高迁移率族蛋白B1对人牙髓细胞增殖、迁移和分化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人牙髓细胞(humandentalpulpcells,hDPCs)在受到适当的刺激后,可通过增殖、迁移和成牙本质细胞分化而形成修复性牙本质。牙髓对损伤的应答和修复性牙本质的形成是一个复杂的生物学过程,涉及牙髓细胞(Dentalpulpcells,DPCs)的增殖、迁移、成牙本质细胞分化和牙本质基质的形成与矿化。然而,hDPCs增殖和成牙本质细胞分化的机制仍不清楚。
     高迁移率族蛋白B1(High-mobilitygroupbox1protein,HMGB1)属高迁移率族蛋白家族成员,是一种DNA结合蛋白,能适当的调节转录因子和DNA重组及修复。还具有多种生物学效应,HMGB1还可作为细胞外信号分子,调节炎症反应和组织再生。有研究发现在心肌梗死后的心肌组织再生中,HMGB1能诱导心肌前体细胞的增殖和分化;HMGB1能以自分泌或旁分泌的形式参与骨骼肌损伤后的组织再生;HMGB1可通过促进皮肤成纤维细胞的增殖和迁移,促进皮肤伤口的愈合;HMGB1还在大鼠神经前体细胞的增殖和向神经细胞分化中发挥重要作用。牙齿发育过程中,HMGB1在矿化区域中的成釉细胞和成牙本质细胞中高表达,提示HMGB1可能参与了牙齿的矿化。因此,探讨HMGB1与hDPCs的增殖、迁移和分化的关系具有重要意义。
     目的检测HMGB1在人牙髓组织和牙髓细胞中的表达,并采用体外培养的hDPCs为实验模型,以HMGB1作为细胞外刺激因子,研究HMGB1与hDPCs的增殖、迁移和分化的关系。
     方法采用组织块法体外原代培养hDPCs;免疫组化法和免疫荧光法分别检测HMGB1在牙髓组织和牙髓细胞中的表达情况,流式细胞术定量检测hDPCsHMGB1的表达率;以不同浓度的HMGB1作为细胞外刺激因子,通过CCK-8试剂盒检测HMGB1对hDPCs的增殖效应,并通过细胞划痕实验初步探究HMGB1对hDPCs迁移能力的影响;hDPCs矿化诱导后,检测牙髓细胞碱性磷酸酶活性及矿化结节形成情况,荧光定量PCR和WesternBlot检测牙本质涎磷蛋白(Dentinsialophosphoprotein,DSPP)、牙本质基质蛋白(Dentinmatrixprotein-1,DMP-1)、碱性磷酸酶(Alkalinephosphatase,ALP)以及HMGB1和晚期糖基化终产物受体(Receptorforadvancedglycationendproducts,RAGE)的表达情况,采用细胞免疫荧光和WesternBlot分别检测矿化过程中不同时间点HMGB1在hDPCs细胞核和细胞质的分布以及蛋白表达水平,采用ELISA试剂盒检测不同时间点上清中HMGB1的含量;在hDPCs的矿化过程中,以适宜浓度HMGB1刺激细胞后,荧光定量PCR和WesternBlot检测DSPP、DMP-1、ALP以及RAGE的表达情况。
     结果组织块法原代培养hDPCs切实可行;HMGB1在人牙髓组织和hDPCs细胞核中表达,适宜浓度的HMGB1可促进hDPCs增殖和迁移;在hDPCs的矿化诱导中,HMGB1的mRNA水平上调,且从细胞核转位至细胞质,并主动分泌至细胞外;HMGB1可促进矿化结节的形成,并上调hDPCs的ALPase活性,以及DSPP、DMP-1、ALP及RAGE的mRNA和蛋白质水平。
     结论本研究发现HMGB1在人牙髓组织和约98%的hDPCs细胞核中表达。HMGB1与hDPCs的成牙本质细胞分化相关,在矿化过程中,HMGB1可从hDPCs细胞核转位至细胞质,并分泌至细胞外。适宜浓度HMGB1刺激hDPCs后,可能通过受体RAGE,促进细胞增殖、迁移和分化。
Background and Objective: Human dental pulp cells (hDPCs) can proliferate and differentiate into odontoblasts thus creating reparative dentine in response to the appropriate stimuli. The response to stimuli and formation of reparative dentine of pulp tissue is a complex biological process, which involves the migration, proliferation and differentiation of hDPCs into odontoblast/odontoblasts-like cells. However, the precise mechanisms underlying the proliferation and differentiation of hDPCs remain unclear. High-mobility group box1protein (HMGB1) belongs to a family of high-mobility group nuclear proteins, which is a DNA-binding protein that has nuclear effects, including proper transcriptional regulation and DNA recombination and repair. In addition to its nuclear role, HMGB1functions as an extracellular signaling molecule that regulates both inflammation and regeneration. According to previous studies, HMGB1induced cardiac progenitor cell proliferation and differentiation in myocardial regeneration; HMGB1promoted the wound healing through inducing fibroblast cell proliferation and migration; HMGB1took part in the skeletal muscle regeneration, modulating in an autocrine or paracrine manner; and HMGB1played an important role in the proliferation and neuronal differentiation of mouse neuronal progenitor cells by binding with receptor for advance glycation end products (RAGE). A recent study showed that the expression of HMGB1was particularly high in ameloblasts and odontoblasts at regions of ongoing mineralization, which indicated that HMGB1participates in tooth mineralization. Therefore, it is meaningful to research the biological effects of HMGB1on hDPCs. The aims of this study were to investigate the expression of high-mobility group box1(HMGB1) in human dental pulp and the biological effects of HMGB1on proliferation, migration and odontoblastic differentiation of hDPCs.
     Methodology: Human dental pulp cells were cultivated from pulp connective tissue explants. Cells between the third and sixth passages were used in this study. Immunohistochemical assay, immunoflurescence staining and flow cytometric analysis were used to detect the expression of HMGB1in the human dental pulp and hDPCs, respectively. After culturing human primary hDPCs in the presence of HMGB1with different doses, the proliferation of hDPCs was examined by CCK-8and the migration of hDPCs was evaluated using Scratch Test. Odontoblastic differentiation of hDPCs was determined using alkaline phosphatase (ALP) activity assay and mineralized nodule formation. Important mineralization-related genes such as ALP, dentin sialophosphoprotein (DSPP) and dentin matrix protein-1(DMP-1) were determined by real-time polymerase Chain reaction and Western Blot. Messenger RNA and protein levels of HMGB1and RAGE were also detected. immunoflurescence staining and Western Blot were used to detect the expression of HMGB1on the nuclei and the cytoplast. Meanwhile, the protein level of HMGB1in the supernatants was quantified using ELISA analysis on day0,3,7,11and14. Real-time polymerase Chain reaction and Western blot analysis were performed to determine the difference of expressions of DMP-1, DSP and ALP with or without the presence of exogenous HMGB1. Mineralized nodule formation, messenger RNA and protein levels of RAGE were also detected.
     Results:hDPCs culticated from pulp connective tissue explants was available. HMGB1was found in human dental pulp and in the nuclei of hDPCs, and was expressed on about98%of hDPCs. The appropriate concentration of HMGB1promotes the proliferation and migration of hDPCs. During hDPC odontoblastic differentiation, the mRNA level of HMGB1was up-regulated and translocated from the nuclei to the cytoplasm and then secreted out from hDPCs. Exogenous HMGB1promoted hDPC mineralized nodule formation. It up-regulated the activity of ALP and the mRNA and protein levels of DMP-1, ALP, DSPP, and RAGE of hDPCs.
     Conclusion:Taken together, these results suggest that hDPCs can be cultivated preferably from tissue explants in vitro. HMGB1was found in human dental pulp and in the nuclei of hDPCs, and was expressed on about98%of hDPCs. The appropriate concentration of HMGB1promotes the proliferation and migration of hDPCs. During hDPC odontoblastic differentiation, HMGB1was translocated from the nuclei to the cytoplasm and then actively secreted out from hDPCs. The appropriate concentration of HMGB1promotes the proliferation, migration and odontoblastic differentiation of hDPCs which maybe depend on RAGE.
引文
[1]M. Goldberg, A.J. Smith, Cells and Extracellular Matrices of Dentin and Pulp:A Biological Basis for Repair and Tissue Engineering, Crit Rev Oral Biol Med15(2004)13-27.
    [2]Y. Zhou, M. Qian, Y. Liang, et al., Effects of leukemia inhibitory factor on proliferation and odontoblastic differentiation of human dental pulp cells, J Endod37(2011)819-824.
    [3]G.B. Yang, X.Y. Li, G.H. Yuan, et al., Immortalization and characterization of human dental papilla cells with odontoblastic differentiation, Int Endod J (2012).
    [4]Y. Su, W. Xie, C. Wang, et al., JNK/P38mitogen-activated protein kinase used for hepatocyte growth factor-induced proliferation, differentiation, and migration in human dental papilla cells, J Endod38(2012)1207-1213.
    [5]D.S. Lee, W.J. Yoon, E.S. Cho, et al., Crosstalk between nuclear factor I-C and transforming growth factor-betal signaling regulates odontoblast differentiation and homeostasis, PLoS One6(2011) e29160.
    [6]S.H. Oh, Y.C. Hwang, H. Yang, et al., SHP is involved in BMP2-induced odontoblast differentiation, J Dent Res91(2012)1124-1129.
    [7]S.Y. Lee, S.Y. Kim, S.H. Park, et al., Effects of recombinant dentin sialoprotein in dental pulp cells, J Dent Res91(2012)407-412.
    [8]H. Lin, L. Xu, H. Liu, et al., KLF4promotes the odontoblastic differentiation of human dental pulp cells, J Endod37(2011)948-954.
    [9]M.E. Bianchi, A.A. Manfredi, High-mobility group box1(HMGB1) protein at the crossroads between innate and adaptive immunity, Immunol Rev220(2007)35-46.
    [10]A. Germani, F. Limana, M.C. Capogrossi, Pivotal advances:high-mobility group box1protein--a cytokine with a role in cardiac repair, J Leukoc Biol81(2007)41-45.
    [11]F. Limana, A. Germani, A. Zacheo, et al, Exogenous high-mobility group box1protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+cell proliferation and differentiation, Circ Res97(2005) e73-83.
    [12]E. Ranzato, M. Patrone, M. Pedrazzi, et al., Hmgbl promotes wound healing of3T3mouse fibroblasts via RAGE-dependent ERK1/2activation, Cell Biochem Biophys57(2010)9-17.
    [13]L. Wang, S. Li, F.B. Jungalwala, Receptor for advanced glycation end products (RAGE) mediates neuronal differentiation and neurite outgrowth, J Neurosci Res86(2008)1254-1266.
    [14]K. Tsuda, M. Kikuchi, K. Mori, et al., Primary structure of non-histone protein HMG1revealed by the nucleotide sequence, Biochemistry27(1988)6159-6163.
    [15]J. Yamamura, Y. Takada, M. Goto, et al., High mobility group-like protein in bovine milk stimulates the proliferation of osteoblastic MC3T3-E1cells, Biochem Biophys Res Commun261(1999)113-117.
    [16]Z. Zhou, W.C. Xiong, RAGE and its ligands in bone metabolism, Front Biosci (Schol Ed)3(2011)768-776.
    [17]R. Sugars, E. Karlstrom, C. Christersson, et al., Expression of HMGB1during tooth development, Cell Tissue Res327(2007)511-519.
    [18]M.S. Seo, K.G. Hwang, H. Kim, et al, Analysis of gene expression during odontogenic differentiation of cultured human dental pulp cells, Restor Dent Endod37(2012)142-148.
    [19]Y.H. Lee, Y.M. Kang, M.J. Heo, et al., The survival role of peroxisome proliferator-activated receptor gamma induces odontoblast differentiation against oxidative stress in human dental pulp cells, J Endod39(2013)236-241.
    [20]I. About, M.J. Bottero, P. de Denato, et al., Human dentin production in vitro, Exp Cell Res258(2000)33-41.
    [21]L. Karanxha, S.J. Park, W.J. Son, et al., Combined effects of simvastatin and enamel matrix derivative on odontoblastic differentiation of human dental pulp cells, J Endod39(2013)76-82.
    [22]P.L. Tomson, P.J. Lumley, M.Y. Alexander, et al., Hepatocyte growth factor is sequestered in dentine matrix and promotes regeneration-associated events in dental pulp cells, Cytokine61(2013)622-629.
    [23]A. Chitanuwat, N. Laosrisin, N. Dhanesuan, Role of HMGB1in proliferation and migration of human gingival and periodontal ligament fibroblasts, J Oral Sci55(2013)45-50.
    [24]R. Dresser, Stem cell research as innovation:expanding the ethical and policy conversation, J Law Med Ethics38(2010)332-341.
    [25]J. Yu, Y. Wang, Z. Deng, et al., Odontogenic capability:bone marrow stromal stem cells versus dental pulp stem cells, Biol Cell99(2007)465-474.
    [26]T.J. Hilton, Keys to clinical success with pulp capping:a review of the literature, Oper Dent34(2009)615-625.
    [27]L. Grando Mattuella, L. Westphalen Bento, J.A. de Figueiredo, et al., Vascular endothelial growth factor and its relationship with the dental pulp, J Endod33(2007)524-530.
    [28]Z. Zhang, C.Z. Lin, L.J. Peng, et al.,[HMGB1-mediated activation of TLR4signaling in hepatic stellate cells], Zhonghua Gan Zang Bing Za Zhi20(2012)581-584.
    [29]J. Ilic, K. Radovic, J. Roganovic, et al., The levels of vascular endothelial growth factor and bone morphogenetic protein2in dental pulp tissue of healthy and diabetic patients, J Endod38(2012)764-768.
    [30]M.T. Lotze, K.J. Tracey, High-mobility group box1protein (HMGB1):nuclear weapon in the immune arsenal, Nat Rev Immunol5(2005)331-342.
    [31]K. Kawahara, T. Hashiguchi, K. Masuda, et al., Mechanism of HMGB1release inhibition from RAW264.7cells by oleanolic acid in Prunus mume Sieb. et Zucc, Int J Mol Med23(2009)615-620.
    [32]P.N. Tsao, S.C. Wei, M.T. Huang, et al., Lipopolysaccharide-induced Notch signaling activation through JNK-dependent pathway regulates inflammatory response, J Biomed Sci18(2011)56.
    [33]B. Sparatore, M. Patrone, M. Passalacqua, et al., Activation of A431human carcinoma cell motility by extracellular high-mobility group box1protein and epidermal growth factor stimuli, Biochem J389(2005)215-221.
    [34]H.S. Ding, J. Yang, High mobility group box-1and cardiovascular diseases, Saudi Med J31486-489.
    [35]K. Charoonpatrapong, R. Shah, A.G. Robling, et al., HMGB1expression and release by bone cells, J Cell Physiol207(2006)480-490.
    [36]R. De Mori, S. Straino, A. Di Carlo, et al., Multiple effects of high mobility group box protein1in skeletal muscle regeneration, Arterioscler Thromb Vasc Biol27(2007)2377-2383.
    [37]R. Kang, D. Tang, N.E. Schapiro, et al., The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics, Oncogene (2013).
    [38]S. Mardente, E. Mari, F. Consorti, et al., HMGB1induces the overexpression of miR-222and miR-221and increases growth and motility in papillary thyroid cancer cells, Oncol Rep28(2012)2285-2289.
    [39]H. Magloire, A. Joffre, F. Bleicher, An in vitro model of human dental pulp repair, J Dent Res75(1996)1971-1978.
    [40]O. Tecles, P. Laurent, S. Zygouritsas, et al., Activation of human dental pulp progenitor/stem cells in response to odontoblast injury, Arch Oral Biol50(2005)103-108.
    [41]B.N. Cavalcanti, B.D. Zeitlin, J.E. Nor, A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells, Dent Mater29(2013)97-102.
    [42]S. Gronthos, M. Mankani, J. Brahim, et al., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, Proc Natl Acad Sci U S A97(2000)13625-13630.
    [43]W.T. Butler, H. Ritchie, The nature and functional significance of dentin extracellular matrix proteins, Int J Dev Biol39(1995)169-179.
    [44]M. Wolf, S. Lossdorfer, N. Abuduwali, et al., Potential role of high mobility group box protein1and intermittent PTH (1-34) in periodontal tissue repair following orthodontic tooth movement in rats, Clin Oral Investig17(2013)989-997.
    [45]W. Qin, Z.M. Lin, R. Deng, et al., p38a MAPK is involved in BMP-2-induced odontoblastic differentiation of human dental pulp cells, Int Endod J45(2012)224-233.
    [46]G.H. Yuan, G.B. Yang, L.A. Wu, et al., Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair, Dent Hypotheses1(2010)69-75.
    [47]D. Iejima, Y. Sumita, H. Kagami, et al., Odontoblast marker gene expression is enhanced by a CC-chemokine family protein MIP-3alpha in human mesenchymal stem cells, Arch Oral Biol52(2007)924-931.
    [48]X. Wei, J. Ling, L. Wu, et al., Expression of mineralization markers in dental pulp cells, J Endod33(2007)703-708.
    [49]K. Narayanan, R. Srinivas, A. Ramachandran, et al., Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein1, Proc Natl Acad Sci U S A98(2001)4516-4521.
    [50]C. Chaussain, A.S. Eapen, E. Huet, et al., MMP2-cleavage of DMP1generates a bioactive peptide promoting differentiation of dental pulp stem/progenitor cell, Eur Cell Mater18(2009)84-95.
    [51]F.S. Tabatabaei, J. Ai, T.S. Jafarzadeh Kashi, et al., Effect of dentine matrix proteins on human endometrial adult stem-like cells:In vitro regeneration of odontoblasts cells, Arch Oral Biol (2013).
    [52]J.Q. Feng, X. Luan, J. Wallace, et al., Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (Dspp) gene, which codes for both dentin sialoprotein and dentin phosphoprotein, J Biol Chem273 (1998)9457-9464.
    [53]E. Watanabe, Y. Takano, Ca-binding domains in the odontoblast layer of rat molars and incisors under normal and pathological conditions, Arch Histol Cytol65(2002)337-346.
    [54]J.H. Woltgens, D.M. Lyaruu, A.L. Bronckers, et al., Biomineralization during early stages of the developing tooth in vitro with special reference to secretory stage of amelogenesis, Int J Dev Biol39(1995)203-212.
    [55]R. Garimella, X. Bi, H.C. Anderson, et al., Nature of phosphate substrate as a major determinant of mineral type formed in matrix vesicle-mediated in vitro mineralization:An FTIR imaging study, Bone38(2006)811-817.
    [56]A. Maeda,[Protein synthesis at the ribosome level], Nihon Rinsho25(1967)1052-1058.
    [57]H. Wang, J.M. Vishnubhakat, O. Bloom, et al., Proinflammatory cytokines (tumor necrosis factor and interleukin1) stimulate release of high mobility group protein-1by pituicytes, Surgery126(1999)389-392.
    [58]P. Scaffidi, T. Misteli, M.E. Bianchi, Release of chromatin protein HMGB1by necrotic cells triggers inflammation, Nature418(2002)191-195.
    [59]O. Hori, J. Brett, T. Slattery, et al, The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system, J Biol Chem270(1995)25752-25761.
    [60]W. Qin, F. Yang, R. Deng, et al., Smad1/5is involved in bone morphogenetic protein-2-induced odontoblastic differentiation in human dental pulp cells, J Endod38(2012)66-71.
    [61]K. Tamai, T. Yamazaki, T. Chino, et al., PDGFRalpha-positive cells in bone marrow are mobilized by high mobility group box1(HMGB1) to regenerate injured epithelia, Proc Natl Acad Sci U S A108(2011)6609-6614.
    [62]F. Limana, G. Esposito, D. D'Arcangelo, et al., HMGB1attenuates cardiac remodelling in the failing heart via enhanced cardiac regeneration and miR-206-mediated inhibition of TIMP-3, PLoS One6(2011)e19845.
    [63]F. Biscetti, G. Ghirlanda, A. Flex, Therapeutic potential of high mobility group box-1in ischemic injury and tissue regeneration, Curr Vasc Pharmacol9(2011)677-681.
    [64]S. Suzuki, N. Haruyama, F. Nishimura, et al., Dentin sialophosphoprotein and dentin matrix protein-1:Two highly phosphorylated proteins in mineralized tissues, Arch Oral Biol57(2012)1165-1175.
    [65]H. Rauvala, R. Pihlaskari, Isolation and some characteristics of an adhesive factor of brain that enhances neurite outgrowth in central neurons, J Biol Chem262(1987)16625-16635.
    [66]X. Zhao, J. Kuja-Panula, A. Rouhiainen, et al., High mobility group box-1(HMGB1; amphoterin) is required for zebrafish brain development, J Biol Chem286(2011)23200-23213.
    [67]M. Salmivirta, H. Rauvala, K. Elenius, et al., Neurite growth-promoting protein (amphoterin, p30) binds syndecan, Exp Cell Res200(1992)444-451.
    [68]L.L. Mantell, W.R. Parrish, L. Ulloa, Hmgb-1as a therapeutic target for infectious and inflammatory disorders, Shock25(2006)4-11.
    [69]G.H. Goodwin, C. Sanders, E.W. Johns, A new group of chromatin-associated proteins with a high content of acidic and basic amino acids, Eur J Biochem38(1973)14-19.
    [70]H. Wang, H. Yang, K.J. Tracey, Extracellular role of HMGB1in inflammation and sepsis, J Intern Med255(2004)320-331.
    [71]S. Ferrari, L. Ronfani, S. Calogero, et al., The mouse gene coding for high mobility group1protein (HMG1), J Biol Chem269(1994)28803-28808.
    [72]L. Wen, J.K. Huang, B.H. Johnson, et al., A human placental cDNA clone that encodes nonhistone chromosomal protein HMG-1, Nucleic Acids Res17(1989) 1197-1214.
    [73]S. Prasad, M.K. Thakur, Age-dependent effects of sodium butyrate and hydrocortisone on acetylation of high mobility group proteins of rat liver, Biochem Int16(1988)375-382.
    [74]D. Landsman, M. Bustin, A signature for the HMG-1box DNA-binding proteins, Bioessays15(1993)539-546.
    [75]M.I. Mosevitsky, V.A. Novitskaya, M.G. Iogannsen, et al., Tissue specificity of nucleo-cytoplasmic distribution of HMG1and HMG2proteins and their probable functions, Eur J Biochem185(1989)303-310.
    [76]J. Merenmies, R. Pihlaskari, J. Laitinen, et al.,30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane, J Biol Chem266(1991)16722-16729.
    [77]M. Bustin, Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins, Mol Cell Biol19(1999)5237-5246.
    [78]M. Stros, J. Reich, Formation of large nucleoprotein complexes upon binding of the high-mobility-group (HMG) box B-domain of HMG1protein to supercoiled DNA, Eur J Biochem251(1998)427-434.
    [79]D. Locker, M. Decoville, J.C. Maurizot, et al., Interaction between cisplatin-modified DNA and the HMG boxes of HMG1:DNase I footprinting and circular dichroism, J Mol Biol246(1995)243-247.
    [80]S.A. Onate, P. Prendergast, J.P. Wagner, et al., The DNA-bending protein HMG-1enhances progesterone receptor binding to its target DNA sequences, Mol Cell Biol14(1994)3376-3391.
    [81]W. Lutz, J. Stetkiewicz, High mobility group box1protein as a late-acting mediator of acute lung inflammation, Int J Occup Med Environ Health17(2004)245-254.
    [82]W. Jiang, D.S. Pisetsky, The role of IFN-alpha and nitric oxide in the release of HMGB1by RAW264.7cells stimulated with polyinosinic-polycytidylic acid or lipopolysaccharide, J Immunol177(2006)3337-3343.
    [83]B. Rendon-Mitchell, M. Ochani, J. Li, et al., IFN-gamma induces high mobility group box1protein release partly through a TNF-dependent mechanism, J Immunol170(2003)3890-3897.
    [84]A. Rouhiainen, J. Kuja-Panula, E. Wilkman, et al., Regulation of monocyte migration by amphoterin (HMGB1), Blood104(2004)1174-1182.
    [85]N. Taniguchi, K. Kawahara, K. Yone, et al., High mobility group box chromosomal protein1plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine, Arthritis Rheum48(2003)971-981.
    [86]H. Wang, O. Bloom, M. Zhang, et al., HMG-1as a late mediator of endotoxin lethality in mice, Science285(1999)248-251.
    [87]H. Yang, M. Ochani, J. Li, et al., Reversing established sepsis with antagonists of endogenous high-mobility group box1, Proc Natl Acad Sci U S A101(2004)296-301.
    [88]M. Ombrellino, H. Wang, M.S. Ajemian, et al., Increased serum concentrations of high-mobility-group protein1in haemorrhagic shock, Lancet354(1999)1446-1447.
    [89]R. Kokkola, E. Sundberg, A.K. Ulfgren, et al., High mobility group box chromosomal protein1:a novel proinflammatory mediator in synovitis, Arthritis Rheum46(2002)2598-2603.
    [90]K. Feghali, K. Iwasaki, K. Tanaka, et al., Human gingival fibroblasts release high-mobility group box-1protein through active and passive pathways, Oral Microbiol Immunol24(2009)292-298.
    [91]H. Sakiyama, T. Nonaka, R. Masuda, et al., Characterization of mineral deposits formed in cultures of a hamster tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) double-positive cell line (CCP), Cell Tissue Res309 (2002)269-279.
    [92]T. Bonaldi, F. Talamo, P. Scaffidi, et al., Monocytic cells hyperacetylate chromatin protein HMGB1to redirect it towards secretion, EMBO J22(2003)5551-5560.
    [93]J.H. Youn, J.S. Shin, Nucleocytoplasmic shuttling of HMGB1is regulated by phosphorylation that redirects it toward secretion, J Immunol177(2006)7889-7897.
    [94]I. Ito, J. Fukazawa, M. Yoshida, Post-translational methylation of high mobility group box1(HMGB1) causes its cytoplasmic localization in neutrophils, J Biol Chem282(2007)16336-16344.
    [95]H. Wahamaa, T. Vallerskog, S. Qin, et al., HMGB1-secreting capacity of multiple cell lineages revealed by a novel HMGB1ELISPOT assay, J Leukoc Biol81(2007)129-136.
    [96]D. Tang, R. Kang, W. Xiao, et al., The anti-inflammatory effects of heat shock protein72involve inhibition of high-mobility-group box1release and proinflammatory function in macrophages, J Immunol179(2007)1236-1244.
    [97]R. Donato, RAGE:a single receptor for several ligands and different cellular responses: the case of certain S100proteins, Curr Mol Med7(2007)711-724.
    [98]A. Rojas, H. Figueroa, E. Morales, Fueling inflammation at tumor microenvironment: the role of multiligand/RAGE axis, Carcinogenesis31(2010)334-341.
    [99]C. Gebhardt, A. Riehl, M. Durchdewald, et al., RAGE signaling sustains inflammation and promotes tumor development, J Exp Med205(2008)275-285.
    [100]G.P. Sims, D.C. Rowe, S.T. Rietdijk, et al., HMGB1and RAGE in inflammation and cancer, Annu Rev Immunol28(2010)367-388.
    [101]H.J. Huttunen, J. Kuja-Panula, G. Sorci, et al., Coregulation of neurite outgrowth and cell survival by amphoterin and S100proteins through receptor for advanced glycation end products (RAGE) activation, J Biol Chem275(2000)40096-40105.
    [102]H.J. Huttunen, C. Fages, H. Rauvala, Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways, J Biol Chem274(1999)19919-19924.
    [103]F. Riuzzi, G. Sorci, R. Sagheddu, et al., HMGB1-RAGE regulates muscle satellite cell homeostasis through p38-MAPK-and myogenin-dependent repression of Pax7transcription, J Cell Sci125(2012)1440-1454.
    [104]G. Sorci, F. Riuzzi, C. Arcuri, et al., Amphoterin stimulates myogenesis and counteracts the antimyogenic factors basic fibroblast growth factor and S100B via RAGE binding, Mol Cell Biol24(2004)4880-4894.
    [105]G. Sorci, F. Riuzzi, I. Giambanco, et al., RAGE in tissue homeostasis, repair and regeneration, Biochim Biophys Acta1833(2013)101-109.
    [106]K. Suda, H. Takeuchi, A. Ishizaka, et al., High-mobility-group box chromosomal protein1as a new target for modulating stress response, Surg Today40(2010)592-601.
    [107]R. Palumbo, B.G. Galvez, T. Pusterla, et al., Cells migrating to sites of tissue damage in response to the danger signal HMGB1require NF-kappaB activation, J Cell Biol179(2007)33-40.
    [108]F. Riuzzi, G. Sorci, R. Donato, RAGE expression in rhabdomyosarcoma cells results in myogenic differentiation and reduced proliferation, migration, invasiveness, and tumor growth, Am J Pathol171(2007)947-961.
    [109]A.M. Schmidt, S.D. Yan, S.F. Yan, et al., The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses, J Clin Invest108(2001)949-955.
    [110]A. Poltorak, X. He, I. Smirnova, et al., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:mutations in Tlr4gene, Science282(1998)2085-2088.
    [111]S. Dai, C. Sodhi, S. Cetin, et al., Extracellular high mobility group box-1(HMGB1) inhibits enterocyte migration via activation of Toll-like receptor-4and increased cell-matrix adhesiveness, J Biol Chem285(2010)4995-5002.
    [112]G. Faraco, S. Fossati, M.E. Bianchi, et al., High mobility group box1protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo, J Neurochem103(2007)590-603.
    [113]H. Wu, G. Chen, K.R. Wyburn, et al., TLR4activation mediates kidney ischemia/reperfusion injury, J Clin Invest117(2007)2847-2859.
    [114]T. Hatada, H. Wada, T. Nobori, et al., Plasma concentrations and importance of High Mobility Group Box protein in the prognosis of organ failure in patients with disseminated intravascular coagulation, Thromb Haemost94(2005)975-979.
    [115]T. Ito, K. Kawahara, T. Nakamura, et al., High-mobility group box1protein promotes development of microvascular thrombosis in rats, J Thromb Haemost5(2007)109-116.
    [116]K. Suda, Y. Kitagawa, S. Ozawa, et al., Serum concentrations of high-mobility group box chromosomal protein1before and after exposure to the surgical stress of thoracic esophagectomy:a predictor of clinical course after surgery?, Dis Esophagus19(2006)5-9.
    [117]E. Abraham, J. Arcaroli, A. Carmody, et al., HMG-1as a mediator of acute lung inflammation, J Immunol165(2000)2950-2954.
    [118]F. Guo, Y. Shi, H. Xu, et al., High mobility group box1as a mediator of endotoxin administration after hemorrhagic shock-primed lung injury, Braz J Med Biol Res42(2009)804-811.
    [119]A. Porto, R. Palumbo, M. Pieroni, et al., Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box1protein, FASEB J20(2006)2565-2566.
    [120]A.M. Rosenberg, D.M. Cordeiro, Relationship between sex and antibodies to high mobility group proteins1and2in juvenile idiopathic arthritis, J Rheumatol27(2000)2489-2493.
    [121]R. Pullerits, I.M. Jonsson, M. Verdrengh, et al., High mobility group box chromosomal protein1, a DNA binding cytokine, induces arthritis, Arthritis Rheum48(2003)1693-1700.
    [122]R. Kokkola, J. Li, E. Sundberg, et al., Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein1activity, Arthritis Rheum48(2003)2052-2058.
    [123]D. Agnello, H. Wang, H. Yang, et al., HMGB-1, a DNA-binding protein with cytokine activity, induces brain TNF and IL-6production, and mediates anorexia and taste aversion, Cytokine18(2002)231-236.
    [124]K. Liu, S. Mori, H.K. Takahashi, et al., Anti-high mobility group box1monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats, FASEB J21(2007)3904-3916.
    [125]Y. Huang, K. Xie, J. Li, et al., Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits, Brain Res1378(2011)125-136.
    [126]S. Muhammad, W. Barakat, S. Stoyanov, et al., The HMGB1receptor RAGE mediates ischemic brain damage, J Neurosci28(2008)12023-12031.
    [127]P.L. Sappington, R. Yang, H. Yang, et al., HMGB1B box increases the permeability of Caco-2enterocytic monolayers and impairs intestinal barrier function in mice, Gastroenterology123(2002)790-802.
    [128]S. Maeda, Y. Hikiba, W. Shibata, et al., Essential roles of high-mobility group box1in the development of murine colitis and colitis-associated cancer, Biochem Biophys Res Commun360(2007)394-400.
    [129]J.E. Ellerman, C.K. Brown, M. de Vera, et al., Masquerader:high mobility group box-1and cancer, Clin Cancer Res13(2007)2836-2848.
    [130]J. Li, R. Kokkola, S. Tabibzadeh, et al., Structural basis for the proinflammatory cytokine activity of high mobility group box1, Mol Med9(2003)37-45.
    [131]B. Degryse, T. Bonaldi, P. Scaffidi, et al., The high mobility group (HMG) boxes of the nuclear protein HMG1induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells, J Cell Biol152(2001)1197-1206.
    [132]R. Palumbo, M. Sampaolesi, F. De Marchis, et al, Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation, J Cell Biol164(2004)441-449.
    [133]E. Chavakis, A. Hain, M. Vinci, et al., High-mobility group box1activates integrin-dependent homing of endothelial progenitor cells, Circ Res100(2007)204-212.
    [134]E.N. Ogawa, A. Ishizaka, S. Tasaka, et al., Contribution of high-mobility group box-1to the development of ventilator-induced lung injury, Am J Respir Crit Care Med174(2006)400-407.
    [135]L.L. Rong, W. Trojaborg, W. Qu, et al., Antagonism of RAGE suppresses peripheral nerve regeneration, FASEB J18(2004)1812-1817.
    [136]L.L. Rong, S.F. Yan, T. Wendt, et al., RAGE modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways, FASEB J18(2004)1818-1825.
    [137]V. Meneghini, M.T. Francese, L. Carraro, et al., A novel role for the Receptor for Advanced Glycation End-products in neural progenitor cells derived from adult Sub Ventricular Zone, Mol Cell Neurosci45(2010)139-150.
    [138]S. Guazzi, A. Strangio, A.T. Franzi, et al., HMGB1, an architectural chromatin protein and extracellular signalling factor, has a spatially and temporally restricted expression pattern in mouse brain, Gene Expr Patterns3(2003)29-33.
    [139]X. Huang, L. Wang, H. Zhang, Developmental expression of the high mobility group B gene in the amphioxus, Branchiostoma belcheri tsingtauense, Int J Dev Biol49(2005)49-52.
    [140]A. Guerin, Y. d'Aubenton-Carafa, E. Marrakchi, et al., Neurodevelopment genes in lampreys reveal trends for forebrain evolution in craniates, PLoS One4(2009) e5374.
    [141]R.R. Zhou, S.S. Zhao, M.X. Zou, et al., HMGB1cytoplasmic translocation in patients with acute liver failure, BMC Gastroenterol11(2011)21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700