微纳光子结构中的光子操控与光伏特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着微纳制造技术的快速发展,半导体微纳米结构(如:光子晶体、量子点、量子阱、纳米线等)在光电子器件中的应用也越来越广泛。电磁理论与量子物理效应相结合的研究因此成为了半导体微纳米器件领域的研究热点,而微纳光子结构中光子操控与光伏特性研究是这两方面的重要体现,在现代光电子器件的发展中有重要的意义。
     本论文依托课题组承担的国家863计划(批准号:2009AA03Z405)、国家自然科学基金(批准号:60971068)项目,围绕半导体微纳米材料的生长、半导体微纳器件(量子阱、量子点和光子晶体器件)中的光子运动规律以及光与物质之间相互作用展开相关的理论研究和时域有限差分法(FDTD)计算。取得的主要成果如下:
     1.半导体微纳结构生长过程中的物理特性研究。半导体材料的生长对于光电子器件的特性非常重要,通过分子动力学研究可以深入了解半导体材料及结构(例如GaN薄膜及SiGe超晶格结构等)生长过程中的物理特性和动态过程,是光通信及光电子器件制造的基础。
     2.量子点中光与物质相互作用及斯托克斯效应的新解释。通过数值模拟,理论推导与实验的结合,对量子点中斯托克斯位移效应做出了新解释,研究发现入射光激发量子点激子与外界光场相互耦合,形成激子-极化激元,从而影响量子点的介电常数,继而影响通过量子点内部的光功率,导致吸收峰和发射峰之间的位移,也就是斯托克斯位移。该结论为生物光电子探测及单光子通信提供了有用的理论依据。
     3.光子晶体带隙对光子操控及其在空间光通信中的应用。利用光子晶体带隙特性,通过数值模拟设计了一种新颖的二维光子晶体波导结构,可以通过简单调节出口结构以实现1-2、1-3、1-5光分束器功能,各光束具有对称的能量分布和很好的定向特性。同时对其中的物理特性做了详细的理论分析,为空间光通信器件设计提供了有用的指导。
     4.光子晶体衍射结构用于量子阱、量子点红外探测器。根据量子吸收的选择定则,量子阱或MBE生长的扁平量子点不能或者不能很好地吸收垂直入射的光场,本工作利用金属光子晶体和电介质材料光子晶体结构对垂直入射光进行衍射和耦合,进而提高了量子阱、量子点红外探测器的光吸收效率。
     5.表面等离子体结构在量子阱、量子点红外光探测器上应用。金属孔-半导体界面的表面等离子体波可以有效衍射界面附近的光场,产生新的电场分量,而该电场分量对量子阱、量子点吸收光场非常重要,从而增强了红外探测器中光与物质的相互作用和光电流。
     6.光子晶体结构在CdSe量子点或染料太阳能电池中应用。利用光子晶体可以对带内波长光实现有效散射的特性,设计了可以运用于量子点或染料太阳能电池中的梳状光子晶体框架结构,量子点或染料分子嵌入光子晶体晶格中。该结构不仅可以在宽波段范围有效散射入射的太阳光,增加了光子运动路径,还可以产生共振模式,很好的束缚住光,进而增加了光与物质相互作用的几率。
Recently, with the rapid development of the micro and nano fabrications, micro and nano semiconductor structures (such as photonic crystals, quantum dot, quantum well, nano wires, etc) have been widely used in optoelectronic devices. Electromagnetic theory and quantum physics combine together in micro and nano semiconductor devices, photon manipulations and photovoltaic effect are two important topics in modern optoelectronic devices.
     The work in this thesis is supported by the National High Technology Research and Development Program of China (Grant No.2009AA03Z405) and the National Natural Science Foundation of China (Grant No.60971068), and focus on the growth of micro and nano semiconductor material, movement of the photons and light-matter interaction in the optoelectronic devices. The FDTD method is used in the calculation of electromagnetic wave movement. This thesis covers the following six main contributions:
     1. Research on the physical characters in the growth of semiconductor. The growth of the semiconductor materials (eg. GaN film and SiGe superlattice) is important to the optoelectronic devices. Dynamic characters and the physical characters in the process of the growth can be obtained by using Molecular Dynamics method, which is a base of the fabrication of the optical communication and optoelectronic devices.
     2. Light-matter interaction in quantum dot and new explanation for Stokes shift effect in colloidal QD. By comparing the experiment spectrum and numerical calculation, we found that the optical excitation of an exciton in the QD will couple with the external excitation radiation (i.e., exciton polariton) and affect the dielectric constant of the QD very much, which leads to variations of the optical power inside the QDs, Thus leads to a shift between the light absorption peak and emission peak (i.e., Stokes shift). This is useful in bio-photonics and single-photon communication field.
     3. Light manipulation in photonic crystal waveguide and its application in free space communication. Utilizing the photonic crystal bandgap character, one-to-two (one beam in and two beams out), one-to-three, and one-to-five beam splittings to free space from a two-dimensional photonic crystal waveguide (PCW) has been realized by adding and modifying a few additional dielectric rods at the exit of the PCW. The split beams have symmetric energy distributions and high directional transmissions. The design is very useful for the free-space-communication devices.
     4. Photonic crystal structure for light diffraction in Quantum well/dot infrared photodetectors (QWIP/QDIP). Quantum well (QW) and dome-shaped quantum dot (QD) can not absorb the normal incident radiation and favor the Electric field that in the injection direction. In this work, we study two kinds of photonic crystal structures made of metallic and dielectric materials to diffract and couple the normal incident light into the active layers, which enhance the light absorption in QWIP and QDIP.
     5. Surface Plasmon structure in QWIP and QDIP. Surface Plasmon wave excited by subwavelength hole arrays at metal-semiconductor interface can diffract the electric field in near field region and create useful field component for QWIPs and QDIPs. This can increase the light-matter interaction and photocurrent in QWIP and QDIP.
     6. Photonic crystal (PhC) in QD or dye solar cells. PhC structures can efficiently diffract incident light from its initial incident direction to other directions in the PhC lattice when the wavelength is out of the bandgap. Further light trapping can be obtained by using comb-shaped PhC structure because comb-shaped PhC structure can create extra resonance modes. We design a comb-shaped PhC framework with CdSe QDs or dye materials immersed in the lattice for high-efficiency solar radiation absorption. The structure not only increases the propagation paths of light in the active region but also creates useful electric field modes in the lattice to trap the light. These will enhance the light-matter interaction.
引文
[1]V. Vedral, Modern foundations of quantum optics, Imperial College Press, London (2005).
    [2]M. Born and E. Wolf. Principles of optics:electromagnetic theory of propagation, interference and diffraction of light,7th ed., Cambridge University Press, Cambridge (1999).
    [3]B. E. A. Saleh and M. C. Teich, Fundamentals of photonics,2nd ed., Wiley, Hoboken (2007).
    [4]J. D. Joannopoulos, S. G. Johnson, J. N. W(?), et al, Photo(?) Crystals:Molding the flow of light,2nd ed., Princeton University Press,Pr(?)(2008).
    [5]P. Bermel, C. Luo, L. Zeng. et al., "Improving thin-film ory(?) (?) cell efficiencies with photonic crystals" Opt. Express 15,16906(2007).
    [6]Z. Yu, A. Raman, and S. Fan, "Fundamental limit of light (?) in (?) structures" Opt. Express 18, A366 (2010).
    [7]H. Kurt, "The directional emission sensitivity of photonic crystal (?) to air holes removal" Appl. Phys. B,95,341 (2009).
    [8]C.-C. Chen, T. Pertsch, R. Iliev, et al., "Directional emission from photonic crystal waveguides" Opt. Express,14,2423 (2006).
    [9]Z.-H. Chen, Z.-Y. Yu, Y.-M. Liu, et al, "Multiple beam splitting to free space from a V groove in a photonic crystal waveguide" Appl. Phys. B:Lasers andOptics 102,857(2011).
    [10]M. Herman, W. Richter, H. Sitter, Epitaxy Physical Foundation and TechnicalImplementation, Springer-Verlag, Berlin, New York, (2004)
    [11]S. Franchi, G. Trevisi, L. Seravalli, et al., "Quantum dot nanostructuresand molecular beam epitaxy", Progress in Crystal Growth and Characterization of Materials,47,166(2003).
    [12]V. A. Shchukin, N. N. Ledentsov, D. Bimberg, "Epitaxy of Nanostructures", Springer, Berlin, (2004).
    [13]S. Nakamura and G. Fasol, The Blue Laser Diode,2nd ed. Springer, New York (2000).
    [14]L. F. Eastman and U. K. Mishra, "The toughest transistor yet [GaN transistors]" IEEE Spectrum,39,28 (2002).
    [15]B.S. Meyerson, "Hi Speed Silicon Germanium Electronics", Scientific American, 270,42(1994)..
    [16]R. Sutarto, S. G. Altendorf, B. Coloru, et al., "Epitaxial and layer-by-layer growth of EuO thin films on yttria-stabilized cubic zirconia (001) using MBE distillation", Phys. Rev. B,79,205318 (2009).
    [17]孙小伟,褚衍东,刘子江,等,“高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究”,物理学报,54,5830(2005).
    [18]X.W. Zhou, D.A. Murdick, B. Gillespie, et al., "Atomic assembly during GaN film growth:Molecular dynamics simulations", Phys. Rev. B,73,045337 (2006).
    [19]K. Harafuji, T. Tsuchiya and K. Kawamura, "Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal", J. Appl. Phys.96,2501 (2004).
    [20]I. V. Antonoval, E. P. Neustroev, S. A. Smagulova, et al., "Deep-level spectroscopy studies of confinement levels in SiGe quantum wells", J. Appl. Phys., 106,084903(2009).
    [21]A. J. Minnich, H. Lee, X. W. Wang, et al., "Modeling study of thermoelectric SiGe nanocomposites", Phys. Rev. B,80,155327 (2009).
    [22]Mathieu, C., Lalmi, B., Mentes, T. O., et al., "Effect of oxygen adsorption on the local properties of epitaxial graphene on SiC (0001)", Phys. Rev. B,86,035435 (2012).
    [23]M. Fox, Optical Properties of Solids, Oxford University Press, Oxford (2001).
    [24]J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures, Cambridge University Press, New York (2003).
    [25]Y. Alhassid, "The statistical theory of quantum dots", Rev. Mod. Phys.,72,895 (2000).
    [26]S. M. Reimann and M. Manninen, "Electronic structure of quantum dots", Rev. Mod. Phys.,74,1283 (2002).
    [27]W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, et al., "Electron transport through double quantum dots", Rev. Mod. Phys.,75,1 (2002).
    [28]Y. Fu, E. Berglind, L. Thylen, et al., "Optical transmission and waveguiding by excitonic quantum dot lattices", J. Opt. Soc. Am. B,23,2441 (2006).
    [29]C. Wang, L. Huang, B. A. Parviz, et al., "Subdiffraction Photon Guidance by Quantum-Dot Cascades", Nano Lett.,6,2549 (2006).
    [30]L. Huang, C. Wang, and L. Y. Lin, "Comparison of cross-talk effects between colloidal quantum dot and conventional waveguides", Opt. Lett.,32,235 (2007).
    [31]I. L. Medintz, H. T. Uyeda, E. R. Goldman, et al., "Quantum dot bioconjugates for imaging, labelling and sensing", Natrue materials,4,435 (2005).
    [32]F. Ferdos, S. Wang, Y. Wei, et al., "Influence of initial GaAs and AlAs cap layers on InAs quantum dots grown by molecular beam epitaxy", J. Crystal Growth, 251,145(2003).
    [33]Z. Ning, H. Tian, C. Yuan, et al., "Solar cells sensitized with type-II ZnSe-CdS core/shell colloidal quantum dots", Chem. Commun.,47,1536 (2011).
    [34]F.de Medeiros, E. Albuquerque, M. Vasconcelos, et al., "Exciton-polariton confinement in Fibonacci quasiperiodic superlattice", Surface Sci.,600,4337 (2006).
    [35]A. N. Poddubny and E. L. Ivchenko, "Photonic quasicrystalline and aperiodic structures", Physica E,42,1871 (2010).
    [36]Z.-H. Chen, S. Hellstrom, Z.-J. Ning, et al., "Exciton Polariton Contribution to the Stokes Shift in Colloidal Quantum Dots", J. Phys. Chem. C,115,5286 (2011).
    [37]L. Ouattara, A. Mikkelsen, and E. Lundgren, et al., "A cross-sectional scanning tunneling microscopy study of a quantum dot infrared photodetector structure", Appl. Phys. Lett.,100,044320 (2006).
    [38]X.-F. Yang, K. Fu, W. Lu, et al., "Strain effect in determining the geometric shape of self-assembled quantum dot", J. Phys. D:Appl. Phys.,42,125414 (2009).
    [39]S. Hellstrom, Z.-H. Chen, Y. Fu, et al., "Increased photocurrent in quantum dot infrared photodetector by subwavelength hole array in metal thin film", Appl. Phys. Lett.,96,231110(2010).
    [40]E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics" Phys. Rev. Lett.,58,2059 (1987).
    [41]S. John, "Strong localization of photons in certain disordered dielectric superlattices" Phys. Rev. Lett.,58,2486 (1987).
    [42]Z.-H. Chen, S. Hellstrom, Z.-Y. Yu, et al., "Comb-shaped photonic crystal structure for efficient broadband light diffraction and funnelling in solar cells", Sol. Energy Mater. Sol. Cells,99,316 (2012).
    [43]Z.-H. Chen, Y. Fu, and Z.-Y. Yu, "Improving efficiency of quantum dot infrared photodetector by using photonic crystal framework in the active layer", Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/Europe), Munich, Germany, May 22,2011.
    [44]L. Rayleigh, "On the Remarkable Phenomenon of Crystalline Reflexion described by Professor Stokes" Phil. Mag.26,256 (1888).
    [45]T. Kato, H. Susawa, M. Hirotani, et al., "GaAs/GaAlAs surface emitting IR LED with Bragg reflector grown by MOCVD", J. Crystal Growth,107,832 (1991).
    [46]J. G. Mutitu, S. Shi, C. Chen, et al., "Thin film solar cell design based on photonic crystal and diffractive grating structures", Opt. Express,16,15238 (2008).
    [47]V. P. Bykov, "Spontaneous emission from a medium with a band spectrum", Sov. J. Quantum Electron.,4,861 (1975).
    [48]K. Ohtaka, "Energy band of photons and low-energy photon diffraction" Phys. Rev. B 19,5057(1979).
    [49]E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure:The face-centered-cubic case employing nonspherical atoms", Phys. Rev. Lett.,67,2295 (1991).
    [50]T. F. Krauss, R. M. DeLaRue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths", Nature,383, 699(1996).
    [51]P. Russell, "Photonic Crystal Fibers" Science 299,358 (2003).
    [52]S. Y. Lin, J. G. Fleming, D. L. Hetherington, et al., "A three-dimensional photonic crystal operating at infrared wavelengths", Nature,394,251 (1998).
    [53]A. Y. Vlasov, X.-Z. Bo, J. C. Sturm, et al., "On-chip natural assembly of silicon photonic bandgap crystals", Nature,414,289 (2001).
    [54]M. Qi, E. Lidorikis, P. T. Rakich, et al., "A three-dimensional optical photonic crystal with designed point defects", Nature,429,538 (2004).
    [55]E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena,2nd ed., Springer, Berlin (1997).
    [56]E. L. Ivchenko, Y. Fu, and M. Willander, "Exciton polaritons in quantum-dot photonic crystals", Phys. Solid State,42,1756 (2000).
    [57]Y. Zeng, X.S. Chen, W. Lu, et al., "Exciton polaritons of nano-spherical-particle photonic crystals in compound lattices", Eur. Phys. J. B,49,313 (2006).
    [58]Y. Zeng, Y. Fu, X. Chen, et al., "Complete band gaps in three-dimensional quantum dot photonic crystals", Phys. Rev. B,74,115325 (2006).
    [59]O. Painter, R. K. Lee, A. Scherer, et al., "Two-Dimensional Photonic Band-Gap Defect Mode Laser", Science,284,1819 (1999).
    [60]B. Temelkuran, E. Ozbay, J. P. Kavanaugh, et al., "Resonant cavity enhanced detectors embedded in photonic crystals ", Appl. Phys. Lett.,72,2376 (1998).
    [61]B. Temelkuran, M. Bayindir, E. Ozbay, et al., "Photonic crystal-based resonant antenna with a very high directivity", J. Appl. Phys.,87,603 (2000).
    [62]M. Bayindir, B. Temelkuran, and E. Ozbay, "Propagation of photons by hopping: a waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals", Phys. Rev. B,61,11855 (2000).
    [63]H. Benisty, "Modal analysis of optical guides with two-dimensional photonic band-gap boundaries", J. Appl. Phys.,79,7483 (1996).
    [64]A. Mekis, S. Fan, and J.D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends", Phys. Rev. B,58,4809 (1998).
    [65]H. Altug and J. Vuckovic, "Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays", Appl. Phys. Lett.,86,111102 (2005).
    [66]C. Sauvan, P. Lalanne, and J. P. Hugonin, "Slow-wave effect and mode-profile matching in photonic crystal microcavities", Phys. Rev. B,71,165118 (2005).
    [67]杜晓宇,郑婉华,张冶金,等,“慢光在光子晶体弯折波导中的高透射传播”物理学报,57,7005(2008).
    [68]J. Y. Andersson and L. Lundqvist, "Grating-coupled quantum-well infrared detectors:Theory and performance", J. Appl. Phys.,71,3600 (1992).
    [69]Y. Fu, M. Willander, W. Lu, et al., "Optical coupling in quantum well infrared photodetector by diffraction grating", J. Appl. Phys.,84,5750 (1998).
    [70]E. Ozbay, "Plasmonics:Merging Photonics and Electronics at Nanoscale Dimensions", Science,311,189 (2006).
    [71]C. Girard, "Near fields in nanostructures", Rep. Prog. Phys.,68,1883 (2005).
    [72]C. Girard and E. Dujardin, "Near-field optical properties of top-down and bottom-up nanostructures", J. Opt. A:Pure Appl. Opt.,8, S73 (2006).
    [73]S. A. Maier and H. A. Atwater, "Plasmonics:Localization and guiding of electromagnetic energy in metal/dielectric structures", J. Appl. Phys.,98,011101 (2005).
    [74]S. A. Ramakrishna, "Physics of negative refractive index materials", Rep. Prog. Phys.,68,449 (2005).
    [75]C. M. Soukoulis, M. Kafesaki, and E. N. Economou, "Negative-Index Materials: New Frontiers in Optics", Adv. Mater.,18,1941 (2006).
    [76]E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmon excited by light", Z. Naturf. A,23,2135 (1968).
    [77]A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection", Zeitschrift fur Physik,216,398 (1968).
    [78]W. L. Barnes, A. Dereux, and T. W. Ebbesen, "'Surface plasmon subwavelength optics", Nature,424,824 (2003).
    [79]J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, et al., "A multispectral and polarization-selective surface-plasmon resonant midinfrared detector", Appl. Phys. Lett.,95,161101(2009).
    [80]S. Pillai, K.R. Catchpole, T. Trupke, et al., "Surface plasmon enhanced silicon solar cells", J. Appl. Phys.,101,093105 (2007).
    [81]W.J. Yoon, K.Y. Jung, J. Liu, et al., "Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles", Sol. Energy Mater. Sol. Cells,94,128 (2010).
    [82]M. Quinten, A. Leitner, J. R. Krenn, et al., "Electromagnetic energy transport via linear chains of silver nanoparticles" Opt. Lett.,23,1331 (1998).
    [83]J. P. Kottmann and O. J. F. Martin, " Plasmon resonant coupling in metallic nanowires" Opt. Express,8,655 (2001).
    [84]A. Drezet, A. L. Stepanov, H. Ditlbacher, et al., "Surface plasmon propagation in an elliptical corral" Appl. Phys. Lett.,86,074104 (2005).
    [85]Z. Liu, J. M. Steele, W. Srituravanich, et al., "Focusing surface plasmons with a plasmonic lens", Nano Lett.,5,1726 (2005).
    [86]Z. Liu, J. M. Steele, H. Lee, et al., "Tuning the focus of a plasmonic lens by the incident angle", Appl. Phys. Lett.,88,171108 (2006).
    [87]J. M. Steele, Z. Liu, Y. Wang, et al., "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings", Opt. Express,14,5664 (2006).
    [88]P. Berini, "Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics", Phys. Rev. B,61,10484 (2000).
    [89]J. C. Weeber, A. Dereux, C. Girard, et al., "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light", Phys. Rev.B,60,9061 (1999).
    [90]J. C. Weeber, Y. Lacroute, and A. Dereux, "Optical near-field distributions of surface plasmon waveguide modes", Phys. Rev. B,68,115401 (2003).
    [91]R. Zia, M. D. Selker, and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides", Phys. Rev. B,71,165431 (2005).
    [92]J. A. Dionne, L. A. Sweatlock, H. A. Atwater, et al., "Planar metal plasmon waveguides:frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model". Phys. Rev. B 72,075405 (2005).
    [93]I. V. Novikov and A. A. Maradudin, "Channel polaritons", Phys. Rev. B 66, 035403 (2002).
    [94]S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, et al., "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves", Phys. Rev. Lett.,95,046802 (2005).
    [95]S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, et al., "Channel plasmon subwavelength waveguide components including interferometers and ring resonators", Nature,440,508 (2006).
    [96]S. I. Bozhevolnyi, J. Erland, K. Leosson, et al., "Waveguiding in Surface Plasmon Polariton Band Gap Structures", Phys. Rev. Lett.86,3008 (2001).
    [97]J. Takahara, S. Yamagishi, H. Taki, et al., "Guiding of a one-dimensional optical beam with nanometer diameter", Opt. Lett.22,475 (1997).
    [98]A. Mcmillan, C. D. Paavola, J. Howard, et al., "Ordered nanoparticle arrays formed on engineered chaperonin protein templates.", Nature Mater.1,247 (2002).
    [99]S. A. Maier, P. G. Kik, H. A. Atwater, et al., "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides", Nature Mater.,2,229 (2003).
    [100]J. R. Krenn, A. Dereux, J. C. Weeber, et al., "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles", Phys. Rev. Lett.,82,2590 (1999).
    [101]N. E. Hecker, R. A. Hopfel, N. Sawaki, et al., "Surface plasmon-enhanced photoluminescence from a single quantum well ", Appl. Phys. Lett.,75,1577 (1999).
    [102]A. Neogi, C. Lee, H. O. Everitt, et al., "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling", Phys. Rev. B,66,153305(2002).
    [103]T. D. Neal, K. Okamoto, A. Scherer, et al., "Time resolved photoluminescence spectroscopy of surface-plasmon-enhanced light emission from conjugate polymers" Appl. Phys. Lett.89,221106 (2006).
    [104]K. Okamoto, I. Niki, A. Shvartser, et al., "Surface-plasmon-enhanced light emitters based on InGaN quantum wells", Nature Mater.,3,601 (2004).
    [105]A. V. Krasavina and N. I. Zheludev, "Active plasmonics:Controlling signals in Au/Ga waveguide using nanoscale structural transformations", Appl. Phys. Lett.84, 1416(2004).
    [106]A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, et al., "High-contrast modulation of light with light by control of surface plasmon polariton wave coupling", Appl. Phys. Lett.85,3369 (2004).
    [107]A. V. Krasavin, K. F. MacDonald, A. S. Schwanecke, et al., "Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics", Appl. Phys. Lett.89,031118 (2006).
    [108]A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, "Active control of surface plasmon-polariton waves", J. Opt. A:Pure Appl. Opt.,7, S85 (2005).
    [109]J. A. Sanchez-Gil and J. G. Rivas, "Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces", Phys. Rev. B,73,205410 (2006).
    [110]A. A. Govyadinov and V. A. Podolskiy, "Gain-Assisted Slow to Superluminal Group Velocity Manipulation in Nanowaveguides", Phys. Rev. Lett.97,223902 (2006).
    [111]P. Andrew and W. L. Barnes, "Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons", Science,306,1002 (2004).
    [112]R. P. Van Duyne, "Molecular Plasmonics", Science,306,985 (2004).
    [113]H. Schneider and H.C. Liu, Quantum Well Infrared Photodetectors:physics and applications, Springer, Berlin (2007).
    [114]K.-K. Choi, K.-M. Leung, T. Tamir, et al., "Light coupling characteristics of corrugated quantum well infrared photodetectors", IEEE J. Quantum Electron.,40, 130(2004).
    [115]B. Xing, and H. C. Liu, "Simulation of one-dimensional quasi-random gratings for quantum well infrared photodetectors", Journal of Applied Physics,80, 1214(1996).
    [116]S. C. Lee, S. Krishna, and S. R. J. Brueck, "Quantum dot infrared photodetector enhanced by surface plasma wave excitation", Optics Express 17,23160 (2009).
    [117]C. J. Chen, K.-K. Choi, M. Z. Tidrow, et al., "Corrugated quantum well infrared photodetectors for normal incident light coupling", Appl. Phys. Lett.68,1446 (1996).
    [118]K.-K. Choi, D. P. Forrai, D. W. Endres, et al., "Corrugated Quantum-Well Infrared Photodetector Focal Plane Arrays", IEEE J. Quantum Electron.45,1255 (2009).
    [119]Z.-H. Chen, S. Hellstrom, Z.-Y. Yu, et al., "Time-resolved photocurrents in quantum well/dot infrared photodetectors with different optical coupling structures", Appl. Phys. Lett.100,043502 (2012).
    [120]J. Jiang, S. Tsao, K. Mi, et al., "Advanced monolithic quantum well infrared photodetector focal plane array integrated with silicon readout integrated circuit", Infrared Phys. Technol.46,199 (2005).
    [121]M. A. Green, A. W. Blakers, J. Shi, et al., "High-efficiency silicon solar cells", IEEE Trans. Electron Devices,31,679 (1984).
    [122]G. P. Smestad, Optoelectronics of solar cells, SPIE Press, Washington (2002).
    [123]H.-D. Kim and V. P. Oleg, "Multiple exciton generation and recombination dynamics in small Si and CdSe quantum dots:an ab initio time-domain study", ACS Nano,6,1239(2012).
    [1]X.W. Zhou, D.A. Murdick, B. Gillespie, et al., "Atomic assembly during GaN film growth:Molecular dynamics simulations", Phys. Rev. B,73,045337 (2006).
    [2]H. Ye, P.F. Lu, Z.Y. Yu, et al., "Dislocation-induced composition profile in alloy semiconductors", Solid State Communications,150,1275-1278 (2010).
    [3]H. Ye, P.F. Lu, Z.Y. Yu, et al., "Equilibrium critical thickness for a wurtzite InGaN/GaN heterostructure", Superlattices and Microstructures,48,58-65 (2010).
    [4]H. Ye, P.F. Lu, Z.Y. Yu, et al., "Electronic and optical properties of GaN/AIN quantum dots with adjacent threading dislocations", Chinese Physics B,19,047302 (2010).
    [5]Jia B.Y., Yu Z.Y., Liu Y.M., et al., "Electronic structures of GaAs/AlGaAs concentric double rings in applied electric and magnetic field", Physica E: Low-dimensional Systems and Nanostructures,42,82-85 (2009).
    [6]Liu, YM; Yu, ZY; Jia, BY; et al., "Strain distributions and electronic structure of three-dimensional InAs/GaAs quantum rings", Chinese Physics B,18,4667-4675 (2009).
    [7]Z.-H. Chen, Z.-Y. Yu, P.-F. Lu, et al., "Surface diffusion of Si, Ge and C adatoms on Si (001) substrate studied by the molecular dynamics simulation", Chinese Physics B,18,4591 (2009).
    [8]Z.-H. Chen, Z.-Y. Yu, P.-F. Lu, et al., "Molecular dynamics simulations of atomic assembly in the process of GaN film growth", Physica B:Condensed Matter,404, 4211-4215(2009).
    [9]陈智辉,俞重远,芦鹏飞,等,“分子动力学方法模拟GaN薄膜生长”,功能材料,39,2045-2048(2008).
    [10]Z.-H. Chen, Z.-Y. Yu, P.-F. Lu, et al., "Point defects in relaxed and strained Si studied by molecular dynamics method", Proceedings of SPIE,7631,76310T (2009).
    [11]陈智辉,俞重远,芦鹏飞,等,“分子动力学方法研究硅锗超晶格的弛豫过程”,光子学报,37(Sup2),236-239(2008).
    [12]李言荣,杨春,”薄膜生长与原子尺度的计算机模拟”,重庆师范学院学报,19,1(2002)
    [13]B. J. Alder and T. E. Wainwright, "Phase Transition for a Hard Sphere System". J. Chem. Phys.27,1208 (1957).
    [14]F. F. Abraham, G. W. White, "Kinetic Monte Carlo simulations with minimal searching", J.Appl.Phys.,41,1841 (1970).
    [15]N.Metropolis, "The beginning of the Monte Carlo method", Los Alamos Science, Special Issue,125-130 (1987).
    [16]N.Metropolis, A. W. Rosenbluth,M. N. Rosenbluth, et al., "Fast simulated annealing", J.Chem.Phys.,21,1087 (1953).
    [17]陈舜麟,计算材料科学,化学工业出版社(2005).
    [18]冯康,基于变分原理的差分格式,应用数学与计算数学(1965).
    [19]Stillinger F H and Weber T A, "Computer simulation of local order in condensed phases of silicon", Phys. Rev. B,31 5262 (1985).
    [20]Tersoff J, "Modeling solid-state chemistry:Interatomic potentials for multicomponent systems", Phys. Rev. B,39,5566 (1989).
    [21]X.W. Sun, Q.F. Chen, Y.D. Chu, et al., "Structural and thermodynamic properties of GaN at high pressures and high temperatures", Physica B,368,243 (2005).
    [22]J. Nord, K. Albe, P. Erhart, et al., "Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride", J. Phys.: Condens. Matter 15,5649 (2003).
    [23]K. Shintani, T. Nakajima, and S. Kameoka, "Atomistic model of limited-thickness Si(001) epitaxy at low temperatures", J. Appl. Phys.95,446 (2004).
    [1]A. Taflove, Computational Electrodynamics:The Finite-Difference Time-Domain Method, Artech House, Norwood (1995).
    [2]K. J. Webb and J. Li, "Analysis of transmission through small apertures in conducting films", Phys. Rev. B,73,033401 (2006).
    [3]K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures", Phys. Rev. Lett.65,3152 (1990).
    [4]Y. Zeng, Y. Fu, X. Chen, et al., "Extended plane-wave-based transfer-matrix approach to simulating dispersive photonic crystals", Solid State Commun.139,328 (2006).
    [5]K. S. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media", IEEE Trans. Antennas and Propagation,14, 302-307(1966).
    [6]A. F. Oskooi, D. Roundy, M. Ibanescu, et al., "Meep:A flexible free-software package for electromagnetic simulations by the FDTD method", Computer Physics Communications,181,687(2010).
    [7]S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs", Phys. Rev. B 65,235112 (2002).
    [8]M. Qiu and S. He, "A numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions", Phys. Rev. B 61,12871 (2000).
    [9]M. Qiu and S. He, "A Nonorthogonal FDTD method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions", J. Appl. Phys.87,8268 (2000).
    [10]A. Farjadpour, D. Roundy, A. Rodriguez, et al., "Improving accuracy by subpixel smoothing in the finite-difference time domain", Opt. Lett.31,2972 (2006).
    [11]Y. Fu, Y. Zeng, and H. Agren, "Surface-plasmon-assisted electromagnetic field enhancement in semiconductor quantum dots", Appl. Phys. A 87,167 (2007).
    [12]A. Taflove and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations,", IEEE Trans. Microwave Theory & Techniques,23,623 (1975).
    [13]何丽娟,“静电放电电磁脉冲的电磁干扰分析”,[学位论文],华北电力大学,北京,2009。
    [14]J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Computational Physics,114,185 (1994).
    [15]J. P. Berenger, "Improved PML for the FDTD solution of wave-structure interaction problems", IEEE Trans. Antennas Propag.45,466 (1997).
    [16]E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, San Diego (1998).
    [17]S. Hellstrom and Y. Fu, "Dynamic optical response of an excitonic quantum dot studied by solving the self-consistent Maxwell-Schrodinger equations nonperturbatively", Phys. Rev. B,82,245305 (2010).
    [18]Z.-H. Chen, S. Hellstrom, Z.-J. Ning, et al., "Exciton Polariton Contribution to the Stokes Shift in Colloidal Quantum Dots", J. Phys. Chem. C,115,5286 (2011).
    [1]Y. Fu and M. Qiu, Optical Properties of "Nanostructures, (Pan Stanford Publishing, Singapore,2011).
    [2]A. N. Poddubny and E. L. Ivchenko, "Photonic quasicrystalline and aperiodic structures", Physica E 42,1871 (2010).
    [3]O. Painter, R. K. Lee, A. Scherer, et al., "Two-Dimensional Photonic Band-Gap Defect Mode Laser" Science,284,1819 (1999).
    [4]Y. Fu, M. Willander, W. Lu, et al., "Optical coupling in quantum well infrared photodetector by diffraction grating" J. Appl. Phys.84,5750 (1998).
    [5]Y. Song, J. Wang, Q. Li, et al., "Broadband coupler between silicon waveguide and hybrid plasmonic waveguide", Opt. Express 18,13173 (2010).
    [6]J. N. Anker, W. P. Hall, O. Lyandres, et al., "Biosensing with plasmonic nanosensors", Nature Mater.7,442 (2008).
    [7]B. E. A. Saleh and M. C. Teich, Fundamentals of photonics,2nd ed. Wiley, Hobo ken (2007).
    [8]Y. Fu, "Boundary conditions of continuum states in characterizing photocurrent of GaAs/AlGaAs quantum well infrared photodetector", Superlattices Microstruct.30, 69 (2001).
    [9]M. Fox, Optical Properties of Solids, Oxford University Press, Oxford (2001).
    [10]Z.-H. Chen, S. Hellstrom, Z.-Y. Yu, et al., "Time-resolved photocurrents in quantum well/dot infrared photodetectors with different optical coupling structures", Appl. Phys. Lett.100,043502 (2012).
    [II]L. Ouattara, A. Mikkelsen, and E. Lundgren, et al., "A cross-sectional scanning tunneling microscopy study of a quantum dot infrared photodetector structure", Appl. Phys. Lett.,100,044320 (2006).
    [12]X.-F. Yang, K. Fu, W. Lu, et al., "Strain effect in determining the geometric shape of self-assembled quantum dot", J. Phys. D:Appl. Phys.,42,125414 (2009).
    [13]S. Hellstrom, Z.-H. Chen, Y. Fu, et al., "Increased photocurrent in quantum dot infrared photodetector by subwavelength hole array in metal thin film", Appl. Phys. Lett.,96,231110(2010).
    [14]Y. Fu, S. Hellstrom, and H. Agren, "Nonlinear optical properties of quantum dots: excitons in nanostructures", J. Nonlinear Opt. Phys. Mater.18,195 (2009).
    [15]Z.-H. Chen, S. Hellstrom, Z.-J. Ning, et al., "Exciton Polariton Contribution to the Stokes Shift in Colloidal Quantum Dots", J. Phys. Chem. C,115,5286 (2011).
    [16]W. W. Yu, L. Qu, W. Guo, et al., "Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals", Chem. Mater.,15,2854 (2003).
    [1]J. D. Joannopoulos, S. G. Johnson, J. N. Winn, et al., Photonic Crystals.Molding the flow of light,2nd ed., Princeton University Press, Princeton, (2008).
    [2]R. D. Meade, K. L. Brommer, A. M. Rappe, et al., "Existence of a photonic band gap in two dimensions", Appl. Phys. Lett.61,495 (1992).
    [3]M. Agio and L. C. Andreani, "Complete photonic band gap in a two-dimensional chessboard lattice", Phys. Rev. B 61,15519 (2000).
    [4]Z.-H. Chen, Z.-Y. Yu, Y.-M. Liu, et al, "Multiple beam splitting to free space from a V groove in a photonic crystal waveguide" Appl. Phys. B:Lasers andOptics 102,857 (2011).
    [5]H. Kurt, "The directional emission sensitivity of photonic crystal waveguides to air holes removal" Appl. Phys. B,95,341 (2009).
    [6]R. Moussa, B. Wang, G. Tuttle, et al., "On the beaming and enhanced transmission in photonic crystals", Phys. Rev. B 76,235417 (2007).
    [7]Q. Wang, J. Y. Zhang, C. C. Yan, et al., "Beaming effect in multimode photonic crystal by using coupled waveguides", Phys. Lett. A,373,1097 (2009).
    [8]S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides", Appl. Phys. Lett.86,081110 (2005).
    [9]E. H. Khoo, A. Q. Liu, T. H. Cheng, et al., "Light focusing via Rowland concave surface of photonic crystal", Appl. Phys. Lett.91,221105 (2007).
    [10]H. Kurt, "Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits", IEEE Photon. Technol. Lett.,20,1682 (2008).
    [11]C.-C. Chen, T. Pertsch, R. Iliev, et al., "Directional emission from photonic crystal waveguides"Opt. Express,14,2423 (2006).
    [12]M. Bayindir, B. Temelkuran, and E. Ozbay, "Photonic-crystal-based beam splitters", Appl. Phys. Lett.77,3902 (2000).
    [13]L. Jiang, W. Jia, H. Li, et al., "Inverse design for directional emitter and power splitter based on photonic crystal waveguide with surface corrugations", J. Opt. Soc. Am. B,26,2157 (2009).
    [14]Z. Sun and H. K. Kima, "Refractive transmission of light and beam shaping with metallic nano-optic lenses", Appl. Phys. Lett.,85.642 (2004).
    [15]Z. Ning, H. Tian, C. Yuan, et al., "Solar cells sensitized with type-Ⅱ ZnSe-CdS core/shell colloidal quantum dots", Chem. Commun.47,1536 (2011).
    [16]M. A. Green, Third Generation Photovoltaics:Advanced Solar Energy Conversion, Springer, Berlin (2003).
    [17]G. P. Smestad, Optoelectronics of solar cells, (SPIE Press, Washington,2002).
    [18]T. K. Gaylord, W. E. Baird, and M. G. Moharam, "Zero-reflectivity homogeneous layers and high spatialfrequency surface-reliefgratings on lossy materials", Appl. Opt.25,4562 (1986).
    [19]E. Yablonovitch and G. Cody, "Intensity enhancement in textured optical sheets for solar cells", IEEE Trans. Electron Devices,29,300 (1982).
    [20]P. Bermel, C. Luo, L. Zeng, et al., "Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals" Opt. Express 15,16986 (2007).
    [21]Z. Yu, A. Raman, and S. Fan, "Fundamental limit of light trapping in grating structures" Opt. Express 18, A366 (2010).
    [22]Z. Yu, A. Raman, and S. Fan, "Fundamental limit of nanophotonic light trapping in solar cells", Proc. Natl. Acad. Sci.107,17491 (2010).
    [23]M. A. Green, "Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices", Prog. Photovolt:Res. Appl.19,473 (2011).
    [24]S. Pillai, K.R. Catchpole, T. Trupke, et al., "Surface plasmon enhanced silicon solar cells", J. Appl. Phys.101,093105 (2007).
    [25]D. Duche, Ph. Torchio, L. Escoubas, et al., "Improving light absorption in organic solar cells by plasmonic contribution", Sol. Energy Mater. Sol. Cells 93,1377 (2009).
    [26]W.J. Yoon, K.Y. Jung, J. Liu, et al., "Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles", Sol. Energy Mater. Sol. Cells 94,128 (2010).
    [27]J. G. Mutitu, S. Shi, C. Chen, et al., "Thin film solar cell design based on photonic crystal and diffractive grating structures", Opt. Express 16,15238 (2008).
    [28]J. Zhu, Z. Yu, S. Fan, et al., "Nanostructured photon management for high performance solar cells", Mater. Sci. Eng. R-Rep.70,330 (2010).
    [29]X. Meng, G. Gomard, O. E. Daif, et al., "Absorbing photonic crystals for silicon thin-film solar cells:Design, fabrication and experimental investigation", Sol. Energy Mater. Sol. Cells 95, S32 (2011).
    [30]D. Duche, E. Drouard, J. J. Simon, et al., "Light harvesting in organic solar cells", Sol. Energy Mater. Sol. Cells 95, S18 (2011).
    [31 D.-H. Ko, J. R. Tumbleston, L. Zhang, et al., "Photonic crystal geometry for organic solar cells", Nano Lett.9,2742 (2009).
    [32]S. Guldin, S. Huttner, M. Kolle, et al., "Dye-sensitised solar cell based on a 3D photonic crystal", Nano Lett.10,2303 (2010).
    [33]K. S. Leschkies, R. Divakar, J. Basu, et al., "Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices", Nano Lett.7,1793 (2007).
    [34]E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, San Diego (1998).
    [35]J. K. Kim, S. Chhajed, M. F. Schubert, et al., "Light-Extraction Enhancement of GaInN Light-Emitting Diodes by Graded-Refractive-Index Indium Tin Oxide Anti-Reflection Contact", Adv. Mater.,20,801 (2008).
    [36]M. Wang, N. Chamberland, L. Breau, et al., "An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells", Nat. Chem.2,385 (2010).
    [37]G. P. Smestad, S. Spiekermann, J. Kowalik, et al., "A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices", Sol. Energy Mater. Sol. Cells 76,85 (2003).
    [38]Z.-H. Chen, S. Hellstrom, Z.-Y. Yu, et al., "Comb-shaped photonic crystal structure for efficient broadband light diffraction and funnelling in solar cells", Sol. Energy Mater. Sol. Cells.99,316 (2012).
    [39]Z.-H. Chen. Y. Fu. and Z.-Y. Yu, "Improving efficiency of quantum dot infrared photodetector by using photonic crystal framework in the active layer", Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/Europe), Munich, Germany, May 22,2011.
    [40]Y. Fu, M. Willander, W. Lu, et al., "Optical coupling in quantum well infrared photodetector by diffraction grating", J. Appl. Phys.,84,5750 (1998).
    [41]Z.-H. Chen, S. Hellstrom, Z.-Y. Yu, et al., "Time-resolved photocurrents in quantum well/dot infrared photodetectors with different optical coupling structures", Appl. Phys. Lett.100,043502 (2012).
    [42]K.-K. Choi, K.-M. Leung, T. Tamir, et al., "Light coupling characteristics of corrugated quantum well infrared photodetectors", IEEE J. Quantum Electron.,40, 130(2004).
    [43]K.-K. Choi, D. P. Forrai, D. W. Endres, et al., "Corrugated Quantum-Well Infrared Photodetector Focal Plane Arrays", IEEE J. Quantum Electron.45,1255 (2009).
    [44]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, et al., "Extraordinary optical transmission through sub-wavelength hole arrays", Nature,391,667 (1998).
    [45]H. Shin, P. B. Catrysse, and S. Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength", Phys. Rev. B 72,085436 (2005).
    [46]Y. Zeng, Y. Fu, X. Chen, et al., "Selective excitation of surface polariton Bloch waves for efficient transmission of light through a metal-thin-film sub-wavelength hole array", Phys. Rev. B 76,035427 (2007).
    [47]L. Salomon, F. Grillot, A. V. Zayats, et al., "Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film", Phys. Rev. Lett.86, 1110(2001).
    [48]J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces", Science,305,847 (2004).
    [49]H. F. Ghaemi, T. Thio, D. E. Grupp, et al., "Surface plasmons enhance optical transmission through subwavelength holes", Phys. Rev.B 58,6779 (1998).
    [50]P. Lalanne, C. Sauvan. J. P. Hugonin, et al., "Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures", Phys. Rev. B 68,125404 (2003).
    [51]E. Popov, M. Neviere, S. Enoch, et al., "Theory of light transmission through subwavelength periodic hole arrays", Phys. Rev. B 62,16100 (2000).
    [52]S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films:An analytical study", Phys. Rev. B 67,035424 (2003).
    [53]F. I. Baida and D. V. Labeke, "Three-dimensional structures for enhanced transmission through a metallic film:Annular aperture arrays", Phys. Rev. B 67, 155314(2003).
    [54]S. Hellstrom, Z.-H. Chen, Y. Fu, et al., "Increased photocurrent in quantum dot infrared photodetector by subwavelength hole array in metal thin film", Appl. Phys. Lett.,96,231110(2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700