高效时间反演电磁系统实现的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一套完整的时间反演电磁系统由两部分组成——时间反演镜与接收终端。时间反演镜的主要功能是对信道探测信号进行时间反演变换,并对所反演的信号进行处理、发射。接收终端的主要功能是接收由时间反演镜发射的信号,并对接收的信号做进一步处理,以获得最佳的聚焦效果。时间反演镜与接收终端都会对时间反演电磁波的聚焦特性产生影响。因此,对实现时间反演镜以及接收终端的关键技术进行研究,有助于提高整套时间反演系统的性能。
     本文对高效时间反演电磁系统实现的关键技术和基础理论进行了深入研究,主要内容概述如下:
     首先,介绍了时间反演电磁学的研究背景以及发展动态。并分别对时间反演电磁信号的获取方法与基于时间反演技术的亚波长阵列天线的研究进行了综述。指出了目前时间反演电磁系统实现过程中亟需解决的两大关键问题。
     然后,对基于模拟信号处理技术实现高频电磁信号时间反演变换的方法进行了深入研究。模拟信号处理技术利用器件本身的物理性质完成对信号的处理,与数字信号处理技术相比,由于无需对信号进行离散化处理,模拟信号处理技术不受模数/数模采样率限制,在处理速度上远优于数字信号处理技术。本文对基于模拟信号处理技术的波形变换方法进行了研究。首先,对基于时域成像技术的波形变换方法进行了研究。通过与空间成像系统进行对比分析,给出了在时域成像系统中得到电磁信号反演波形的条件。对波形变换系统的核心器件——啁啾延迟线的设计方法进行了讨论。利用所设计的啁啾延迟线,在系统仿真中对基于时间透镜原理获得时间反演电磁信号的方法进行了验证。在协同仿真实验中,实现了一个时宽为1.6ns的三角波信号的时间反演变换。在此基础上,又提出了一种基于色散补偿原理的电磁信号时间反演变换方法。通过推导,得到了基于色散补偿技术获得微波信号时间反演的条件并利用仿真和实验对其进行了验证。与时域成像技术相比,该方法减少了微波色散延迟线的使用数量,降低了系统损耗。基于模拟信号处理技术实现电磁信号时间反演变换的研究为高效时间反演镜设计提供了新的思路。
     进一步,提出了利用模拟信号处理技术设计亚波长阵列天线的方法。亚波长阵列天线在时间反演电磁系统的接收终端扮演着极为重要的角色。基于凋落波-传播波模式转换理论的亚波长阵列天线的设计方法成功率低,不适合推广。通过对阵列单元间互耦的分析,明确了亚波长阵列获得时间反演超分辨特性的条件。在此基础上,提出了两种亚波长阵列天线设计的新方法。在第一种方案中,具有不同反射色散特性的啁啾延迟线被引入阵列单元的馈电网络中。由于引入的啁啾延迟线打破了各个单元天线到时间反演镜的信道响应之间的强相关性,运用时间反演技术时,具有最大聚焦峰值的信号仅由亚波长阵列天线的目标单元所接收。在第二种方案中,为了减小各个单元到时间反演镜的信道响应之间的相关性,具有不同时域传输函数的波形整形电路被引入单元的馈电网络中。结合时间反演技术,亚波长阵列天线同样获得了时间反演超分辨率聚焦特性。与第一种方法相比,由于不再需要定向耦合器等器件,单元天线的辐射效率进一步提高。与基于凋落波-传播波模式转换机制的设计方法不同,新的方法在效率与互相关性水平上更容易控制与预测。
     最后,对时间反演电磁波聚焦效果的影响因素进行了讨论。利用仿真与实验研究了人工超材料对时间反演电磁波聚焦效果的影响。此外,也讨论了时间反演镜天线对时间反演电磁波聚焦效果的影响,并提出了初步的解决方案。
A complete time reversal electromagnetic system consists of two parts: timereversal mirror and receiving terminal. The main functions of the time reversal mirrorare making time reversal transformation on channel detecting signals andre-transmitting the time-reversed signals. The main functions of the receiving terminalare receiving the time-reversed signals and making further processing to achieveoptimum focusing effect. Both time reversal mirror and the receiving terminal willaffect the focusing performance of time-reversed electromagnetic wave. Therefore,study of the key technologies for the realization of time reversal mirror and thereceiving terminal will help improve the performance of the complete time reversalsystem.
     Firstly, the background and the development trends of time reversalelectormagnetics are introduced in the dissertation. The approach to obtaintime-reversed electromagnetic signals and the method to design sub-wavelength arraybased on time reversal technique are summarized and two critical issues for therealization of the time reversal electromagnetic system are pointed out.
     Then, the implementations of time reversal transformation of high frequencyelectromagnetic waves based on analog signal processing technique are thoroughlystudied. The analog signal processing technology is based on the physical properties ofthe devices to complete the signal processing. Compared with digital signal processingtechnique, because of requiring no discretizing processing, the analog signal techniquewill be unlimited by the sampling rates of AD/DA converters any more and theprocessing speed of the analog signal processing is much superior to the digital signalprocessing technique. The dissertation investigates two approaches of waveformtransformation based on analog signal processing technique. Firstly, the waveformtransformation approach based on temporal imaging technique is studied. Theconditions to achieve time-reversed waveform of microwave signals in thetemporal-imaging system are derived by comparing with the spatial-imaging system.Design methods of the chirped delay lines serving as the key components in the temporal imaging system are discussed. By employing the fabricated chirped delay lines,the approach to obtain time-reversed electromagnetic signal based on time lens theory isfurther validated in system simulation. The time-reversed waveform of a singletriangular signal with a1.6ns time duration is obtained in the hardware in loopsimulation. On that basis, a new approach to obtain time-reversed electromagneticsignals based on dispersion compensation principle is proposed. The conditions toachieve time-reversed waveform of microwave signals based on dispersioncompensation technique are derived and the new approach is validated by bothsimulation and experiment. Compared with the temporal-imaging technique, the newapproach requires less dispersion delay lines and reduces the system losses. Thesestudies on time reversal transformation of electromagnetic signals based on analogsignal processing technique will provide new ideas for the realization of high efficienttime reversal mirror.
     Further more, the approaches to design the sub-wavelength antenna array by usinganalog signal processing technique are proposed. The sub-wavelength antenna arrayplays an important role in the receiving terminal of the time reversal electromagneticsystem. The method to design sub-wavelength antenna array based onevanescent-to-propagating spectrum conversion mechanism has a low success rate, so itis unsuitable to replication. By analyzing the cross-coupling between the elements of thesub-wavelength array, the conditions to achieve time reversal super-resolutioncharacteristic for sub-wavelength array are determined. On that basis, two new schemesare proposed to design the sub-wavelength antenna array. In the first scheme, thechirped delay lines with different dispersion properties are embedded into the feedingnetworks of the array elements. Because the embedded chirped delay lines break thestrong correlations of the channel responses from the elements to the time reversalmirror, when time reversal technique is used, the focusing signal with maximum peakvoltage will be received only by the target element of the sub-wavelength array. In thesecond scheme, in order to reduce the correlations of the channel responses from theelements to the time reversal mirror, the pulse shaping circuits with different transferfunctions are embedded into the feeding networks of the elements. Combining with timereversal technique, the sub-wavelength array can also achieve time reversalsuper-resolution property. Compared with the first scheme, due to requiring no directional coupling devices, the the radiation efficiency of the element antennas arefurther improved by using the second scheme. Compared with the approach based onevanescent-to-propagating spectrum conversion mechanism, the efficiency and thedecorrelation level are much easier to control and predict by using the new approaches.
     At last, the impact factors of the focusing effect of time-reversed electromagneticwaves are discussed. The influences caused by the special metamaterials on the focusingeffect of time reversal electromagnetic waves are studied by using simulations andexperiments. In addition, the influences caused by antennas in the time reversal mirrorare also discussed and some preliminary solutions are proposed.
引文
[1] G. Lerosey, J. de Rosny, A. Tourin, et al. Time reversal of electromagnetic waves[J]. PhysicalReview Letters,2004,92(19):193904-1-193904-3.
    [2] J. B. Pendry. Time reversal and negative refraction[J]. Science,2008,322(5898):71-73.
    [3] J. G. Minonzio, M. Davy, J. de Rosny, et al. Theory of the time-reversal operator for a dielectriccylinder using separate transmit and recieve arrays[J]. IEEE Trans. Antennas Propagat.,2009,57(8):2331-2340.
    [4] J. de Rosny, G. Lerosey, and M. Fink. Theory of electromagnetic time-reversal mirrors[J]. IEEETrans. Antennas Propagat.,2010,58(10):3139-3149.
    [5] D. S. Zhao, Y. W. Jin, B.-Z. Wang, et al. Time reversal based broadband synthesis method forarbitrarily structured beam-steering arrays[J]. IEEE Trans. Antennas Propagat.,2012,60(1):164-173.
    [6] M. Fink, C. Prada, F. Wu, et al. Self-focusing in inhomogeneous media with ‘time reversal’acoustic mirrors[C]. Proceedings IEEE1989Ultrasonics Symposium, Montreal,1989,2:681-686.
    [7] M. Fink. Time reversal of ultrasonic fields–part I: Basic principles[J]. IEEE Trans. Ultras. Ferr.Freq. Contr.,1992,39(5):555-566.
    [8] M. Fink. Time-reversal mirrors[J]. J. Phys. D.: Appl. Phys.,1993,26(9):1333-1350.
    [9] C. Prada, J. L. Thomas, and M. Fink. The iterative time reversal process: Analysis of theconvergence[J]. J. Acoust. Soc. Am.,1995,97(1):62-71.
    [10] C. Prada, F. Wu, and M. Fink. The iterative time reversal mirror: A solution to self-focusing inthe pulse echo mode[J]. J. Acoust. Soc. Am.,1991,90(2):1119-1129.
    [11] C. Prada, J. L. Thomas, and M. Fink. Theory of iterative time reversal acoustic mirrors[J]. J.Acoust. Soc. Am.,1992,91(4):2326-2326.
    [12] G. Montaldo, M. Tanter, and M. Fink. Real time inverse filter focusing through iterative timereversal[J]. J. Acoust. Soc. Am.,2004,115(2):768-775.
    [13] H. W. Kang, Y. S. Cho, and D. H. Youn. Adaptive precompensation of Wiener systems[J]. IEEETrans. Signal Process.,1998,46(10):2825-2829.
    [14] R. A. Fisher. Optical Phase Conjugation[M]. New York: Academic Press,1983,323-330.
    [15] G. F. Edelmann, H. C. Song, S. Kim, et al. Underwater acoustic communications using timereversal[J]. IEEE J. Ocean. Eng.,2005,30(4):852-864.
    [16] W. J. Higley, P. Roux, W. A. Kuperman, et al. Synthetic aperture time-reversal communicationsin shallow water: experimental demonstration at sea[J]. J. Acoust. Soc. Am.,2005,118(4):2365-2372.
    [17] S. Dos Santos and Z. Prevorovsky. Imaging of human tooth using ultrasound based chirp-codednonlinear time reversal acoustics[J]. Ultrasonics,2011,51(6):667-674.
    [18] J. Gateau, L. Marsac, M. Pernot, et al. Transcranial ultrasonic therapy based on time reversal ofacoustically induced cavitation bubble signature[J]. IEEE Transactions on BiomedicalEngineering,2010,57(1):134-144.
    [19] P. Glotov. Time reversal of electromagnetic waves in randomly layered media[D]. Raleigh:North Carolina State University,2006,122-139.
    [20]葛广顶,王秉中,黄海燕,等.时间反演电磁波超分辨率特性的研究[J].物理学报,2009,58(12):8249-8253
    [21] M. Fink. Time-reversal waves and super resolution[C]. The4th AIP International Conferenceand the1st Congress of the IPIA.2008,124(1):1-29
    [22] R. C. Qiu, C. M. Zhou, N. Guo, et al. Time reversal with MISO for ultrawidebandcommunications: experimental results[J]. IEEE Antennas Wireless Propag. Lett.,2006,5:269-275.
    [23] R. C. Qiu. A generalized time domain multipath channel and its applications in ultra-wide-band(UWB) wireless optimal receiver design: system performance analysis[C]. Proc. IEEE WirelessComm. Network Conference, Montreal,2004,2:901-907.
    [24] C. Zhou, N. Guo, and R. C. Qiu. Time-reversed ultra-wideband (UWB) multiple input multipleoutput (MIMO) based on measured spatial channels[J]. IEEE Trans. on Vehicular Technology,2009,58(6):2884-2898.
    [25] P. Kyritis, G. Papanicolaou, P. Eggers, et al. MISO time reversal and delay-spread compressionfor FWA channels at5GHz[J]. IEEE Antennas Wireless Propag. Lett.,2004,3:96-99.
    [26] T. Strohmer, M. Emami, J. Hansen, et al. Application of time-reversal with MMSE equalizer toUWB communications[C]. Proc. IEEE Global Telecommunications Conference, Dallas,2004,5:3123-3127.
    [27] G. Papanicolaou, L. Ryzhik, and K. Solna. Statistical stability in time reversal[J]. SIAM J. Appl.Math.,2004,64(6):1133-1155.
    [28] H. T. Nguyen, J. B. Andersen, and G. F. Pedersen. The potential use of time reversal techniquesin multiple elements antenna systems[J]. IEEE Commun. Lett.,2005,9(1):40-42.
    [29]王秉中,葛广顶,王多.一种用于无线通信终端的时间反演亚波长阵列天线[P].中国,实用新型专利,CN201010597908.7,2011年9月.
    [30] A. G. Cepni, D. D. Stancil, Y. Jiang, et al. Microwave signal nulling using mutilple antennas andtime reversal method[C]. The62nd IEEE Vehicular Technology Conference, Dallas,2005,2:1274-1278.
    [31] J. P. Fouque, J. Garnier, and A. Nachbin. Shock structure due to stochastic forcing and the timereversal of nonlinear waves[J]. Physica D,2004,195(3-4):324-346
    [32] J. P. Fouque, J. Garnier, J. C. Grajales, et al. Time reversing solitary waves[J]. Phys. Rev. Lett.,2004,92(9):094502-1-094502-4.
    [33] J. P. Fouque, J. Garnier, and A. Nachbin. Time reversal for dispersive waves in random media[J].SIAM J. Appl. Math,2004,64(5):1810-1838.
    [34] J. V. Candy, D. H. Chambers, B. L. Guidry, et al. Multi-channel time-reversal receivers for multiand1-Bit implementations[P]. US, Patent,7463690, November5th,2006.
    [35] Y. F. Chen, E. Gunawan, K. S. Low, et al. Pulse design for time reversal method as applied toultrawideband microwave breast cancer detection: A two-dimensional analysis[J]. IEEE Trans.Antennas Propagat.,2007,55(1):194-204.
    [36] Y. W. Jin, J. M. F. Moura, and N. O’Donoughue. Time-reversal in multiple-input multiple-outputradar[J]. IEEE J. Selected Topics in Signal Processing,2010,4(1):210-225.
    [37] R. Carminati, R. Pierrat, J. de Rosny, et al. Theory of the time reversal cavity forelectromagnetic fields[J]. Optics Lett.,2007,32(21):3107-3109.
    [38] J. de Rosny and M. Fink. Focusing properties of near-field time reversal[J]. Phys. Rev. A,2007,76(6):065801-1-065801-4.
    [39] G. Lerosey, J. de Rosny, A. Tourin, et al. Focusing beyond the diffraction limit with far-fieldtime reversal[J]. Science,2007,315(5857):1120-1122.
    [40] P. Kosmas and C. M. Rappaport. Time reversal with the FDTD Method for microwave breastcancer detection[J]. IEEE Trans. Microwave Theory Tech.,2005,53(7):2317-2324.
    [41] P. Kosmas and C. Rappaport. FDTD-based time reversal for microwave breast cancerdetection-localization in three dimensions[J]. IEEE Trans. Microwave Theory Tech.,2006,54(4):1921-1927.
    [42] P. Kosmas and C. Rappaport. A matched-filter FDTD-based time reversal approach formicrowave breast cancer detection[J]. IEEE Trans. Antennas Propagat.,2006,54(4):1257-1264.
    [43] M. Saillard, P. Vincent, and G. Micolau. Reconstruction of buried objects surrounded by smallinhomogeneities[J]. Inverse Prob.,2000,16(5):1195-1208.
    [44] X. F. Liu, B. Z. Wang, and S. Q. Xiao. Electromagnetic subsurface detection using subspacesignal processing and half-space dyadic Green’s function[J]. Progress in ElectromagneticsResearch,2009,98:331-347.
    [45] X. F. Liu, B. Z. Wang, and L.W. Li. Transmit-mode time reversal imaging using MUSICalgorithm for surveillance in wireless sensor network[J]. IEEE Trans. Antennas Propag.,2012,60(1):220-230.
    [46] X. F. Liu, B. Z. Wang, S. Q. Xiao, et al. Post-time-reversed MIMO ultrawideband transmissionscheme[J]. IEEE Trans. Antennas Propag.,2010,58(5):1731-1738.
    [47]钟选明,廖成.基于时间反演和单站天线的导体目标微波成像[J].西南交通大学学报,2011,46(3):451-455.
    [48] N. Guo, B. M. Sadler, and C. M. Qiu. Reduced-complexity UWB time-reversal techniques andexperimental results[J]. IEEE Trans. Wireless Commun.,2007,6(12):4221-4226.
    [49] Y. Song, G. Nan, and R. C. Qiu. Implementation of UWB MIMO time-reversal radio testbed[J].IEEE Antennas and Wireless Propagation Letters,2011,10:796-799.
    [50] H. Zhai, S. Sha, V. K. Shenoy, et al. An electronic circuit system for time reversal ofultra-wideband short impulses based on frequency-domain approach[J]. IEEE Trans. MicrowaveTheory Tech.,2010,58(1):74-86.
    [51] A. Papoulis. Signal analysis[M]. New York: Mcgraw-Hill Book Company,1977,1-11.
    [52]耿富录.现代模拟信号处理技术及应用[M].北京:国防工业出版社,1990,1-5.
    [53] S. Sha, V. Shenoya, S. Jung, et al. A hardware architecture for time reversal of short impulsesbased on frequency domain approach[C]. Proc. SPIE Radar Sensor Technology XIII, Orlando,2009,7308:73080T-1-73080T-9.
    [54] Y. C. Pon. Retrodirective array using the heterodyne technique[J]. IEEE Trans. AntennasPropag.,1964,2(2):176-180.
    [55] M. Luukkala and G. S. Kino. Convolution and time inversion using parametric interactions ofacoustic surface waves[J]. Applied Physics Letters,1971,18(9):393-394.
    [56] H. Messer, Y. Barness, and H. Gilboa. New s. a. w time-inversion system[J]. IET ElectionicsLetters,1979,15(7):214-215.
    [57] H. Messer, H. Gilboa, and Y. Barness. SAW time scaling techniques[J]. IEEE Sonics andUltrasonics,1981,28(4):271-276.
    [58] Y. Han and B. Jalali. Photonic time-stretched analog-to-digital converter: fundamental conceptsand practical considerations[J]. J. Lightw. Technol.,2003,21(12):3085-3103.
    [59] F. Coppinger, A. S. Bhushan, and B. Jalali. Time reversal of broadband microwave signals[J].Electronics Letters,1999,35(15):1230-1232.
    [60] A. S. Bhushan, F. Coppinger, and B. Jalali. Time-stretched analogue-to-digital conversion[J].Electronics Letters,1998,34(11):1081-1083.
    [61] B. Asuri, Y. Han, and B. Jalali. Time-stretched ADC arrays[J]. IEEE Trans. Circuits and SystemsII: Analog and Digital Signal Proc.2002,49(7):521-524.
    [62] B. H. Kolner and M. Nazarathy. Temporal imaging with a time lens[J]. Optics Letters,1989,14(12):630-632.
    [63] B. H. Kolner. Space-time duality and the theory of temporal imaging[J]. IEEE J. QuantumElectronics,1994,30(8):1951-1963.
    [64] J. D. Schwartz, J. Azana, and D. V. Plant. An electronic temporal imaging system forcompression and reversal of arbitrary UWB waveforms[C]. Proc. IEEE2008Radio andWireless Symposium, Orlando,2008,487-490.
    [65] J. D. Schwartz, J. Azana, and D. V. Plant. A fully electronic system for the time magnification ofultra-wideband signals[J]. IEEE Trans. Microwave Theory Tech.,2007,55(2):327-334.
    [66] S. Abielmona, S. Gupta, and C. Caloz. Compressive receiver using a CRLH-based dispersivedelay line for analog signal processing[J]. IEEE Trans. Microwave Theory Tech.,2009,57(11):2617-2626.
    [67] S. Gupta, S. Parasa, C. Caloz, et al. Group-delay engineered noncommensurate transmission lineall-pass network for analog signal processing[J]. IEEE Trans. Microwave Theory Tech.,2010,58(9):2392-2407.
    [68] M. Coulombe and C. Caloz. Reflection-type artificial dielectric substrate microstrip dispersivedelay line (DDL) for analog signal processing[J]. IEEE Trans. Microwave Theory Tech.,2009,57(7):1714-1723.
    [69] B. Nikfal, S. Gupta, and C. Caloz. Increased Group-Delay slope loop system forenhanced-resolution analog signal processing[J]. IEEE Trans. Microwave Theory Tech.,2011,59(6):1622-1628.
    [70] Y. Horii, S. Gupta, B. Nikfal, et al. Multilayer broadside-coupled dispersive delay structures foranalog signal processing[J]. IEEE Wireless Compon. Letts,2012,22(1):1-3.
    [71] J. D. Schwartz, R. Abhari, D. V. Plant, et al. Design and analysis of1-D uniform and chirpedelectromagnetic bandgap structures in substrate-integrated waveguides[J]. IEEE Trans.Microwave Theory Tech.,2010,58(7):1858-1866.
    [72] V. G. Veselago. The electrodynamics of substances with simultaneously negative values of ε andμ[J]. Sov. Phys. Usp.,1967,10(4):509-514.
    [73] J. Pendry. A chiral route to negative refraction[J]. Science,2004,306(5700):1353-1355.
    [74] D. R. Smith and N. Kroll. Negative refractive index in left-handed materials[J]. Physical ReviewLetters,2000,85(14):2933-2936.
    [75] W. Wee and J. B. Pendry. Universal evolution perfect lens[J]. Phy. Rev. Lett.,2008,106(16):165503-1-165503-3.
    [76] A. Grbic, L. Jiang, and R. Merlin. Near-field plates: Subdiffraction focusing with patternedsurfaces[J]. Science,2008,320(5875):511-513
    [77] A. Grbic and R. Merlin. Near-field focusing plates and their design[J]. IEEE Trans. AntennasPropagat.,2008,56(10):3159-3165.
    [78] J. B. Pendry. Negative refraction makes a perfect lens[J]. Phy. Rev. Lett.,2000,85(18):3966-3969.
    [79] R. Merlin. Radiationless electromagnetic interference: Evanescent-field lenses and perfectfocusing[J]. Science,2007,317(5840):927-929.
    [80]周济.“超材料(metamaterials)”:超越材料性能的自然极限[J].四川大学学报,2005,42(2):15-16.
    [81] C. Draeger and M. Fink. One-channel time reversal of elastic waves in a chaotic2D-Siliconcavity[J]. Phy. Rev. Lett.,1997,79(7):407-410.
    [82] B. A. Munk. Metamaterials: Critique and alternative[M]. New Jersey: Wily&Sons, Inc.,2008,1-2.
    [83] O. Malyuskin and V. Fusco. Near field focusing using phase conjugating impedance loaded wirelens[J]. IEEE Trans. Antennas Propagat.,2010,58(9):2884-2893.
    [84] O. Malyuskin and V. Fusco. Far field subwavelength source resolution using phase conjugatinglens assisted with evanescent-to-propagating spectrum conversion[J]. IEEE Trans. AntennasPropagat.,2010,58(2):459-468.
    [85] V. Fusco, N. Buchanan, and O. Malyuskin. Active phase conjugating lens with sub-wavelengthresolution capability[J]. IEEE Trans. Antennas Propagat.,2010,58(3)798-808.
    [86] P. Chan and V. Fusco.5.8GHz full duplex amplitude shift keying retrodirective interrogatorarray[J]. IEEE Trans. Microwave Theory Tech.,2013,55(1)160-164.
    [87] G. D. Ge, B. Z. Wang, D. Wang, et al. Ultra-wideband and super-resolution characteristics ofmicrostructured array with far-field time-reversal[C]. Proc. IEEE2011International Conferenceon Information and Industrial Electronics, Chengdu,2011,1:1-4.
    [88] G. D. Ge, R. Zang, D. Wang, et al. Sub-wavelength array of planar antennas with defect ovalrings based on far-field time reversal[J]. IET Electronics Letters,2011,47(16):901-903.
    [89] G. Ding Ge, D. Wang, and B. Z. Wang. Subwavelength array of planar triangle monopoles withcross slots based on far-field time reversal[J]. Progress In Electromagnetics Research,2011,114(26):429-441.
    [90] G. D. Ge, B. Z. Wang, and D. Wang. Subwavelength array of planar monopoles withcomplementary split rings based on far-field time reversal[J]. IEEE Trans. Antennas Propagat.,2011,59(11):4346-4350.
    [91] G. D. Ge, B. Z. Wang, D. S. Zhao, et al. Design on super-resolution characteristics of planarmicrostructured antenna array[C]. Proc.2010IEEE Conference on Microwave and MillimeterWave Technology, Chengdu,2010:345-347.
    [92]葛广顶,王秉中.时间反演电磁波的传播特性及其应用研究[C].2009全国微波毫米波会议论文集,西安,2009:871-874.
    [93]章志敏,王秉中,葛广顶.一种用于时间反演通信的亚波长天线阵列设计[J].物理学报,2012,61(5):058421-1-058421-5.
    [94] R. Carminati, M. N. Vesperinas, and J. J. Greffet. Reciprocity of evanescent electromagneticwaves[J]. J. Opt. Soc. Am.,1998,15(3):706-712.
    [95] R. Carminati. Subwavelength spatial correlations in near-field speckle patterns[J]. Phys. Rev. A.,2010,81(5):053804-1-053804-5.
    [96] E. Danicki, J. Filipiak, and A. Kawalec. SAW dispersive delay line utilising apodised IDT withperiodic electrodes[J]. IET Electronics Letters,1986,22(19):976-977.
    [97] J. C. Sethares, J. M. Owens, and C. V. Smith. M. S. W nondispersive eletronically tunable timedelay elements[J]. Electronics Letters.1980,16(22):825-826.
    [98]张其瑞.高温超导电性[M].杭州:浙江工业大学出版社,1992,78-99.
    [99] E. B. Ekholmm and S. W. McKnight. Attenuiton and dispersion for high-Tcsuperconductingmicrostrip lines[J]. IEEE Trans. Microwave Theory Tech.,1990,38(4):387-394.
    [100] A. E. Atia and A. E. Williams. Measurements of intercavity couplings (Letters)[J]. IEEE Trans.Microwave Theory Tech.,1975,23(6):519-522.
    [101] N. A. Mcdonald. Measurements of intercavity couplings (Short papers)[J]. IEEE Trans.Microwave Theory Tech.,1976,24(3):519-522.
    [102] J. F. Woodley, M. S. Wheeler, and M. Mojahedi. Left-handed and right-handed metamaterialscomposed of split ring resonators and strip wires[J]. Phys. Rev. E,2008.71(6):066605-1-066605-6.
    [103] H. Choi, Y. Kim, Y. Jeong, et al. Synthesis of reflection type negative group delay circuit usingtransmission line resonator[C]. Proc. European Microwave Conference, Roma,2009,902-905.
    [104] H. Choi, Y. Kim, Y. Jeong, J. Lim, et al. A novel design for a dual-band negative group delaycircuit[J]. IEEE Microwave and Wireless Components Letters.2011,21(1):19-21.
    [105]李宗谦,佘京兆,高葆新.微波工程基础[M].北京:清华大学出版社,2004,28-71.
    [106] F. D. Mbairi and H. Hesselbom. Microwave bandstop filters using novel artificial periodicsubstrate electromagnetic band gap structures[J]. IEEE Trans. Components and Packaging Tech.,2009,32(2):273-281.
    [107] M. A. G. Laso, T. Lopetegi, M. J. Erro, et al. Real-time spectrum analysis in microstriptechnology[J]. IEEE Trans. Microwave Theory Tech.,2003,51(3):705-717.
    [108]张直中.雷达信号的选择与处理[M].北京:国防工业出版社,1979,18-56.
    [109] J. Azana, N. K. Berger, B. Levit, et al. Simplified temporal imaging systems for opticalwaveforms[J]. IEEE Photon. Technol. Lett.,2005,17(1):94-96.
    [110] J. Chou, Y. Han, and B. Jalali. Adaptive RF-photonic arbitrary waveform generator[J]. IEEEPhoton. Technol. Lett.,2003,15(4):581-583.
    [111] Y. Han and B. Jalali. Time-bandwidth product of the photonic time-stretched analog-to-digitalconverter[J]. IEEE Trans. Microwave Theory Tech.,2003,51(10):1886-1892.
    [112] Q. F. Zhang, S. Gupta, and C. Caloz. Synthesis of narrowband reflection-type phasers witharbitrary prescribed group delay[J]. IEEE Trans. Microw. Theory Tech.,2012,60(8):2394-2402.
    [113]付景兴,杨大成,常永宇.信道相关性对多入多出系统性能的影响[J].北京邮电大学学报.2003,26(1):23-26.
    [114] R. Carminati, J. J. Saenz, J. J. Greffet, et al. Reciprocity, unitarity, and time-reversal symmetryof the S matrix of fields containing evanescent components[J]. Phys. Rev. A.,2000,62(1):0127121-1-0127121-7.
    [115]李忻.新一代无线通信系统中的MIMO信道建模与多天线设计研究[D].成都:电子科技大学,2006,28-62.
    [116] R. S. Blum. MIMO capacity with interference[J]. IEEE J. Selected Area, in Commun.,2003,21(5):793-801.
    [117] J. Liu, D. Zhao, and B. Z. Wang. A beveled and slot-loaded planar bow-tie antenna for UWBapplication[J]. Progress in Electromagnetics Research M,2008,2(1):37-46.
    [118] J. M. Cramer, R. A. Scholtz, and M. Z. Win. Evaluation of an ultra-wide-band propagationchannel[J]. IEEE Trans. Antennas Propag.,2002,50(5):561-570.
    [119] A. Khaleghi, H. Sarbandi, and I. Balasingham. Impulse radiating log-periodic dipole arrayantenna using time-reversal technique[J]. IEEE Microw. Wireless Propagation Letters,2011,10:967-970.
    [120] J. W. Han and C. Nguyen. A new ultra-wideband, ultra-short monocycle pulse generator withreduced ringing[J]. IEEE Microw. Wireless Compon. Lett.,2002,12(6):206-208.
    [121] P. Rulikowski and J. Barrett. Adaptive arbitrary pulse shaper[J]. IEEE Microw. WirelessCompon. Lett.,2008,18(5):356-358.
    [122] J. D. McKinney, D. S. Seo, and A. M. Weiner. Direct space-to-time pulse shaping at1.5μm[J].IEEE J. Quant. Electron.,2003,39(2):1635-1644.
    [123] H. M. Cronson. Picosecond-pulse sequential waveform generation (Short papers)[J]. IEEE Trans.Microw. Theory Tech.,1975,23(12):1048-1049.
    [124] A. M. Borjak, P. P. Monteiro, J. J. O’Reilly, et al. High-speed generalizeddistributed-amplifier-based transversal-filter topology for optical communication systems[J].IEEE Trans. Microwave Theory Tech.,1997,45(8):1453-1457.
    [125] X. Ding, B. Z. Wang, G. Zheng, et al. Design and realization of a GA-optimized VHF/UHFantenna with ‘On-Body’ matching network[J]. IEEE Antenna and Wireless Propagation Letters,2010,9:303-306.
    [126] P. A. Belov, R. Marques, S. I. Maslovski, et al. Strong spatial dispersion in wire media in thevery large wavelength limit[J]. Physical Review B,2003,67(11):113103-1-113103-4.
    [127] P. A. Belov, Yan. Zhao, S. Tes, et al. Transmission of images with subwavelength resolution todistances of several wavelengths in the microwave range[J]. Physical Review B,2008,77(19):193108-1-193108-5.
    [128] A. V. Chebykin, A. A. Orlov, and C. R. Simovski. Nonlocal effective parameters of multilayeredmetal-dielectric metamaterials[J]. Phys. Rev. B,2012,86(11):115420-1-115420-8.
    [129] M. G. Silvirinha, P. A. Belov, and C. R. Simovski. Subwavelength imaging at infraredfrequencies using an array of metallic nanorods[J]. Physical Review B,2007,75(3):035108-1035108-9.
    [130] S. Ding, B. Z. Wang, G. D. Ge, et al. Using time reversal technique to restore source image[C].Proc. IEEE2010Conference on Microwave and Millimetre Wave Technology, Chengdu,2010,5:1160-1163.
    [131]崔万照,马伟,邱乐德,等.电磁超介质及其应用[M].北京:国防工业出版社,2008,27-31.
    [132] A. Ibraheem, J. Schoebel, and M. Koch. Group delay characteristics in coplanar waveguideleft-handed media[J]. Journal of Applied Physics,2008,103(2):4903-4909.
    [133]毕丹宏.新型超宽带微带天线的研究设计[D].成都:电子科技大学,2009,18-42.
    [134]葛广顶.时间反演电磁波的超分辨率特性及其应用[D].成都:电子科技大学,2011,55-78.
    [135] D. Wang, B. Z. Wang, G. D. Ge, et al. The feasibility of envelope-based time reversal[J]. Journalof Electromagnetic Waves and applications.2011,25(1):63-74.
    [136] G. J. Foschini. Layered space-time architecture for wireless communication in a fadingenvironment when using multiple antennas[J]. Bell Laboratories Technique Journal.1996,2:41-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700