用户名: 密码: 验证码:
家蚕和野桑蚕粗肌丝结构基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫纲在生物多样性中有着重要地位,它在进化中的成功与飞行能力的获得有着密切的关系。而有着水解ATP并将化学能转换为动能的重要功能的粗肌丝是飞行的基础。昆虫的粗肌丝主要由肌球蛋白/肌球杆蛋白、副肌球蛋白/小副肌球蛋白、Myofilin和Flightin等蛋白组成。
     肌球蛋白是由一对重链和两对轻链组成的六聚体蛋白,有着将化学能转变成机械能和形成粗肌丝的双重作用。肌球蛋白重链在大多数昆虫中由单基因编码,通过选择性编辑产生所有亚型的肽链。肌球杆蛋白和肌球蛋白重链有同一基因编码,它仅包括肌球蛋白重链的杆状区域和一个与轻链1同源的较小的N-末端。副肌球蛋白和小副肌球蛋白由同一基因编码,通过选择性启动子的使用产生的2个有着相同C-末端的蛋白。副肌球蛋白同源二聚体在肌肉的组装过程中,有着形成肌原纤维核心的作用,小副肌球蛋白的作用尚不明确。Flightin是仅在间接飞行肌中存在的一个小分子量的粗肌丝结构蛋白,可以调节间接飞行肌的性能。Myofilin是最近确认的一个粗肌丝结构蛋白,它可能位于肌原纤维的表面,功能尚不明确。
     随着家蚕基因组测序的完成,必将极大地促进家蚕分子生物学的研究,确立家蚕在鳞翅目昆虫研究中的地位。而粗肌丝结构的研究,无论是对于探讨昆虫飞行机制的理论基础,还是在害虫扩散、迁移的预测,或资源昆虫的养殖驯化中,都有着重要的意义。但家蚕飞行能力的丧失,使它不能有效代表野外昆虫,因此我们以家蚕和与家蚕有着共同祖先的野桑蚕为材料,研究其粗肌丝结构基因。
     在本试验中,我们通过RT-PCR、PCR、RACE和基因步移技术,对家蚕和野桑蚕的粗肌丝结构基因进行了研究,克隆到家蚕和野桑蚕肌球蛋白重链长度分别为2 2710 bp和2 3055 bp的基因组序列,包含转录起始位点上游约1.8 kb和poly(A)信号下游约1.0 kb。并通过生物信息学方法,确定了相关基因的结构。结果显示家蚕和野桑蚕肌球蛋白重链由单一基因编码,该基因在家蚕和野桑蚕中分别存在37和38个外显子,家蚕中的外显子24在野桑蚕中被1个大小约为300 bp的内含子分割。翻译起始密码子位于外显子2,在末端和次末端外显子中各有一个终止密码子。其中外显子3、8、11、14、17和22是含有多个外显子的相互排斥型选择性外显子组,在mRNA中存在且仅存在这些选择性编辑外显子组中的1个;可能含有,也可能排除次末端外显子。通过选择性编辑,这一基因最多可以转录780个亚型。其中在外显子13和选择性外显子3a、8b中存在导致氨基酸序列变化的差异。
     副肌球蛋白/小副肌球蛋白基因含有17个外显子,在使用最上游启动子时转录编码副肌球蛋白的mRNA,而在使用位于外显子10后面的外显子时转录编码小副肌球蛋白的mRNA,两者共用3’-末端的7个外显子。克隆到的家蚕和野桑蚕副肌球蛋白mRNA长度分别为3 250 bp和3 321 bp,可以编码877个氨基酸残基,其中第106和135位氨基酸不同。
     家蚕Myofilin基因含有9个外显子,可以产生3’-末端不同的5个亚型。所有这5个亚型的都使用5’-末端的3个外显子,且翻译起始密码子位于外显子2中。本实验从家蚕和野桑蚕成虫中分别获得3个亚型,分别编码113、193和345个氨基酸残基,其中家蚕和野桑蚕在亚型A和B中的125位存在一个氨基酸残基得差异。在成虫中野桑蚕可以产生2个不同的5’-末端,而家蚕仅使用其中的1个转录起始位点。家蚕的Flightin基因与黑腹果蝇基本相似,都是由4个外显子组成,且翻译起始密码子位于外显子2中。我们克隆到的家蚕和野桑蚕cDNA长度分别为661 bp和663 bp,编码158个氨基酸残基,其中在53位存在一个氨基酸的差异。
     通过对比分析家蚕和野桑蚕的粗肌丝结构基因,结果表明,家蚕和野桑蚕之间不含有在黑腹果蝇中鉴定的影响飞行能力的突变。这2种生物间粗肌丝结构基因存在的差异,是否与家蚕和野桑蚕的飞行能力有关,还有待进一步深入研究。另外,在实验过程中,应用家蚕的研究信息和技术方法可以在野桑蚕中得到理想的结果,因此推测野桑蚕可以作为联结家蚕和野外鳞翅目昆虫研究的纽带。
Increasing data have demonstrated that hexapoda plays a very important role in biodiversity. Gaining such a success in evolution, the insect is widely believed to be strongly associated with the obtaining of flying ability. And the flying ability of insects based on myosin filament, the functions of which are transferring chemical energy to kinetic energy as well as hydrolyzing ATP. The insect myosin filament is composed of myosin/MRP, Paramyosin/ miniParamyosin, Myofilin and Flightin.
     Myosin comprises a couple of heavy chains and two couples of light chains; it is a hexamer protein, which could transfer chemical energy to mechanical energy by conformational change. In most of insects, the heavy chain is encoded by single gene, and its hypotype peptide is formed by alternative editing. MRP, encoded by the same gene which encoded myosin, is composed by the rod-shaped region of the heavy chains of myosin, and a small N-terminal which is homologous with light chain 1. Paramyosin and mini-paramyosin are also encoded by one gene, and produce the same C-terminal but different N-terminal protein by using the alternative promoter. Paramyosin probably acts as a nuclear of forming myofibrilla in the process of installing muscular. Whereas the biology function of mini-paramyosin is unclear so far. Flightin is a myosin filament structural protein with small molecular weight. It only exists in the indirect flight muscle in Drosophila melanogaster and it is important in regulating the function of indirect flight muscle. Myofilin is a newly confirmed structural protein of myosin filament. It is probably on the surface of myofibrilla with unclear function.
     The accomplishment of B. mori genomic sequencing deeply improved the molecular biology research of B. mori, and firmly established the position of B. mori in Lepidoptera insect research. The study of myosin filament structure is meaningful in many ways, including the rationale of flying mechanism of insect, the prediction of pest extension and migration, as well as the cultivation and training of resource insect. But the B. mori have losed the ability of fly, so it should not reflect the nature of wild Lepidoptera insects. Therefore we studied two kinds of creature, B. mori and B. mandarina, that have a common ancestor, to investigate their myosin filament structural genes.
     In the present study, a number of experimental methods consist of RT-PCR, PCR, RACE, and genome walking, were used to address the myosin filament structural gene of B. mori and B. mandarina. Further more, we have confirmed the structure of relative genes by the means of bioinformatics. The genomic sequeces of B. Mori and B. Mandarina Mhc gene cloned in this exprement are 22 710 bp and 23 055 bp, respectively. The result indicates that the MHCs of B. mori and B. mandarina are encoded by a single gene, which contains 37 and 38 exons in B. mori and B. mandarina, respectively. The sequence correspond to Bombyx mori Mhc gene exon 24, is divided to 2 exon by a intron in Bombyx mandarina. These exons include six clusters of alternatively spliced exons and one differentially included penultimate exon. Thus, 780 combinations of alternatively exons are possible. In addition, 3 amino acid encoded by exon 3a, 8a, and 13, respectively, are different between Bombyx mari and Bombyx mandarina.
     Paramyosin/mini-paramyosin gene contains 17 exons. When the upstream promoter is active, it transcripts the mRNA that encodes paramyosin, while the promoter which located after exon 10 carried out its function, it transcripts the mRNA that encodes mini-paramyosin, however, both of them share 7 exons that located at 3’-terminal. The lengths of cDNA, acquired from B. mori and B. mandarina, are 3 250 bp and 3 321 bp, respectively. Of the 877 amino acids encoded, the 106th and 135th amino acids showed diversity between the two species.
     The Myofilin gene of B. mori contains 9 exons and it can bring 5 different isoforms. All of these isoforms share 3 exons of 5’-terminal, and the start codon of these isoforms locates in exon 2. We acquired three isoforms from the moth of B. mori and B. mandarina, which could encode 113, 193, and 345 amino acids, respectively. The 125th amino acid of isoform A and B is different between B. mori and B. mandarina. Alternative start sites give rise to two transcripts that differ in their 5'noncoding region but share a single open reading frame in the moth of B. mandarina, whereas only one form of the start sites could be recognized in the process of transcription in the moth of B.mori. The Flightin gene of Bombyx mori is extremely similar to the gene of Drosophila melanogaster, which comprised 4 exons, and the start codon of the gene locates in exon 2. The lengths of cDNA, acquired from B. mori and B. mandarina, are 661bp and 663bp, respectively. Of the 158 amino acids encoded, the 53th amino acid showed diversity between the two species.
     After comparing the structural gene of myosin filament of B. mori with the genes of B. mandarina, no difference of the mutations that can affect flying ability in Drosophila melanogaster was found between B. mori and B. mandarina. Therefore, the mechanisms, that contribute to the difference of the movement between the two species, pending further study. In this study, the research information and technology used on the studies of B. mori are used on the studies of B. mandarina similarly, and achieved the ideal results finally. On the basis of the conclusions above, B. mandarina can be considered as a bridge that links the studies of B. mori and wild Lepidoptera insects.
引文
[1]彩万志,庞雄飞,花保祯,等.普通昆虫学(第一版)[M].北京:中国农业大学出版社, 2001: 1-7
    [2]南开大学.昆虫学(第一版)[M].北京:高等教育出版社, 1980: 31-46
    [3]冉春玲.论鸟类与昆虫的飞行器官及飞行[J].文山师范高等专科学校学报; 2001, 13(2): 58-61
    [4] Egelman EH, Francis N, DeRosier DJ. F-actin is a helix with a random variable twist[J]. Nature. 1982; 298: 131-135
    [5] Ruiz T, Bullard B, Lepault J. Effects of calcium and nucleotides on the structure of insect flight muscle thin filaments[J]. J Muscle Res Cell Motil. 1998; 19(4): 353-364
    [6] Peckham M, Cripps RM, White DCS et al. Mechanics and protein content of insect flight muscles[J]. J Exp Biol. 1992; 168:57-76
    [7] Qiu F, Lakey A, Agianian B, et al. Troponin C in different insect muscle types: Identification of two isoforms in Lethocerus, Drosophila and Anopheles that are specific to asynchronous flight muscle in the adult insect[J]. Biochem J. 2003; 371(Pt 3) :811-821
    [8] Ball E, Karlik CC, Beall CJ, et al. Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate[J]. Cell. 1987, 51(2):221-228
    [9] Bullard B, Bell J, Craig R, et al. Arthrin: A new actin-like protein in insect flight muscle[J]. J Mol Biol. 1985; 182(3):443-454
    [10] Kolsch B, Zeigler C, Beinbrech G. Length determination of synthetic thick filaments by cooperation of two myosin-associated proteins, paramyosin and projectin[J] Naturwissenschaften. 1995,82(5):239-241
    [11] Huxley HE. The mechanism of muscular contraction[J]. Science, 1969, 164: 1356-1366
    [12] Craig R, Woodhead JL. Strucyure and function of myosin filaments[J]. Curr Opin Struct Biol. 2006,16(2):204-212
    [13] Wray JS. Structure of the backbone in myosin filament of muscle[J]. Nature. 1979; 244:37-40
    [14] Wray JS, Vibert PJ, Cohen C. Diversity of cross-bridge configurations in invertebratemuscles[J]. Nature. 1975; 257:561-564
    [15] Crowther RA, Padron R, Craig R. Arrangement of the heads of myosin in relaxed thick filaments from tarantula muscle[J]. J Mol Biol. 1985; 101:402-411
    [16] Stewart M, Kensler RW, Levine RJ. Three-dimensional reconstruction of thick filaments from Limulus and scorpion muscle[J], J Cell Biol. 1985; 101:402-411
    [17] Offer G, Knight PJ, Burgess SA, et al. A new model for the surface arrangement of myosin molecules in tarantula thick filament[J]. J Mol Biol. 2000; 298: 239-260
    [18] Beinbrech G, Ashton FT, Pepe FA. Invertebrate myosin filament: subfilament arrangement in the wall of tubular filaments of insect flight muscles(J). J Mol Biol. 1988; 201(3): 557-565
    [19] Reedy MC, Bullard B, Vigoreaux JO. Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscles[J]. J Cell Biol. 2000; 151: 1483-1499
    [20] Ferguson C, Lakey A, Hutchings A, et al. Cytoskeletal proteins of insect muscle: Location of zeelins in Lethocerus flight and leg muscle[J]. J Cell Science. 1994; 107: 1115-1129.
    [21] Ayer G, Vigoreaux JO. Flightin is a myosin rod binding protein[J]. Cell Biochem Biophys. 2003; 38: 41-54
    [22] Qiu F, Brendel S, Bullard B, et al. Myofilin, a protein in the thick filaments of insect muscle[J]. J Cell Sci. 2005; 118:1527-1536
    [23] Harrington WF, Rodgers M E. Myosin[J]. Annu Rev Biochem. 1984; 53: 35-73
    [24] Miedema K, Micheal H, Anna A, et al. Minor-myosin, a novel myosin isoform synthesized preferentially in Drosophila testis is encoded by the muscle myosin heavy chain gene[J]. Mech Dev. 1995; 51: 67-81
    [25] Erzsebet P, David MS, Vladimir Y, et al. Contribution of myosin rod protein to the structural organization of adult and embryonic muscles in Drosophila[J]. J Mol Biol. 2003; 331: 1077-7091
    [26] Bernstein SI, Mogami K, Donady JJ, et al. Drosophila muscle myosin heavy chain encoded by a single gene in a cluster of muscle mutations[J]. Nature, 1983; 302: 393-397
    [27] Rozek CE, Davidson N. Drosophila has one myosin heavy chain gene with three developmentally regulated transcripts[J]. Cell. 1983; 32: 23-34
    [28] Wassenberg DR, Kronert WA, O’Donnell PT, et al. Analysis of the Drosophila muscle myosin heavy chain gene. Alternatively spliced transcripts initiate at a singlesite and intron location are conserved compared to myosin gene of other organisms[J]. J Biol Chem. 1987; 262: 10741-10747
    [29] George EL, Ober MB, Emerson CP. Functional domains of the Drosophila melanogaster muscle myosin heavy chain gene encoded by alternatively spiced exons[J]. Mol Cell Biol. 1989; 9: 2957-2974
    [30] Collier VL, Kronert WA, Bernstein SI, et al. Alternative myosin hinge regions are utilized in a tissue-specific fashion that correlates with muscle contraction speed[J]. Genes Dev. 1990; 4: 885-895
    [31] David MS, Mary BD, Koos M, et al. Myosin rod protein: a novel thick filament component of Drosophila muscle[J]. J mol Biol. 1997; 265: 40-55
    [32] Zhang SX, Bernstein SI. Spatially and temporally regulated expression of myosin heavy chain alternative exons during Drosophila embryogenesis[J]. Mech Dev. 2001; 101: 35-45
    [33] O’Donnell PT, Bernstein SI. Molecular and ultrastructural defects in a Drosophila myosin heavy chain mutant: Differential effects on muscle function produced by similar thick filament abnormalities[J]. J Cell Biol. 1988; 107: 2601-2612
    [34] Davis MB, Dietz J, Standiford DM, et al. Transposable element insertions respecify alternative exon splicing in three Drosophila myosin heavy chain mutants[J]. Genetics. 1998; 150: 1105-1114
    [35] Mogami K, Hotta Y. Isolation of Drosophila flightless mutants which affect myofibrillar proteins of indirect flight muscle[J]. Mol Gen Genet. 1981; 183: 407-417
    [36] O’Donnell PT, Collier VL, Mogami K, et al. Ultractural and molecular analyses of homozygous-viable Drosophila melanogaster muscle indicate there is a complex pattern of myosin heavy-chain isoform distribution[J]. Genes Dev. 1989; 3: 1233-1249
    [37] Kronert WA, Edwards KA, Roche ES, et al. Muscle-specific accumulation of Drosophila myosin myosin heavy chain: a splicing mutation in an alternative exon results in an isoform substitution[J]. EMBO J. 1991; 10: 2479-2488
    [38] Kronert WA, O’Donnell PT, Bernstein SI. A charge in an evolutionarily- conserved region of the myosin globular head prevents myosin and thick filament accumulation in Drosophila[J]. J Mel Biol. 1994; 236: 697-702
    [39] Kronert WA, Aceber A, Ferrus A, et al. Specific myosin heavy chain mutations suppress troponin I defects in Drosophila muscles[J]. J Cell Biol. 1999; 144:989-1000
    [40] Kronert WA, O’Donnell PT, Fieck A, et al. Defects in the Drosophila myosin rod permit sarcomere assembly but cause flight muscle degeneration[J]. J Mol Biol. 1995; 249: 111-125
    [41] Henkin JA, Maughan DW, Vigoreaux JO. Mutations that affect flightin expression in Drosophila alter the viscoelastic properties of flighti muscle fibers[J]. Am Physiol Cell Physiol. 2003; 286: C65-C72
    [42] Swank DM, Knowles AF, Kronert WA, et al. Varialble N-terminal regions of muscle myosin heavy chain modulate ATPase rate and actin sligding velocity[J]. J Biol Chem. 2003; 278: 17475-17482
    [43] Swank DM, Knowles AF, Bernstein SI, et al. Alternative N-terminal regions of Drosophila myosin heavy chain tune cross-bridge kinetics for optimal muscle power output[J]. Biophys J. 2004; 87(3): 1805-1814
    [44] Miller BM, Zhang S, Suggs JA, et al. An Alternative Domain Near the Nucleotide-binding Site of Drosophila Muscle Myosin Affects ATPase Kinetics [J]. J Mol Biol. 2005; 353: 14-25
    [45] Swank DM, Zhang S, Suggs JA, et al. Functional analysis of a myosin domain located near the site of ATP entry[J]. Biophys J, 1999,76:A81
    [46] Miller BM, Nyitrai M, Bernstein SI, et al. Kinetic analysis of Drosophila muscle myosin isoforms suggests a novel mode of mechanochemical coupling[J]. J Biol Chem. 2003; 278: 50293-50300
    [47] Geeves MA, Holmer KC. Structural mechanism of muscle contration[J], Annu Rev Biochem. 1999; 68: 687-728
    [48] Dominguez R, Freyzon Y, Trybus KM, et al. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: Visualization of the prepower stroke state[J]. Cell. 1998; 94: 559-571
    [49] Swank DM, Knowles AF, Maughan D, et al. Alternative versions of the myosin relay loop influence Drosophila muscle kinetics[J]. Biophys J. 2004; 86:565a
    [50] Littlefield KP, Swank DM, Sanchez BM, et al. The converter domain modulates kinetic properties of Drosophila myosin[J]. Am J Physiol Cell Physiol. 2003; 284: C1031-1038
    [51] Swank DM, Zhang S, Suggs JA, et al. The myosin converter domain modulates muscle performance[J]. Nat Cell Biol. 2003; 4: 312-317
    [52] Suggs JA, Kronert WA, Nikkhoy M et al. Functional importance of the hinge regionof the muscle myosin heavy chain rod in Drosophila melanogaster[J]. Biophys J. 2001; 80: 573a
    [53] Suggs JA, Cammarato A, Kronert WA, et al. Alternative S2 hinge regions of the myosin rod differentially affect muscle function, myofibril dimensions and myosin tail length[J]. J Mol Biol. 2009; 367: 1312-1329
    [54] Wells L, Edwards KA, Bernstein SI. Myosin heavy chain isoforms regulate muscle function but not myofibril assembly[J]. EMBO J. 1996; 15: 4454-4459
    [55] Swank DM, Wells L, Kronert WA et al. Determining structure/function relationships for sarcomeric myosin heavy chain by genetic and transgenic manipulation of Drosophila[J]. Microsc Res Tech. 2000; 50: 430-442.
    [56] Emerson CP, Bernstein SI. Molecular genetics of myosin[J]. Ann Rev Biochem. 1987; 56: 695-726
    [57] Hastings GA, Emerson Jr CP. Myosin functional domains encoded by alternative exons are expressed in specific thoracic muscles of Drosophila[J]. J Cell Biol. 1991; 114:263-276
    [58] Kazzaz JA. Rozek CE. Tiss-specific expression of the alternately processed Drosophila myosin heavy-chain messenger RNAs[J]. Dev Biol. 1989; 133: 550-561
    [59] Basi GS, Storti RV. Structure and DNA sequence of the tropomyosin I gene from Drosophila melanogaster[J]. J Biol Chem. 1986; 261: 817-827
    [60] Falkenthal S, Parker VP, Mattox WW, et al. Drosophila melanogaster has only one myosin alkali light-chain gene which encodes a protein with considerable amino acid sequence homology to chicken myosin alkali light chains[J]. Mol Cell Biol. 1984; 4(5): 956-965
    [61] Geyer PK, Fyrberg EA. 5'-flanking sequence required for regulated expression of a muscle-specific Drosophila melanogaster actin gene[J]. Mol Cell Biol. 1986; 6: 3388-3396
    [62] Marin MC, Rodriguez S, Fischer JA. Transcription of Drosophila troponin I gene is regulated by two conserved, functionally identical, synergistic elements[J]. Mol Biol Cell. 2004, 15: 1185-1196
    [63] Mas JA, Garcia-Zaragoza, E, Cervera M. Two functionally identical modular enhancers in Drosophila troponin T gene establish the correct protein levels in different muscle types[J]. Mol Biol Cell. 2004; 15: 1931-1945
    [64] Parker VP, Falkenthal S, Davidson N. Characterization of the myosin light chain-2 gene of Drosophila meanogaster[J]. Mol Cell Biol. 1985; 5: 3058-3068
    [65] Baldwin AS, Kittler ELW, Emerson CP. Structure, evolution, and regulation of a fast skeletal muscle troponin I gene[J]. Proc Natl Acad Sci USA. 1985; 82: 8080-8084
    [66] Chang KS, Rothblum, KM, Schwartz RJ. The complete sequence of the chicken alpha-cardiac actin gene: a highly conserved vertebrate gene[J]. Nucleic Acids Res. 1985; 13:1223-1237
    [67] Fornwald JA, Kuncio G, Peng I, et al. The complete nucleotide sequence of the chick alpha-actin gene and its evolutionary relationship to the actin gene family[J]. Nucleic Acids Res. 1982; 10: 3861-3876
    [68] Nabeshima Y, Fujii-Kuriyama Y, Muramatsu M, et al. Alternative transcription and two modes of splicing result in two myosin light chains from one gene[J]. 1984; 308: 333-338
    [69] Strehler EF, Strehler-Page MA, Perriared JC, et al. Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. Evidence against intron-dependent evolution of the rod[J]. J Mol Biol. 1986; 190: 291-317
    [70] Konieczny SF, Emerson CP. Complex regulation of the muscle-specific contractile protein (troponin I) gene[J]. Mol Cell Biol. 1987; 7: 3065-3075
    [71] Meredith J, Storti RV. Developmental regulation of the Drosophila tropomyosin II gene in different muscles is controlled by muscle-type-specific intron enhancer elements and distal and proximal promoter control elements[J]. Dev Biol. 1993; 159(2): 500-512
    [72] Ng SY, Gunning PI, Liu SH, et al. Regulation of the human beta-actin promoter by upstream and intron domains[J]. Nucleic Acids Res. 1989; 17: 601-615
    [73] Yutzey KE, Kline RL, Konieczny SF. An internal regulatory element control troponin I gene expression[J]. Mol Cell Biol. 1989; 9: 1397-1405
    [74] Hess NK, Singer PA, Trinh K, et al. Transcriptional regulation of the Drosophila melanogaster muscle myosin heavy-chain gene[J]. Gene Expr Patterns. 2007; 7(4): 413-22
    [75] Hanke PD, Storti RV. The Drosophila melanogaster tropomyosin II gene produces multiple proteins by use of alternative tissue-specific promoters and alternative splicing[J]. Mol Cell Biol. 1988; 8(9): 3591-3602
    [76] Gasch A, Hinz U, Renkawitz-Pohl R. Intron and upstream sequences regulate expression of the Drosophila beta 3-tubulin gene in the visceral and somatic musculature, respectively[J]. Acad Sci USA. 1989; 86: 3215-3218
    [77] Hinz U, Kronert WA, Bernstein SI. Ultrabithorax is a regulator of beta 3 tubulinexpression in the Drosophila visceral mesoderm[J]. Development. 1992; 116: 543-554
    [78] Schultz GM, Tansey T, Gremke L, et al. A muscle-specific intron enhancer required for rescue of indirect flight muscle function regulates Drosophila tropomyosin I gene expression[J]. Mol Cell Biol. 1991; 11: 1901-1911
    [79] Vigoreaux JO, Saide JD, Pardue ML. Structurally different Drosophila striated muscle utilize distinct distinct variants of Z-band-associated proteins[J]. J Muscle Rev Cell Motil. 1991; 12: 340-354
    [80] Baker PW, Tanaka KK, Klitgord N, et al. Adult myogenesis in Drosophila melanogaster can proceed independently of myocyte enhancer factor-2[J]. Genetics. 2005; 170: 1747-1759
    [81] Arredondo JJ, Ferreres RM, Maroto M, et al. Control of Drosophila Paramyosin/miniparamyosin gene expression[J]. J Biol Chem. 2001; 276: 8278-8287
    [82] Kelly KK, Meadows SM, Cripps RM. Drosophila MEF2 is a direct regulator of Actin57B transcription in cardiac, skeletal, and visceral muscle lineages[J]. Mech Dev. 2002; 110: 39-50
    [83] Damm C, Wolk A, Buttgereit D, et al. Independent regulatory elements in the upstream region of the Drosophila 3 tubulin gene (Tub60D) guide expression in the dorsal vessel and the somatic muscles[J]. Dev Biol. 1998; 199: 138-149
    [84] Lin MH, Nguyen HT, Dybala C, et al. Myocyte-specific enhancer factor 2 acts cooperatively with a muscle activator region to regulate Drosophila tropomyosin gene muscle expression[J]. PNAS. 1996; 93: 4623-4628
    [85] Broadie KS, Bate M. The development of adult muscles in Drosophila: ablation of identified muscle precursor cells[J]. Development. 1991; 113: 103-118
    [86] Bernard F, Dutriaux A, Silber J, et al. Notch pathway repression by vestigial is required to promote indirect flight muscle differentiation in Drosophila melanogaster[J]. Dev Biol. 2006; 295: 164-177
    [87] Farrell ER, Fernandes J, Keshishian H. Muscle Organizers in Drosophila: The Role of Persistent Larval Fibers in Adult Flight Muscle Development[J]. Dev Biol. 1996; 176: 220-229
    [88] Fernandes J, Bate M, Vijay Raghaven K. Development of the indirect flight muscles of Drosophila[J]. Development. 1991; 113: 67-77
    [89] Standiford DM, Davis MB, Miedema K, et al. Myosin rod protein: A novel thick filament component of Drosophila muscle[J]. J Mol Biol. 1997; 265: 40-55
    [90] Polyak, E, Standiford DM, Yakopson V, et al. Contribution of myosin rod protein to the structural organization of adult and embryonic muscles in Drosophila[J]. J Mol Biol. 2003; 331: 1077-1091
    [91] Falkenthal S, Parker VP, Davidson N. Developmental variations in the splicing pattern of transcripts from the Drosophila gene encoding myosin alkali light chain result in different carboxyl-terminal amino acide sequences[J]. Proc Acad Sci USA. 1985; 82: 449-453
    [92] Falkenthal S, Parker VP, Wilkinson J. The indirect flight muscle of Drosophila accumulates a unique myosin alkali light chain isoform[J]. Dev Biol. 1987; 121(1): 263-272
    [93] Leicht BG, Lyckegaard EM, Benedict CM, et al. Conservation of alternative splicing and genomic organization of the myosin alkali light-chain (Mlc1) gene among Drosophila species[J]. Mol Biol Evol. 1993; 10(4): 769-790
    [94] Rayment I, Rypniewski WR, Schmidt-B?se K, et al. Three-dimensional structure of myosin subfragment-1: a molecular motor[J]. Science. 1993; 261: 50-58
    [95] Sweeney HL, Kushmerick MJ, Mabuchi K, et al. Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers[J]. J Biol Chem. 1988; 263: 9034-9039
    [96] Lowey S, Waller GS, Trybus KM. Skeletal muscle myosin light chains are essential for physiological speeds of shortening[J]. Nature. 1993; 365: 454 - 456
    [97] Leicht BG, Muse SV, Hanczyc M, et al. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila[J]. Genetics. 1995; 139: 299-308
    [98] Kretsinger RH. Structure and evolution of calcium-modulated proteins[J]. Crit Rev Biochem. 1980; 8: 119-174
    [99] Toffenetti J, Mischke D, Pardue ML. Isolation and characterization of the gene for myosin light chain two of Drosophila melanogaster[J]. J Cell Biol. 1987; 104: 19-28
    [100] Warmke JW, Krecuz AJ, Falkenthal S. Colocalization to chromosome bands 99E1-3 of the Drosophila melanogaster myosin light chain-2 gene and a haplo-insufficient locus that affect flight behavior[J]. Genetics. 1989; 122: 139-151
    [101] Warmke, J, M. Yamakawa, J E Molloy, et al. A myosin light chain-2 mutation affects flight, wing beat frequency and indirect flight muscle contraction kinetics in Drosophila[J]. J Cell Biol. 1992; 119: 1523–1536
    [102] Vibert P, Craig R. Structural changes that occur in scallop myosin filaments uponactivation[J]. J Cell Biol. 1985; 101: 830-837
    [103] Schaub MC, Jauch A, Walzthoeny D, et al. Myosin light chain functions[J]. Biomed Biochim Acta. 1986; 45: S39-44
    [104] Sutoh K. Identification of myosin-binding sites on the actin sequence[J]. Biochemistry. 1982; 21: 3654-3661
    [105] Trayer IP, Trayer HR, Levine BA. Evidence that the N-terminal region of Al-light chain of myosin interacts directly with the C-terminal region of actin. A proton magnetic resonance study[J]. Eur J Biochem. 1987; 164: 259-266
    [106] Andreev OA, Saraswar LD, Lowey S, et al. Interaction of the N-terminus of chicken skeletal essential light chain 1 with F-actin[J], Biochemistry. 1999; 38: 2480-2485
    [107] Moore JR, Dickinson MH, Vigoreaux JO, et al. The effect of removing the N-terminal extension of the Drosophila myosin regulatory light chain upon flight ability and the contractile dynamics of indirect flight muscle[J]. Biophys J. 2000; 78: 1431-1440
    [108] Takahashi S, Takano-Ohmuro H, Maruyama K. Regulation of Drosophila myosin ATPase activity by phosphorylation of myosin light chain-I. Wild-type fly[J]. Comp Biochem Physiol B. 1990; 95: 179-181
    [109] Takahashi S, Takano-Ohmuro H, Maruyama K, et al.. Regulation of Drosophila myosin ATPase activity by phosphorylation of myosin light chain-I. Flightless mfd-fly[J]. Comp Biochem Physiol B. 1990; 95: 183-185
    [110] Takahashi S, Maruyama K. Activity changes in myosin ATPase during metamorphosis of fruitfly[J]. Zool Sci. 1987; 4: 833-838
    [111] Tohtong R, Yamashita H, Graham M, et al. Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain[J], Nature. 1995; 374: 650-653
    [112] Dickinson MH, Hyatt CJ, Lehmann FO, et al. Phasophorylation-dependent power output of transgenic flies: An integrated study[J], Biophys J. 1997; 73: 3122-3134
    [113] Vinos J, Domingo A, Marco R et al. Identification and characterization of Drosophila melanogaster paramyosin[J]. J Mol Biol. 1991; 220: 687-700
    [114] Becker KD, O'Donnell PT, Heitz JM et al. Analysis of Drosophila paramyosin: Identification of a novel isoform which is restricted to a subset of adult muscles[J]. J Cell Biol. 1992; 116: 669-681
    [115] Vinos J, Maroto M, Garesse R et al. Drosophila melanogaster paramyosin: Developmental pattern, mapping and properties deduced from its complete codingsequence[J]. Mol Gen Genet. 1992; 231: 385-394
    [116] Vinos J, Maroto M, Garess R, et al. Drosophila melanogaster paramyosin : Developmental pattern, mapping and properties deduced from its complete coding sequence [J]. Mol Gen Genet. 1992; 231: 385-394
    [117] Cohen C, Lanar DE, Parry DA. Amino acid sequence and structural repeats in Schistosome paramyosin match those of myosin[J]. Biosci Rep. 1987; 7: 11-16
    [118] Maroto M, Arredondo JJ, Goulding D, et al. Drosophila paramyosin/ miniparamyosin gene products show a large diversity in quantity, localization, and isoform pattern: A possible role in muscle maturation and function[J]. J Cell Biol. 1996; 134:81-92
    [119] Liu H, Mark S M, Douglas M, et al. Paramyosin phosphorylation site disruption affects indirect flight muscle stiffness and power generation in Drosophila melanogaster[J]. PNAS. 2005; 102: 10522-10527
    [120] White DC. Analysis of microorganisms in terms of quantity and activity in natural environments[J]. J Physiol.1983; 343: 31–57
    [121] Hoppe PE, Waterston RH. A region of the myosin rod important for interaction with paramyosin in Caenorhabditis elegans striated muscle[J]. Genetics. 2000; 156: 631-643
    [122] Moore JR, Vigoreaux JO, Maughan DW. The Drosophila projectin mutant, bentD, has reduced stretch activation and altered indirect flight muscle kinetics[J] J Muscle Res Cell Motil. 1999; 20: 797-806
    [123] Kulke M, Neagoe C, Kolmerer B, et al. Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle[J]. J Cell Biol. 2001; 154: 1045-1057
    [124] Maroto M, Arredondo JJ, San Román M, et al. Analysis of the paramyosin/ miniparamyosin gene. Miniparamyosin is an independently transcribed, distinct paramyosin isoform, widely distributed in invertebrates[J]. J Biol Chem. 1995; 270(9): 4375-4382
    [125] Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins[J]. Annu Rev Cell Dev Biol. 1998; 14: 167-196
    [126] Lin SC, Storti RV. Developmental regulation of the Drosophila Tropomyosin I (TmI) gene is controlled by a muscle activator enhancer region that contains multiple cis-elements and binding sites for multiple proteins[J]. Dev Genet. 1997; 20(4): 297-306
    [127] Gremke L, Lord PC, Sabacan L, et al. Coordinate Regulation of DrosophilaTropomyosin Gene Expression Is Controlled by Multiple Muscle-Type-Specific Positive and Negative Enhancer Elements[J]. Dev Biol. 1993; 159(2): 513-527
    [128] Karlik CC, Fyrberg EA, Two Drosophila melanogaster tropomyosin genes: structural and functional aspects[J]. Mol Cell Biol. 1986; 6(6): 1965-1973
    [129] Newlands S, Levitt LK, Robinson CS, et al. Transcription occurs in pulses in muscle fibers[J]. Genes Dev. 1998; 12(17): 2748-2758
    [130] Bullard B, Sainsbury GM. The proteins in the Z line of insect flight muscle[J]. Biochem J. 1977; 161(2): 399-403
    [131] Fyrberg EA. Genetic and molecular analyses of Drosophila contractile protein genes[J]. Cell Mol Biol. 1985; 2: 250-254
    [132] Bernstein SI, O’Donnell PT, Cripps RM. Molecular genetic analysis of muscle development, structure, and function in Drosophilar[J]. Int Rev Cytol. 1993; 143: 63-152
    [133] Spellman PT, Rubin GM. Evidence for large domain of similarly expressed genes in the Drosophila genome[J]. J Biol. 2002; 1(1): 5
    [134] Vigoreaux JO, Saide JD, Valgeirsdottir K, et al. Flightin, a novel myofibrillar protein of Drosophila stretchactivated muscles[J]. J Cell Biol, 1993; 121: 587-598
    [135] Vigoreaux JO, Perry ML. Multiple isoelectric variants of flightin in Drosophila stretch-activated muscles are generated by temporally regulated phosphorylations[J]. J Muscle Res Cell Motil. 1994; 15: 607-616
    [136] Vigoreaux JO, Hernandez C, Moore J, et al. A genetic deficiency that spans the flightin gene of Drosophila melanogaster affects the ultrastructure and function of the flight muscles[J]. J Exp Biol. 1998; 201: 2033-2044
    [137] Barton B, Ayer G, Maughan, et al. Site directed mutagenesis of Drosophila flightin disrupts phosphorylation and impaires flight muscle structure and mechanics[J]. J Muscle Rev Cell Motil. 2007; 28: 219-230
    [138] Barton B, Ayer G, Vigoreaux JO, et al. Flight muscle properties and aerodynamic performance of Drosophila expressing a flightin transgene[J]. J Exp Biol. 2005; 208: 549-560
    [139] Ohbayashi F, Suzuki MG, Mita K, et al. A homologue of the Drosophila doublesex gene is transcribed into sex-specific mRNA isoforms in the silkworm, Bombyx mori[J]. Comp Biochem Physiol B Biochem Mol Biol. 2001; 128(1): 145-158
    [140] Suzuki MG, Funaguma S, Kanda T, et al. Analysis of the biological functions of a doublesex homologue in Bombyx mori[J]. Dev Genes Evol. 2003; 213: 345-354
    [141] Suzuki MG, Funaguma S, Kanda T, et al. Role of the male BmDSX protein in the sexual differentiation of Bombyx mori[J]. Evol Dev. 2005; 7(1): 58-68
    [142] Lynch KW, Maniatis T. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer[J]. Genes Dev. 1996; 10: 2089-2101
    [143] Suzuki MG, Ohbayashi F, Mita K, et al. The mechanism of sex-specific splicing at the doublesex gene is different between Drosophila melanogaster and Bombyx mori[J]. Insect Biochem Mol Biol. 2001; 31: 1201-1211
    [144] Xia QY, Zhou ZY, Yu J, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori) [J]. Science. 2004; 306: 1937-1940
    [145]北京农业大学.昆虫学通论(第一版)[M].北京:农业出版社, 1980:226-227
    [146]徐汝梅,成新跃.昆虫种群生态学——基础与前沿(第一版)[M].北京:科学出版社, 2005; 310-312
    [147]向仲怀,黄君霆,夏建国,等.蚕丝生物学(第一版)[M].北京:中国林业出版社, 2005; 1-7
    [148] Masataka G S, Turu S, Masahiko K. Bm kettin, homologue of the Drosophila kittin gene, is located on the Z chromosome in Bombyx mori and is not dosage compensated[J]. Heredity. 1999; 82: 170-179
    [149] Koike Y, Mita K, Suzuki MG, et al. Genomic sequence of a 320-kb segment of the Z chromosome of Bombyx mori containing a kettin ortholog[J]. 2003; 269: 137-149
    [150]浙江大学.家蚕病理学(第一版)[M].北京:中国农业出版社, 2001:1
    [151] Berghammer AJ, Klingler M, Wimmer E. A universalmarker for transgenic insects[J]. Nature. 1999; 402: 370-371
    [152]吉武成美,蒋猷龙.家蚕的起源和分化[J].蚕业科学. 1987; 13(3): 182-183
    [153] Odronitz F, Kollmar M. Comparative genomic analysis of the arthropod muscle myosin heavy chain genes allows ancestral gene reconstruction and reveals a new type of‘partially’processed pseudogen(J). BMC Mol Biol. 2008; 9: 21-38
    [154] Bernstein SI, Milligan RA. Fine tuning a molecular motor: the location of alternative domain in the Drosophila myosin head[J]. J Mol Biol. 1997; 271:1-6
    [155] Miller BM, Nyitrai M, Swank DM, et al. An alternative domain near the nucleotide binding pocket of Drosophila myosin modulates weak-binding states[J]. Biophys J. 2005; 86: 29a
    [156] Mogami K, O’Donnell PT, Bernstein SI, et al. Mutations of the Drosophila myosinheavy-chain gene: Effect on transcription, myosin accumulation, and muscle function[J]. Proc Natl Acad Sci USA. 1986; 83: 1393-1397
    [157] Elfvin M, Levine RJC, Dewey M M, et al. Paramyosin in invertebrate muscles[J]. J Cell Biol. 1976; 71: 261-272
    [158] Epstein HF, Aronow BJ, Harris HE. Myosin-pararnyosin cofilaments: Enzymatic interactions with F-actin[J]. Proc Natl Acad Sci USA. 1976; 73: 3015-3019
    [159] Liu H, Mardahl-Dumesnil M, Sweeney ST, et al. Drosophila paramyosin is important for myoblast fusion and essential for myofibril formation [J]. J Cell Biol. 2003; 160: 899-908
    [160] Cohen C, Szent-Cyoky A G, Kendrick-Jones J. Paramyosin and the filaments of molluscan“catch”muscle. I. Paramyosin: structure and assembly [J]. J Mol Biol. 1971; 56: 223-237
    [161] Cohen C, Parry DA. Alpha-helical coiled-coils and bundles: how to design an alpha-helical protein [J]. Proteins. 1990; 7: 1-15
    [162] Dey CS, Deitiker PR, Epstein HF. Assembly-dependent phosphorylation of myosin and paramyosin of native thick filaments in Caenorhabditis elegans[J]. Biochem Biophys Res Commun. 1992; 186(3):1528-1532
    [163] Hoppe PE, Waterston RH. Hydrophobicity variations along the surface of the coiled-coil rod may mediate striated muscle myosin assembly in Caenorhabditis elegans[J]. J Cell Biol, 1996,135:371-382
    [164] Cohen C, Parry DA. A conserved C-terminal assembly region in paramyosin and myosin rods[J]. J Struct Biol, 1998,122:180-187
    [165] Hughes S M, Salinas P C. Control of muscle fibre and motoneuron diversification[J]. Curr Opin Neurobiol. 1999; 9: 54-64
    [166] McKinsey TA, Zhang CL, Olson EN. Signaling chromatin to make muscle[J]. Curr Opin Cell Biol. 2002; 14: 763-772
    [167] Stockdale FE. Mechanisms of formation of muscle fiber types[J]. Cell Struct Funct. 1997; 22: 37-43
    [168] Buckingham M, Houzelstein D, Lyons G, et al. Expression of muscle genes in the mouse embryo[J]. Symp Soc Exp Biol. 1992; 46: 203-217
    [169]王镜岩,朱圣庚,徐长法,等.生物化学(下)[M].第3版.北京:高等教育出版社, 2002: 463
    [170] Lin SC, Lin MH, Horvath P, et al. PDP1, a novel Drosophila PAR domain bZIP transcription factor expressed in developing mesoderm, endoderm and ectoderm, is atranscriptional regulator of somatic muscle genes[J]. Development. 1997; 124: 4685-4698
    [171] Tapscott S J, Davis R L, Thayer M J, et al., MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts[J]. Science. 1988; 242(4877): 405-411
    [172]程震龙,朱大海,张志谦. MEF2与肌肉发生[J].遗传, 2002,24(5):581-585
    [173] Vigoreaux JO, Saide JD, Valgeirsdottir K, et al. Flightin, a novel myofibrillar protein of Drosophila stretchactivated muscles[J]. J Cell Biol. 1993; 121: 587-598
    [174] Nongthomba U, Cummins M, Vigoreaux JO, et al. Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster[J]. Genetics. 2003; 164: 209-222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700