若干分子构象异构体相对稳定性的电子动量谱学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要介绍了我们对乙醇分子、乙胺分子以及1-丁烯分子价壳层轨道的电子动量谱学研究,乙醇、乙胺以及1-丁烯分子有一个共同的特征,在室温下它们都存在两种稳定的构象异构体,一方面,我们用电子动量谱学详细研究了乙醇、乙胺、1-丁烯分子价轨道的电子动量分布和由于内旋转造成构象异构体的电子结构的差异。另一方面,通过比较理论计算得到的电子动量分布与实验结果,我们获得了分子构象异构体在室温下的丰度并且计算出了它们相对的Gibbs自由能差。本论文还观测到了乙醇分子内超共轭相互作用引起的电荷转移现象,并结合自然价健轨道理论(NBO)对这一现象作了分析解释。为了进一步研究乙醇分子外价轨道的性质,我们利用能、动量多道的高能量分辨电子动量谱仪测量了乙醇分子的外价壳层轨道的电离能谱。本论文共分为五章:
     第一章主要是对电子动量谱学的基本原理、研究意义以及第二代和第三代电子动量谱仪的简介。
     第二章介绍了同分异构现象及其分类,以及常见的研究同分异构体的实验方法。
     第三章首先介绍了使用不共面对称的电子动量谱仪研究了乙醇分子整个价轨道的电子动量分布,并与DFT-B3LYP、DFT-G96LYP方法结合基组6-311++G~(**)、aug-cc-pVDZ等基组的计算结果进行了比较,各种理论方法计算的结果之间差异不大并与实验值符合较好。对于HOMO轨道的电子动量分布,发现不加弥散函数的B3LYP/cc-pVTZ、B3LYP/6-311G~(**)方法计算的动量分布不能够很好地与实验值符合,在p<0.8 a.u.区域内低估了实验值。另外,通过比较7a'/7a轨道的理论电子动量分布和实验电子动量分布,我们用电子动量谱学方法确定了乙醇分子的两种构象异构体gauche-ethanol、trans-ethanol在室温下的丰度,分别为:81±3%;19±3%,并且得到了它们的相对Gibbs自由能差△G_(g-t)=-0.40±0.10 kcal/mol,得出了在室温下gauche-ethanol比trans-ethanol更稳定的结论。通过研究HOMO的电子动量分布,我们从实验上观测到了由于分子内超共轭相互作用而导致的电荷转移现象,并结合NBO理论计算,对它进行了解释分析。最后,用高能量分辨的电子动量谱仪对乙醇分子的外价轨道进行了研究,得到了高分辨的乙醇分子外价轨道的电离能谱和HOMO的电子动量分布。从实验上观测到了gauche-ethanol的9a轨道的电离峰,并且给出了该轨道的电离能值为:15.35 eV(9a),这与OVGF理论计算结果15.50 eV(9a)一致。
     第四章介绍了用不共面对称电子动量谱仪对乙胺分子的整个价壳层轨道的电子结构的研究。从实验上获得到了乙胺分子价轨道的电子动量分布,为了评估各种理论方法的好坏,我们分别采用DFT-B3LYP、DFT-G96LYP方法加上不同的基组6-311++G~(**)、aug-cc-pVDZ计算出了乙胺分子价轨道的理论电子动量分布。比较实验电子动量分布与各种理论结果,发现这几种理论方法都能很好地预测了实验值。一方面,通过比较乙胺分子la"/7a轨道的实验电子动量分布与理论电子动量分布,我们用电子动量谱学确定了乙胺分子的两种构象异构体gauche-ethylamine、trans-ethylamine在室温下的丰度分别为:59±4%:41±4%,并且得到了它们相对Gibbs自由能差△G_(g-t)=0.19±0.13 kcal/mol,说明了在室温下trans-ethylamine比gauche-ethylamine更稳定。另外一方面,用电子动量学分析讨论了乙胺分子外价轨道9a,8a(gauche-ethylamine);7a',2a"(trans-ethylamine)的排序问题,比较实验电子动量分布与这四个轨道不同组合的理论电子动量分布,获得的轨道排序按电离能从低到高为:
     9a<8a(gauche-ethylamine);7a'<2a"(trans-ethylamine)
     最后,我们比较分析了乙醇、乙胺分子由于O原子和N原子的不同导致价轨道的电离能值和电子动量分布有差异,对它们的HOMO轨道作了详细的讨论。用NBO理论很好地解释了由于乙醇、乙胺分子内超共轭相互作用的大小不同引起的HOMO轨道电离能值的差异。
     第五章对1-丁烯分子整个价轨道的电子动量分布进行了详细地研究,理论电子动量分布分别用理论方法DFT-B3LYP、DFT-G96LYP结合6-311++G~(**)和aug-cc-pVDZ基组计算得到的,通过比较实验与理论电子动量分布,我们发现这几种理论方法的结果之间差异不大并且都与实验值符合很好。另外,我们用电子动量谱学手段确定了1-丁烯的两种构象异构体skew-1-butene,syn-1-butene在室温下的丰度分别为:65±3%;35±3%,并且得到了skew-1-butene,syn-1-butene的相对Gibbs自由能差△G_(skew-syn)=-0.37±0.10 kcal/mol.
In this thesis,the electron momentum distributions for the complete valence molecular orbitals of ethanol、ethylamine and 1-butene are investigated.Two relative stable conformes coexist in thermal equilibrium at the room temperature for all of these three molecules.On the one hand,the electron momentum distributions of the ethanol、ethylamine and 1-butene and the difference in electron structures between their conformers due to the internal rotation are carried out in the present work.On the other hand,the relative abundances and Gibbs free energy difference of the conformers are obtained by comparing the experimental and mixed theoretical electron momentum profiles.The charge transfer accompanied with the hyperconjungation effect is observed in the highest occupied molecular orbitals (HOMO)of ethanol and explained by means of natural bond oribtal(NBO)theory. For further investigation,the binding energy spectra for outer-valence orbitals are obtained with the high-energy-resolution energy-momentum-dispersive multichannel spectrometer.
     This thesis includes five chapters as follow:
     The first chapter includes the basic principle and applications of the electron momentum spectroscopy as well as the introduction of the second generation and the third generation of the electron momentum spectrometer.
     The second chapter introduces the category of the isomers and the various experimental methods applied to study the phenomena of isomers.
     In the third chapter,the electron momentum distributions for the complete valence orbitals of ethanol have been investigated by the noncoplar symmetry electron momentum spectrometer.The experimental momentum profiles(XMPs)are compared with the theoretical momentum profiles(TMPs)calculated with DFT-B3LYP and DFT-G96LYP methods combining 6-311++G~(**),aug-cc-pVDZ basis sets.We found that the TMPs are all in good agreement with the experimetal data.As for HOMO,TMPs calculated with methods using the basis sets without diffuse functions underestimate the experimental data in the region of p<0.8 a.u..On the other hand,the relative abundances of the two conformers of ethanol has been determined by comparing the XMPs with the Boltzmann-weighted TMPs of the 7a'/7a orbitals.The relative abundances are 81±3%,19±3%,for the gauche-ethanol and trans-ethanol respectively and the relatvie Gibbs free energy difference△G_(g-t)= -0.40±0.10 kcal/mol.Our conclusion is that the gauche-ethanol is more stable than the trans-ethanol at the room temperature.Furthermore,the charge transfer accompanied with the hyperconjuncation effect of the ethanol has been observed and explained with the NBO theory.Finally,the binding energy spectra for the outer valence orbitals and electron momentum distribution for the HOMO of the ethanol have been obtained by the electron momentum spectrometer with high-energy resolution.The ionization peak of the 9a orbital of gauche-ethanol is observed.The assignment of the orbitals is carried out and the ionization energy is 15.35 eV(9a),which is consistent with the results of OVGF calculation(15.50 eV(9a)).
     In the fourth chapter,the electron structures of the complete valence orbitals of ethylamine have been investigated by the noncoplar symmetry electron momentum spectrometer.The XMPs of the valence orbitals for ethylamine have been obtained for the first time.The XMPs are compared with the TMPs which calculated by DFT-B3LYP and DFT-G96LYP methods with 6-311++G~(**)、aug-cc-pVDZ basis sets. In general,the theoretical results are in better agreement with the experimental data. On the one hand,by comparing the XMPs with the Boltzmann-weighted TMPs of 1a"/7a orbitals,the relative abundances of two conformers of ethylamine are 59±4% (gauche-ethylamine)~ 41+4%(trans-ethylamine).The relative Gibbs free energy difference△G_(g-t)=0.19±0.10 kcal/mol.On the other hand,The ordering of the orbitals: 9a,8a(gauche-ethylamine);7a',2a"(trans-ethylamine)are determined by comparing the XMPs with theoretical ones for the different sets of assignments.The conclusion in the order of increasing ionization energy is 9a<8a(gauche-ethylamine);7a'<2a"(trans-ethylamine) Finally,the ionization energies and electron momentum profiles of ethanol and ethylamine are compared.The HOMO characters of the two molecules have been investigated.The difference between the ionization energies of HOMO for ethanol and ethylamine are well explained by NBO theory.
     The fifth chapter introduces the electron momentum distributions of the complete valence orbitals for 1-butene.The TMPs is calculated by DFT-B3LYP and DFT-G96LYP methods with 6-311++G~(**)and aug-cc-pVDZ basis sets.All of the TMPs show no difference and are in good agreement with the XMPs.the relative abundances and the relative Gibbs free energies of the conformers for 1-butene have been determined by electron momentum spectroscopy.The relative abundances are 65±3%,35±3%,for the skew-1-butene and syn-1-butene respectively.The relative Gibbs free energy difference△G_(skew-syn)=-0.37±0.10 kcal/mol.
引文
[1]I.E.McCarthy and E.Weigold,Rep.Prog.Phys.91(1991)789
    [2]E.Weigold and I.E.McCarthy,Electron Momentum Spectroscopy,Kluwer Academic Plenum Publishers,New York,(1999)
    [3]I.E.McCarthy and E.Weigold,Phys.Rep.C.27(1076)276
    [4]B.H.Bransden and C.Joachain,J.Physics of Atoms and Molecules.London:Longman,1983
    [5]E.Weigold,S.T.Hood and P.J.O.Teubner,Phys.Rev.Lett.30(1973)475
    [6]U.Jr.Amaldi,A.Egidi,R.Marconero and G.Pizzella,Rev.Sci.Instrum.40(1969)1001
    [7]H.Ehrhardt,M.Schulz,T.Tekaat and K.Willmann,Phys.Rev.Lett.22(1969)89
    [8]P.J.Storer,R.S.Caprari,S.A.C.C.Cark et.al.,Rev.Sci.Instrum.65(1994)2214
    [9]M.J.Brunger,S.W.Braidwood,I.E.McCarthy,J.Phys.B.27(1994)L597
    [10]A.O.Bawagan,C.E.Brion,E.R.Davidson and D.Feller,Chem.Phys.113(1987)19
    [11]Y.Zheng,I.E.McCarthy,E.Weigold,D.Zhang,Phys.Rev.Lett.64(1990)1358
    [12]O.Samardzic,A.S.Kheifets,E.Weigold,J.Phys.B.28(1995)725
    [13]M.Takahashi,K.Otsuka and Y.Udagawa,Chem.Phys.Lett.227(1998)375
    [14]M.Takahashi,R.Ogino and Y.Udagawa,Chem.Phys.Lett.288(1998)821
    [15]I.V.Litvinyuk,Y.Zheng and C.E.Brion,Chem.Phys.261(2000)289
    [16]I.V.Litvinyuk,J.B.Young,Y.Zheng and C.E.Brion,Chem.Phys.263(2001)195
    [17]X.Guo,J.M.Hurn,and J.Lower et.al.,Phys.Rev.Lett.76(1996)1228
    [18]H.T.Prinz,K.H.Besch and W.Nakel,Phys.Rev.Lett.74(1995)243
    [19]S.Tixier,W.A.Shapley and Y.Zheng,Chem.Phys.270(2001)263
    [20]S.A.Canney,M.J.Brunger,I.E.McCarthy,P.J.Storer,S.Utteridge et.al.,J. Eelectron.Spectrosc.Relat.Phenom.83(2000)65
    [21]P.J.Storer,R.S.Caprari,S.A.C.Cark et.al.,Rev.Sci.Instrum.65(1994)2214
    [22](a)单旭,中国科学技术大学博士论文,2004
    (b)X.J.Chen,X.Shan,K.Z.Xu,High Resolution(e,2e)spectrometer employing asymmetric kinematics,in Nanoscale Interactions and their Applications:Essays in Honour of Ian McCarthy,Research Signpost
    [23]陈向军,中国科学技术大学博士论文,1995
    [24]S.Dey,A.J.Dixon,I.E.McCarthy and E.Weigold,J.Electron.Spectrosc.Relat.Phenom.9(1976)397
    [25]X.J.Chen,L.X.Zhou,X.H.Zhang,X.F.Yin,C.K.Xu,X.Shan,Z.Wei and K.Z.Xu,J.Chem.Phys.,120(2004)7933
    [26]T.K.Ha and H.H.Gunthard,J.Am.Chem.Soc.115(1993)11939
    [27]R.G.Satink,G.Meijer and G.yon Helden,J.Am.Chem.Soc.125(2003)15714
    [28]J.P.Kenny,K.M.Krueger,J.C.Rienstra-Kiracofe and H.E Schaefer,J.Phys.Chem.A.106(2002)8834
    [29]Dugourd,Ph.,R.R.Hudgins and J.M.Tenenbaum Phys.Rev.Lett.80(1998)4197
    [30]O.A.Abdulrahman and H.H.Rifaat,Biophysical.Chemistry.55(1995)231
    [31]S.X.Tian and K.Z.Xu,Chem.Phys.264(2001)187
    [32]F.Piuzzi,M.Mons,I.Dimicoli,B.Yardivel and Q.Zhao,Chem.Phys.270(2001)205
    [33]Y.Z.Chen,V.Mohan and R.H.Griffey,Phys.Rev.E.61(2000)5640.E3
    [34]I.Gould,N.A.Burton,R.J.Hall,I.H.Hillier,d.Mol.Struct.331(1995)147
    [35]M.Abu-samha,K.J.B(?)rve,L.J.S(?)thre,T.D.Thomas,Phys.Rev.Lett.95(2005)103002
    [36]庞文宁 中国科学技术大学博士论文,1995
    [37](a)庞文宁等,核电子学与探测技术,3(1998)161
    (b)庞文宁等,乙烷分 子的电子动量谱学研究:[博士后研究报告]清华大学,1997
    [38]U.Jr.Amaldi,G.V.Campos,G.Cortellessa,E.de.Sanctis,S.Frullani,R.Lombard and P.Salvadori,Phys.Lett.25B(1996)24
    [39]J.J.Neville,Y.Zheng and C.E.Brion,J.Am.Chem.Soc.118(1996)10533
    [40]M.S.Deleuze,W.N.Pang,A.Salam and R.C.Shang,J.Am.Chem.Soc.123(2001)4049
    [41]陆乾生 有机化合物的异构现象 1980
    [42]陈世元 分子内旋转和聚合链的构象理论 1989
    [1]陆乾生 有机化合物的异构现象 1980
    [2]陈世元 分子内旋转和聚合链的构象理论 1989
    [3]C.P.Mathers,B.N.Gover,J.F.Ying,H.Zhu and K.T.Leung,J.Am.Chem.Soc.116(1994)7250
    [4]J.F.Ying,H.Zhu,C.P.Mathers,B.N.Gover,M.P.Banjavcic,Y.Zheng,C.E.Brion and K.T.Leung,J.Chem.Phys.98(1993)4512
    [5]C.P.Mathers,J.F.Ying,B.N.Gover and K.T.Leung,Chem.Phys.184(1994)295
    [6]M.H.Chuaqui,L.Mei,C.P.Mathers,M.L.Allison,J.F.Ying and K.T.Leung,J.Chem.Phys.102(1995)90
    [7]J.J.Neville,Y.Zheng and C.E.Brion,J.Am.Chem.Soc.118(1996)10533
    [8]Y.Zheng,J.J.Neville and C.E.Brion,Science.270(1995)786
    [9]M.S.Deleuze,W.N.Pang,A.Salam and R.C.Shang,J.Am.Chem.Soc.123(2001)4049
    [10]F.Wang and M.Downton,J.Phys.B:At.MoL Opt.Phys.37(2004)557
    [11]W.N.Pang,J.F.Gao,C.J.Ruan and R.C.Shang,J.Chem.Phys.112(2000)8043
    [1]M.L.Senent,Y.G.Smeyers,R.Domínguez-Gómez and M.Villa,J..Chem.Phys.112(2000)5809
    [2]R.K.Kakar and C.R.Quade,J..Chem.Phys.78(1980)4300
    [3]J.C.Pearson,K.V.L.N.Sastry,E.Herbst and F.C.D.Lucia,J.Mol.Spectrosc.175(1996)
    [4]J.D.Weibei,C.F.Jackels and R.L.Swofford,J.Chem.Phys.117(2002)4245
    [5]C.H.Gorbitz,J.Mol.Struct.262(1992)209
    [6]K.Kalju and C.B.Thomas,Chem.Phys.Chem.6(2005)487
    [7]P.Borowski,T.Janowski and K.Wolinski,Mol.Phys.98(2000)1331
    [8]V.N.Wolfgang and L.Aasbrink,J.Electron.Spectrosc.Relat.Phenom.21(1980)175
    [9]F.Manfred,S.Bjcrn and T.J.Peter,J.Chem.Phys.106(1997)9013
    [10]徐克尊 高等原子与分子物理(第二版)2006
    [11]J.G.R.Tostes,J.W.M.Cameiro,S.K.Lie,P.R.Seidl and et.al.,J.Mol.Struct.(Theochem)306(1994)101
    [12]J.G.R.Tostes,P.R.Seidl,C.A.Taft,S.K.Lie,J.W.M.Cameiro and et.al.,J.Mol.Struct.(Theochem)388(1996)85
    [13]J.G.R.Tostes,J.F.Dias,P.R.Seidl,J.W.M.Carneiro and C.A.Taft,Chem.Phys.Lett.580(2002)75
    [14]R.S.Mulliken,J.Chem.Phys.7(1939)339
    [15]R.S.Mulliken,C.A.Rieke and W.G.Brown,J.Am.Chem.Soc.63(1941)41
    [16]I.Vedernikova,D.Salahub and E.Proynov,J.Mol.Strut.(Theochem)663(2003)59
    [17]C.A.Taft,P.R.Seidl,J.G.R.Tostes,S.K.Lie,J.W.de M.Cameiro and W.A.Lester,Chem.Phys.Lett.248(1996)158
    [18]R.F.W.Bader,T.S.Slee,D.Cremer and E.Kraka,J.Am.Chem.Soc.105 (1983)5061
    [19]J.B.Lambert and R.A.Singer,J.Am.Chem.Soc.114(1992)10246
    [20]T.K.Brunk and E.Weinhold,J.Am.Chem.Soc.101(1979)1700
    [21]P.M.Mayer and L.Radom,Chem.Phys.Lett.280(1997)244
    [22]J.K.Kochi,R.Rathore,C.J.Zhu and S.V.Lindeman,Angew.Chem.,Int.Ed 39(2000)3671
    [23]T.Laube andT.K.Ha,J.Am.Chem.Soc.110(1988)5511
    [24]R.H.Contreras,A.L.Esteban,E.Diez,E.W.Della,L.J.Lochert,F.P.Santos and C.F.Tormena,J Chem.Phys.A.110(2006)4266
    [25]F.Weinhold,in The Encyclopedia of Computational Chemistry(ed.Schleyer,P.v.R.)92-1811(John Wiley & Sons,Chichester,1998)
    [26]M.Abu-samha,K.J.Borve,L.J.S(?)thre and T.D.Thomas,Phys.Rev.Lett.95(2006)103002
    [27]J.J.Neville,Y.Zheng and C.E.Brion,J.Am.Chem.Soc.118(1996)10533
    [28]J.Rolke,N.Cann,Y.Zheng,B.P.Hollebone,C.E.Brion,Y.A.Wang and E.R.Davidson,Chem.Phys.201(1995)1
    [29]J.J.Neville,Y.Zheng,B.P.Hollebone,N.Cann,C.E.Brion,C.K.Kim and S.Wolfe,Can.J.Phys.74(1996)773
    [30]P.M.W.Gill,Mol.Phys.89(1996)433
    [31]A.D.Becke,J.Chem.Phys.98(1993)5648
    [1]A.S.Manocha,E.C.Tuazon and W.G.Fateley,J.Chem.Phys.78(1974)803
    [2]L.Radom,W.J.Hehre and J.Pople,J.Am.Chem.Soc.94(1972)2371
    [3]M.Tsuboi and K.Tamagake,J.Chem.Phys.63(1975)5177
    [4](a)E.Fischer and I.Botaskor,J.Mol.Spec.91(1982)116
    (b)E.Fischer and I.Botaskor,J.Mol.Spec.104(1984)226
    [5]J.R.Durig and Y.S.Li,J.Chem.Phys.63(1975)4110
    [6]Y.Hamada and K.Hashiguchi,J.Mol.Spec.102(1983)123.
    [7]Y.Hamada and M.Tsuboi,J.Mol.Struct.146(1986)253
    [8]J.R.Durig,C.Zhang and T.K.Gounev,J.Phys.Chem.110(2006)5674
    [9]D.Zoroka and J.O.Jensen,J.Mol.Struct.(Theochem)465(1999)119
    [10]D.Zeroka,J.O.Jensen and A.C.Samuels,J.Phys.Chem.A.102(1998)6571
    [11]S.Katsumata,T.Iwai and K.Kimura,Bull.Chem.Soc.Japan.46(1973)3391.
    [12]R.Maruyama and K.Ohno,J.Phys.Chem.108(2004)4211
    [13]M.I.AL-Joboury and D.W.Turner,J.Chem.Soc.(London)(1964)4434
    [14]K.Kimura,Handbook of HeI photoelectron spectra of fundamental organic molecules.p.115
    [15]S.Dey,A.J.Dixon,I.E.McCarthy and E.Weigold,J.Electron.Spectrosc.Relat.Phenom.9(1976)397
    [16]X.J.Chen,L.X.Zhou,X.H.Zhang,X.F.Yin,C.K.Xu,X.Shan,Z.Wei and K.Z.Xu,J..Chem.Phys.,120(2004)7933
    [17]D.R.Lide,Handbook of Chemistry and Physics 84th edition(2003-2004).CRC Press,10-181-198.
    [18]X.G.Ren;C.G.Ning,J.K.Deng,S.F.Zhang,G.L.Su,F.Huang and G.Q.Li,Phys.Rev.Lett.,94(2005)163201
    [19]C.G.Ning,X.G.Ren,J.K.Deng and S.F.Zhang et.al.,Chem.Phys.Lett.402(2005)175
    [20]C.G.Ning,X.G.Ren,J.K.Deng and G.L.Suet.al.Phys.Rev.A.73(2006)
    [1]A.A.Bothnerby and C.Narr-Colin,J.Am.Chem.Soc.83(1961)231
    [2]A.A.Bothnerby,C.Narr-Colin and H.Günther,J.Am.Chem.Soc.84(2748)1962
    [3]G.Karabutsos and R.A.Teller,Tetrahedron.24(1968)3923
    [4]S.Kondo,E.Hirota and Y.Morino,J Mol.Spectrosc.28(1968)471
    [5]J.R.Durig and D.A.C.Compton,J.Phys.Chem.84(1980)773
    [6]E.Gallinella and B.Cadioli,Vibr.Spectrosc.13(1961)231
    [7]S.Bell,B.R.Drew,G.A.Guirgis and I.R.Durig,J.Mol.Struct.553(200)199
    [8]M.A.Murcko,H.Castejon and K.B.Wiberg,J.Phys.Chem.100(1996)16162
    [9]R.M.White,T.A.Carlson and D.P.Spears,J.Electron.Spectrosc.3(1974)59
    [10]A.D.O.Bawagan,S.J.Desjardins,R.Dailey and E.R.Davidson,J.Chem.Phys.107(1997)4295
    [11]X.G.Ren;C.G.Ning,J.K.Deng,S.F.Zhang,G.L.Su,F.Huang and G.Q.Li,Phys.Rev.Lett.,94(2005)163201
    [12]C.G.Ning,X.G.Ren,J.K.Deng and S.F.Zhang et.al.,Chem.Phys.Lett.402(2005)175
    [13]C.G.Ning,X.G.Ren,J.K.Deng and G.L.Su et.al.Phys.Rev.A.73(2006)
    [14]M.J.Brunger,I.E.McCarthy and E.Weigold,Phys.Rev.A.59(1999)1245
    [15]S.W.Braidwood,M.J.Brunger,D.A.Konovalov and E.Weigold,J.Phys.B.26(1993)1655
    [16]A.J.Dixon,I.E.McCarthy,C.J.Noble and E.Weigold,Phys.Rev.A.17(1978)597
    [17]J.P.D.Cook,I.E.McCarthy,J.Mitroy and E.Weigold,Phys.Rev.A.33(1986)211
    [18]C.E.Brion,Y.Zheng,J.Rolke,J.J.Neville,I.E.McCarthy and J.Wang,J.Phys.B:At.Mol.Opt.Phys.,31(1998)L223
    [19]X.G.Ren;C.G.Ning,J.K.Deng,S.F.Zhang,G.L.Su,F.Huang and G.Q.Li,Phys.Rev.Lett.,94(2005)163201
    [20]C.G.Ning,X.G.Ren,J.K.Deng and S.F.Zhang et.al.,Chem.Phys.Lett.402(2005)175
    [21]C.G.Ning,X.G.Ren,J.K.Deng and G.L.Suet.al.Phys.Rev.A.73(2006)022704

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700