doi:10.1073/pnas.081620098081620098[pii]
    31. Cole GM, Frautschy SA (2007) The role of insulin and neurotrophic factorsignaling in brain aging and Alzheimer's Disease. Exp Gerontol42(1-2):10-21.doi:S0531-5565(06)00273-7[pii]10.1016/j.exger.2006.08.009
    32. Benedict C, Brede S, Schioth HB, Lehnert H, Schultes B, Born J, Hallschmid M(2011) Intranasal insulin enhances postprandial thermogenesis and lowerspostprandial serum insulin levels in healthy men. Diabetes60(1):114-118.doi:10.2337/db10-0329db10-0329[pii]
    33. Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, PlymateSR, Cherrier MM, Schellenberg GD, Frey WH,2nd, Craft S (2008) Intranasal insulinadministration dose-dependently modulates verbal memory and plasma amyloid-betain memory-impaired older adults. J Alzheimers Dis13(3):323-331
    34. Reger MA, Watson GS, Frey WH,2nd, Baker LD, Cholerton B, Keeling ML,Belongia DA, Fishel MA, Plymate SR, Schellenberg GD, Cherrier MM, Craft S (2006)Effects of intranasal insulin on cognition in memory-impaired older adults:modulation by APOE genotype. Neurobiol Aging27(3):451-458.doi:S0197-4580(05)00080-1[pii]10.1016/j.neurobiolaging.2005.03.016
    35. Vilsboll T, Krarup T, Madsbad S, Holst JJ (2003) Both GLP-1and GIP areinsulinotropic at basal and postprandial glucose levels and contribute nearly equally tothe incretin effect of a meal in healthy subjects. Regul Pept114(2-3):115-121.doi:S0167011503001113[pii]
    36. Abbas T, Faivre E, Holscher C (2009) Impairment of synaptic plasticity andmemory formation in GLP-1receptor KO mice: Interaction between type2diabetesand Alzheimer's disease. Behav Brain Res205(1):265-271.doi:10.1016/j.bbr.2009.06.035S0166-4328(09)00397-0[pii]
    37. McClean PL, Parthsarathy V, Faivre E, Holscher C (2011) The diabetes drugliraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. JNeurosci31(17):6587-6594. doi:10.1523/JNEUROSCI.0529-11.201131/17/6587[pii]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700