多孔丝素蛋白材料的血管化及其组织再生性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,生物材料的研究从最初的惰性材料到生物活性材料,进而转向开发可原位诱导组织再生、器官形成的组织诱导性生物材料。丝素蛋白由于其良好的组织相容性、易加工性和可降解性等,作为组织诱导性生物医用材料的研究日益受到关注。
     对于机体的绝大多数组织而言,血管新生是损伤修复过程中必不可少的环节。因此,利用生物材料辅助修复缺损组织时,必然要求生物材料能够快速有效地血管化。尽管目前已经有很多研究关注改善生物材料的血管化问题,比如,设计和加工具有恰当孔径、孔隙率和连通性的多孔材料,向材料中添加血管生长因子、接种细胞及人造血管等等。但是,生物材料血管化的详细过程及其与组织再生之间的相互关系,生物材料性能与血管化及组织再生的相互关系,体内环境对生物材料的修饰作用和该作用对血管化的影响以及材料降解性能与组织再生之间的相互关系等方面,尚无系统的研究。故目前关于材料血管化方面的研究,在应用水平上仍然没有取得实际意义的成功,生物材料的血管化问题仍然是制约生物材料研究与应用的主要因素。
     本文以丝素蛋白基医用生物材料研发中的关键问题——材料的血管化及其组织再生性能为目标进行研究和探讨。通过对多孔丝素蛋白材料和聚乙烯醇(PVA)海绵在不同组织中的血管化过程的仔细观察以及对生物材料血管化与组织再生之间的关系的探讨,从生物学和材料科学的角度分析与讨论了生物材料血管化及组织再生的过程与实质。
     进一步,通过结合体内外方法考察了体内环境对植入材料的修饰作用及其对细胞增殖、伤口愈合的影响。体内环境对生物材料的修饰作用,主要包括蛋白吸附及细胞外基质在材料中的组装。经过体内环境的修饰作用,生物材料即被活化,为细胞生长提供适宜的微环境。
     本文最后提出一种评价材料降解与组织再生之间的协调性的方法,半定量的考察材料的降解性能及其对组织再生的影响,进一步揭示材料降解与组织再生之间的关系。
     本研究将形态结构相似的多孔丝素蛋白材料和聚乙烯醇(PVA)海绵分别植入大鼠背部真皮组织和股部肌肉组织,通过组织学切片详细观察其血管化过程和组织再生情况。结果表明,多孔丝素蛋白材料和PVA海绵,无论植入真皮组织还是肌肉组织,其血管化过程具有共同的步骤和特征。这个过程包括4个依次连续发生的阶段:吸附阶段,细胞外基质组装阶段,组织及血管快速增生阶段及重塑阶段。据此推测,此模式为多孔生物材料在体内血管化所共有。这为开发多孔医用生物材料以促进生物材料快速有效的血管化提供了实验基础。
     通过考察多孔丝素蛋白材料和PVA海绵中的血管化和组织再生之间的关系,结果表明,植入早期细胞外基质在生物材料中的组装及细胞增殖首先为材料的血管化提供了良好的条件,材料良好的血管化又为新生组织的进一步生长提供保证。通过比较,多孔丝素蛋白材料的血管化情况优于PVA海绵,其组织再生的速度快于PVA海绵,新生组织的质量优于PVA海绵。由此可知,生物材料的化学组成对材料的血管化及其组织再生重要影响。
     此外,结合体内外方法,进一步考察了体内环境对生物材料的修饰作用及其对细胞增殖和伤口愈合的影响,考察了材料性能对这种修饰作用的影响。结果表明,生物材料植入体内以后,体内环境会立即对材料进行修饰,这种修饰作用对细胞增殖活性及伤口愈合时间及愈合质量有重要影响。多孔丝素蛋白材料和PVA海绵的比较表明,材料的表面化学组成及表面形态结构不同,体内环境的修饰效果也就不同。
     最后,通过定义残余材料面积百分比、降解材料面积百分比和组织再生面积百分比来半定量描述生物材料的降解程度和组织再生情况,通过生物材料降解曲线与组织再生曲线来比较材料降解速率与组织再生速率之间的协调性。从而提出了一种判定生物材料降解速率与组织再生速率之间协调程度的半定量方法。经过初步的实验验证,这种方法的评价结果与形态学观察结果一致,说明该方法简便、快速、可行。
     总之,本研究通过观察多孔生物材料血管化过程,进一步分析了生物材料血管化与组织再生之间的关系。通过体内外方法对生物材料的体内修饰作用及其对细胞增殖和伤口愈合的作用进行了考察,通过比较多孔丝素蛋白材料和PVA海绵不同的修饰结果,表明生物材料的化学组成及表面形态结构对体内修饰作用的效果有重要影响。最后,本文提出了一种评价材料降解速率与组织再生速率协调性的半定量方法,考察了生物材料降解与组织再生之间的关系。期望本文研究结果能够为生物材料的血管化和组织再生提供实验依据,为血管新生、伤口愈合等基础理论研究提供参考,为进一步建立生物材料与组织再生之间的量化模型提供基础。
Within the past decades, biomaterials have been evolved from inert materials to bioactive materials and tissue inducing biomaterials which may induce tissue regeneration in situ. Because of nice biocompatibility, processible attributes and biodegradability of silk fibroin, study on the biomaterials based on silk fibroin has attracted more and more intrest.
     Angiogenesis is a key step during wound healing in most tissues, so biomaterials aided wound healing requires rapid and effective neovascularization of biomaterials after implantation. Althogh lots of researches focus on the problem such as design and preparation of porous biomaterials, application of growth factors and (stem) cells and artificial blood vessels, little real success has been abtained and bad neovascularization of biomaterials has been the main obstacle in terms of clinical application.
     In addition, little knowledge of detailed neovascularization of biomaterials, effects of in vivo circumstance on biomaterials implanted, and how to evaluate the degradation rate of biomaterials and tissue regeneration rate is known.
     Thus, the purpose of this study is to explore and analyze the essence of neovascularization and inducibility in biomaterials through observation on the neovascularization process occurred in porous silk fibroin materials and polyvinyl alcohol (PVA) sponges.
     In this study, porous silk fibroin materials and PVA sponges were implanted in muscles of hind limb and back skin in rats, and the neovascularization process in both materials has been observed in detail via tissue sections. In addition, the biocompatibility of porous silk fibroin materials and PVA sponges has been semi-quantitively compared through histological scoring method. The results showed that identical neovascularization process occurred in both materials either implanted in the muscles or the back skin. The process mainly included four sequential steps as follows: adsorptioin, organization of extracellular matrix (ECM), rapid proliferation of tissues and remodeling of the tissues and blood vessels networks. This might be the implication of general mode of neovascularization process in porous biomaterials. Furthermore, the results showed that porous silk fibroin materials have better biocompatibility than PVA sponges.
     The in vivo decoration of porous silk fibroin materials and tissue regenration in porous silk fibroin materials have been further examined by combination with in vivo implantation and in vitro cell culture. The definition of in vivo decoration mainly indicates the protein adsorption and ECM organization in the materials in vivo. As for the results that porous silk fibroin materials have been more advantageous than PVA sponges to neovascularization and tissue regeneration, there might be 4 reasons as follows: (1) silk fibroin, as a natural protein, has better biocompatibility than polymers; (2) the surface texture of porous silk fibroin materials might be suitable for protein adsorption and ECM organization; (3) the porous structure of porous silk fibroin materials facilitates the ingrowth of endothelial cells and fibroblasts; (4) the biodegradation rate of porous silk fibroin materials accords with the tissue regeneration rate.
     In the last chapter, the degradation of biomaterials and tissue regeneration were quantified by definition of area percentage of residual biomaterials (Rirs(%)=Sis/S1s×100%) and area percentage of newly formed tissues (Rint(%)=Sit/Sg×100%) in histological sections. Besides, biodegradation rate of biomaterials and tissue regeneration rate were compared by comparison of growth time of newly formed tissues (tr) and biodegradation time (tm) of biomaterials. In brief, a semi-quantitive method has been established in this paper to evaluate the synchronization extent between the degradation rate of biomaterials and regeneration rate of tissues.
     Where Sis is the area of residual biomaterials i days after implantation, S1s is the area of biomaterials 1 day after implantation, Sit is the area of newly formed tissues i days after implantation, Sg is the area of full recovery tissues. And tr indicates the time (day) when a certain amount of tissues have been regenerated and thus they could continue growing without any stent. tm indicates the time (day) when a certain amount of biomaterials have been biodegraded and thus they lose their whole support.
     Through this method, the accordance between tissue regeneration and biodegradation of biomaterials could be evaluated semi-quantitatively. Moreover, the feasibility of this method was testified through in vivo experiments, and the results suggested that this method is rapid, feasible and easy to operate. This work might provide solid basis for further quantifying attributes of biomaterials.
引文
1 The interfacial behavior of Bombyx mori silk fibroin, Ph. D. dissertation presented by Regina Valluzzi, University of massachusetts amherst, 1998
    2 Structural study of bombyx mori silk fibroin during processing for regeneration, Ph. D, dissertation by Sung Won Ha, North Carolina State University, 2004
    3 O. C. S. Cassell, S. O. P. Hofer,W. A. Morrison and K. R. Knight, Vascularisation of tissue engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states, British Journal of Plastic Surgery (2002) 55, 603-610
    4 Ranieri Canceddaa, Paolo Giannonic, Maddalena Mastrogiacomo, A tissue engineering approach to bone repair in large animal models and in clinical practice, Biomaterials 28 (2007): 4240-4250
    5 Gregory H. Altman, Frank Diaz, Caroline Jakuba, et al. Silk-based biomaterials,Biomaterials 24 (2003) 401-416
    6 Halsted w. The employment of fine silk in preference to catgut and the advantage of transfixing tissues and vessels in controlling hemorrhage. ann surg vol.16(1892), 505
    7 Foschi D, Corsi F, Cellerino P, Rizzi A, Morandi E, Trabucchi E. Angiogenic effects of suture biomaterials. An experimental study in rats. Eur Surg Res 2001;33:16-20.
    8 Setzen G,Williams EF. Tissue response to suture materials implanted subcutaneously in a rabbit model. Plast Reconstr Surg 1997;100:1788-95.
    9 Bucknall TE,Teare L,Ellis H. The choice of a suture to close abdominal incisions. Eur Surg Res 1983;15:59-66.
    10 Rossitch Jr. E,Bullard DE,Oakes WJ. Delayed foreign-body reaction to silk sutures in pediatric neurosurgical patients. Childs Nerv Syst 1987;3:375-8.
    11 Soong HK,Kenyon KR. Adverse reactions to virgin silk sutures in cataract surgery. Ophthalmology 1984;91:479-83.
    12 Lam KH,Nijenhuis AJ,Bartels H,Postema AR,Jonkman MF, Pennings AJ,Nieuwen huis P. Reinforced poly(l-Lactic Acid) fibers as suture material. J Appl Biomater 1995;6:191-197.
    13 Salthouse TN,Matlaga BF,Wykoff MH. Comparative tissue response to six suture materials in rabbit cornea,sclera,and ocular muscle. Am J Ophthalmol 1977;84:224-33.
    14 Ethicon,Inc.,Wound closure manual. The suture: specific suturing materials. Non-absorbable sutures. Somerville,NJ: Ethicon,Inc. [Chapter 2].
    15 Minoura N,Tsukada M,Nagur a M. Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials 1990;11:430-4.
    16 Asakura T,Demura M, Date T, Miyashita N, Ogawa K, Williamson MP. NMR study of silk I structure of Bombyx mori silk fibroin with N-15- and C-13-NMR chemical shift contour plots. Biopolymers 1997;41:193-203.
    17 Kurioka A,Yamazak i M, Hirano H. Primary structure and possible functions of a trypsin inhibitor of Bombyx mori. Eur J Biochem 1999;259:120-6.
    18 Altman GH, Horan RL, Lu H, Moreau J,Martin I, Richmond JC, Kaplan DL. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 2002;23:4131-41.
    19 Greenwald D,Shumway S, Albear P,Gottlieb L. Mechanical comparison of 10 suture materials before and after in vivo incubation. J Surg Res 1994;56:372-7.
    20 Bucknall TE,Teare L,Ellis H. The choice of a suture to close abdominal incisions. Eur Surg Res 1983;15:59-66.
    21 Takayuki Arai, Giuliano Freddi, Riccardo Innocenti,Biodegradation of Bombyx mori Silk Fibroin Fibers and Films,Journal of Applied Polymer Science, Vol. 91, 2383-2390 (2004)
    22 Rebecca L. Horan, Kathryn Antle, Adam L. Collette et al, In vitro degradation of silk fibroin, Biomaterials 26 (2005) 3385-3393
    23 Mingzhong Li, Masayo Ogiso, Norihiko Minoura, Enzymatic degradation behavior of porous silk fibroin sheets, Biomaterials 24 (2003) 357-365
    24 Yongzhong Wang , Darya D. Rudym, Ashley Walsh, et al. In vivo degradation of three- dimensional silk fibroin scaffolds, Biomaterials 29 (2008) 3415-3428
    25 Abby W. Morgan , Kristen E. Roskov , Sheng Lin-Gibson, et al. Characterization and optimization of RGD-containing silk blends to support osteoblastic differentiation, Biomaterials 29 (2008) 2556-2563
    26 Zarkoob S,Reneker DH,Eby RK,Hudson SD,Ertley D,Adams WW. Generation of synthetic elastin-mimetic small diameter fibers and fiber networks. Polym Preprints Am Chem Soc 1998;39:244-5.
    27 Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL, Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules. 2002 ,3(6):1233-1239.
    28 Matthews JA,Wnek GE,Simpson DG,Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules 2002;3:232-8.
    29 Charu Vepari, David L. Kaplan, Silk as a biomaterial, Prog. Polym. Sci. 32 (2007) 991-1007
    30 Urist M R. Bone: formation by autoinduction. Science, 1965, 150: 893-899
    31 Yanfei Tan, Gang Wang, Hongsong Fan, et al. Expression of core binding factor 1 and osteoblastic markers in C2C12 cells induced by calcium phosphate ceramics in vitro,Journal of Biomedical Materials Research Part A,2007:152-159
    32生物材料组织诱导国际发展动态专题研讨会,2008年12月4日-5日,福建武夷山
    33 Altman GH, Horan RL, Martin I, Farhadi J, Stark PRH, Volloch V, Richmon d JC, Vunjak-Novakovic, Kaplan DL. Cell differentiation by mechanical stress. FASEB J 2001;16:270-272
    34 Woodward S C. Physiological and biochemical evaluation of implanted polymers. Ann N Y Acad Sci, 1968,146:225—250.
    35 Salthouse T N, Matlage B F. Some cellular effects related to implant shape and surface. In: Rubin LR, editor. Biomaterials in Reconstructive Surgery, St. Louis: Mosby; 1983:40—45.
    36 Mikos AG, Wald HL, Sarakinos G, Leite SM and Langer R (1992) Biodegradable Cell Transplantation Devices for Tissue Regeneration. Tissue-Inducing Biomaterials,1992 - Materials Research Society, ater. Res. Soc. Symp. Proc. 252: 353-358.
    37 Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 1993;27(2):183-189.
    38 D.J. Mooney, L. Cima, R. Langer, L. Johnson, L.K. Hansen, D.E. Ingber and J.P. Vacanti, Principles of tissue engineering and reconstruction using polymer-cell constructs. Mater. Res. Soc. Symp. Proc. 1992 (252):345-352
    39 Cima LG, Vacanti JP, Vacanti C, Ingber D, Mooney D, Langer R. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng 1991;113:143-151
    40 Healy KE, Tsai D, Kim JE. Osteogenic cell attachment to biodegradable polymers. Mater Res Soc Symp Proc 1992;. 252:109-114
    41 Curtis, A., Riehle, M., The adhesion, spreading and motility of cells on biomaterial surfaces is influenced by chemical and mechanical stimuli Phys. Med. Biol. 2001. 46, 47-65.
    42 Anderson JM. Inflammation,wound healing, and the foreign body response. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science: an introduction to materials in medicine. Boston: Academic Press,1996. p. 165-172.
    43 Langer R, Vacanti JP. Tissue engineering. Science 1993; 260: 920-926.
    44 Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 1999; 354(suppl 1): 32-34.
    45 Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671-674
    46 Risau W. What, if anything, is an angiogenic factor? Cancer Metastasis Rev 1996; 15: 149-151
    47 Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435-439
    48 Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967.
    49 Shi Q, Rafii S, Wu MH-D, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92: 362-367.
    50 Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokine induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Med 1999; 5: 434-438
    51 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med 1995; 1: 27-31
    52 Norrby K. Angiogenesis: new aspects relating to its initiation and control. APMIS 1997; 105: 417-437
    53 Stein I, Neeman M, Shweiki D, Itin A, Keshet E. Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol 1995; 15: 5363-5368.
    54 Short, R. H. D. (1950). Alveolar epithelium in relation to growth of the lung. Philos. Trans. R. Soc. London Ser. B 235, 35-87
    55 Battegay EJ. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J Mol Med 1995; 73: 333-346.
    56 Hofer SOP, Morrison WA. Concepts in angiogenesis. Curr Therapeut 2001; 42: 55-59.
    57 Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992; 267: 10931-10934.
    58 Ferrara N, Alitalo K. Clinical applications of angiogenic growth factors and their inhibitors. Nature Med 1999; 5: 1359-1364.
    59 Connolly DT, Heuvelman DM, Nelson R, et al. Tumour vascular permeability factor stimulates endothelial growth and angiogenesis. J Clin Invest 1989; 84: 1470-1480.
    60 Dvorak HF, Detmar M, Claffey KP, Nagy JA, van de Water L, Senger DR. Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation. Int Arch Allergy Immunol 1995; 107: 233-235.
    61 Zagzag D. Angiogenic growth factors in neural embryogenesis and neoplasia. Am J Pathol 1995; 146: 293-309.
    62 Moscatelli D, Rifkin DB. Membrane and matrix localization of proteinases: a common theme in tumour cell invasion and angiogenesis. Biochim Biophys Acta 1988; 948: 67-85.
    63 Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 1999; 103: 1237-1241.
    64 Nicosia RF, Villaschi S. Autoregulation of angiogenesis by cells of the vessel wall. Int Rev Cytol 1999; 185: 1-43.
    65 Vernon RB, Sage EH. Extracellular matrix and creation of vascular form. Am J Pathol 1995; 147: 873-883.
    66 Saksela O, Moscatelli D, Rifkin DB. The opposing effects of basic fibroblast growth factor and transforming growth factor beta on the regulation of plasminogen activator activity in capillary endothelial cells. J Cell Biol 1987; 105: 957-963.
    67 Eiselt P, Kim B S, Chacko B, et al. Development of technologies aiding large-tissue engineering. Biotechnol Prog 1998; 14:134-140.
    68 Colton C. Implantable biohybrid artificial organs. Cell Transplantation 1995; 4: 415-436.
    69 Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med 1973; 138: 745-753.
    70 Patrick CW Jr, Chauvin PB, Hobley J, Reece GP. Preadipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng 1999; 5: 139-151.
    71 Saxena AK, Marler J, Benvenuto M, Willital GH, Vacanti JP. Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng 1999; 5: 525-532.
    72 Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. Polymer concepts in tissue engineering. J Biomed Mater Res 1998; 43:422-427.
    73 Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R. Preparation and characterisation of poly(L-lactic acid) foams. Polymer 1994; 35: 1068-1077.
    74 Thompson RC, Wake MC, Yaszemski MJ, Mikos AG. Biodegradable polymer scaffolds to regenerate organs. Adv Polymer Sci 1995; 122: 245-274.
    75 Wang K, Healy KE, Elenz DR, et al. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng 1999; 5: 35-51.
    76 Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 1998; 16: 224-230.
    77 Llull R. Immune considerations in tissue engineering. Clin Plast Surg 1999; 26: 549-568.
    78 Jeroen Rouwkema, Nicolas C. Rivron1 and Clemens A. van Blitterswijk,Vascularization in tissue engineering, Trends in Biotechnology 2008,Vol.26 No.8. 434-441
    79 Black, A.F. et al. In vitro reconstruction of a human capillarylike network in a tissue-engineered skin equivalent. FASEB J. 1998,12, 1331-1340
    80 Shepherd, B.R. et al. Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J. 2006, 20, 1739-1741
    81 Levenberg, S. et al. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 2005, 23, 879-884
    82 Rouwkema, J. et al. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 2006,12, 2685-2693
    83 Kelm, J.M. et al. Tissue-transplant fusion and vascularization of myocardial microtissues and macrotissues implanted into chicken embryos and rats. Tissue Eng. 2006, 12, 2541-2553
    84 Schultheiss, D. et al. Biological vascularized matrix for bladder tissue engineering: matrix preparation, reseeding technique and shortterm implantation in a porcine model. J. Urol. 2005, 173, 276-280
    85 Mooney DJ, Mikos AG. Growing new organs. Sci Am 1999;280: 60-65.
    86 Wake MC, Patrick CW Jr, Mikos AG. Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant 1994; 3: 339-343.
    87 Yossi Gafni, M.Sc., Yoram Zilberman, et al. Design of a Filamentous Polymeric Scaffold for in Vivo Guided Angiogenesis, Tissue Engeering,Volume 12, Number 11, 2006,3021-3034
    88 Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 1999; 354(suppl 1): 32-34.
    89 Erol O O, Spira M. New capillary bed formation with a surgically constructed arteriovenous fistula. Plast Reconstr Surg 1980; 66:109-115.
    90. Tanaka Y, Tajima S, Tsutsumi A, Akamatsu J, Ohba S. New matrix flap prefabricated by arteriovenous shunting and artificial skin dermis in rats. II. J Jpn Plast Reconstr Surg 1996; 16: 679-686.
    91. Mian R, Morrison WA, Hurley JV, et al. Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng 2000; 6: 595-603.
    92 Tanaka Y, Tsutsumi A, Crowe DM, Tajima S, Morrison WA. Generation of an autologous tissue (matrix) flap by combining arteriovenous shunt loop with artificial skin in rats: preliminary report. Br J Plast Surg 2000; 53: 51-57.
    93 Soka S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92: 735-745.
    94 Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 40: 390-394.
    95 Druecke, D. et al. Neovascularization of poly ether ester, block copolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. J. Biomed. Mater. Res. A 2004, 68, 10-18
    96 Yang, S. et al. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001, 7, 679-689
    97 Karageorgiou, V. and Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474-5491
    98 Hutmacher, D.W. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J. Biomater. Sci. Polym. Ed. 2001, 12, 107-124
    99 Yan-Peng Jiao and Fu-Zhai Cui,Surface modification of polyester biomaterials for tissue engineering,Biomed. Mater. 2007;2: 24-37
    100 Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Med 1995; 1: 1024-1028.
    101 Franke RP, Grafe M, Schnittler H, Seiffgo D, Mittermayer C, Drenckhahn D. Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 1984; 307: 648-649.
    102 Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843-848.
    103 Kane AJ, Barker JE, Mitchell GM, et al. Inducible nitric oxide synthase (iNOS) activity promotes ischaemic skin flap survival. Br J Pharmacol 2001; 132: 1631-1638.
    104 Henry TD. Therapeutic angiogenesis. BMJ 1999; 318: 1536-1539.
    105 Baumgartner I, Pieczek A, Manor O, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998; 97: 1114-1123.
    106 Polverini PJ. The pathophysiology of angiogenesis. Crit Rev Oral Biol Med 1995; 6: 230-247.
    1 Halsted W. The employment of fine silk in preference to catgut and the advantage of transfixing tissues and vessels in controlling hemorrhage. Ann Surg. 1892, 16:505
    2 Gregory H. Altman, Frank Diaz, Caroline Jakuba, Tara Calabro, Rebecca L. Horan, Jingsong Chen, Helen Lu, John Richmond, David L. Kaplan. Silk-based biomaterials. Biomaterials. 2003, 24:401-416
    3 Charu Vepari, David L. Kaplan. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32:991-1007
    4 Wu C Y. Properties and applications of wound protective membrane made from fibroin. Third international silk conference, Suzhou, China. 1996
    5 Mingzhong Li, Shenzhou Lu, Zhengyu Wu, Haojing Yan, Jingyu Mo, Lihong Wang. Study on Porous Silk Fibroin Materials. I. Fine Structure of Freeze Dried Silk Fibroin. Journal of Applied Polymer Science. 2001, 79:2185-2191
    6 Mingzhong Li, Zhengyu Wu, Changsheng Zhang, Shenzhou Lu, Haojing Yan, Dong Huang Huilan Ye. Study on Porous Silk Fibroin Materials. II. Preparation and Characteristics of Spongy Porous Silk Fibroin Materials. Journal of Applied Polymer Science. 2001, 79: 2192-2199
    7 Xi-Ying Luan, Yong Wang, Xiang Duan, Qiao-Yan Duan, Ming-Zhong Li, Shen-Zhou Lu, Huan-Xiang Zhang, Xue-Guang Zhang. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films. Biomed. Mater., 2006, 1:181-187
    8 Bai Lun, Xu Jianmei, Sun Qilong, Di Chuanxia, Song Jiangchao, Wu Zhengyu. On the growth model of the capillaries in the porous silk fibroin films. J Mater Sci: Mater Med. 2007, 18:1917-1921
    9 Bai Lun, Xu Jianmei, Sun Qilong, Di Chuanxia, Zuo Baoqi, Guan Guoping, Wu Zhengyu. Density of capillaries in the porous silk fibroin films. Front. Mater. Sci. China, 2007, 1(3): 237-242
    10 Altavilla D, Saitta A, Cucinotta D, et al. Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis. Diabetes. 2001, 50:667-674
    11 Bengt Kasemo. Biological surface science. Surface Science. 2002, 500:656-677
    12 Risau, W., Mechanisms of angiogenesis. Nature, 1997, 386:671-674
    13 Gu Z Q, Xiao J M, Zhang X H. The development of Artificial Cartilage PVA hydrogel. Bio Medical Materials and Engineering. 1998, 8(2):75-81
    14 Nuttelman C R, Henry S M, Anseth K S et a1. Synthesis and characterization of photocross- linkable degradable poly (vinyl alcoho1) based tissue engineering scaffolds. Biomaterials. 2002, 23: 3617-3626
    15 Swieszkowski W, Ku D N, Bersee H E N , Kurzydlowski K J. An elastic material for cartilage replacement in an arthritic shoulder joint. Biomaterials. 2006, 27:1534-1541
    16 Yu S P, Dang S X, Ru Y M. A study on the friction properties of poly (vinyl alcohol) hydrogel as articular cartilage against titaniμm alloy. Wear. 2007, 262:1021-1025
    17 Tai H Y, Nan K Y, Rong F C et al. Evaluation of asymmetric poly (viny1 alcohol) membranes for use in artificial islets. Biomaterials. 1996, 17:2139-2145
    18 Tai H Y, Wen Y C, Meng Y H et al. Assessment and modeling of poly(vinyl alcohol) bioartificial pancreas in vivo. Biomaterials. 2002, 23:3495-3501
    19 Kobayashi M, Toguchida J, Oka M, et a1. Preliminiary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials. 2003, 24:639-647
    20 Kobayashi M, Toguchida J, Masanori O, et a1. Development of the shields for tendon injury repair using polyvinyl alcohol-hydrogel (PVA-H). J Biomed Mater Res. 2001, 58(4):344-351
    21 Brazel C S, Peppas N A, et a1. Dimensionless analysis of swelling of hydrophilic glassy polymers with subsequent drug release from relaxing structures. Biomaterials. 1999, 20: 72l-732
    22 Li J K, Wang N, Wu X S, el a1. Ploy (vinyl alcoho1) nanoparticles prepared by freezing- thawing process for protein/peptide drug delivery. J Controlled Release. l998, 56:117-126
    23 Gibbons D F. Tissue response to resorbable synthetic polymers. In: Plank H, Dauner M, Renardy M, editors. Degradation phenomena on polymeric biomaterials. New York: Springer. 1992:97-104
    24 Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials. 2005, 26:147-155
    25 Woodward S C. Physiological and biochemical evaluation of implanted polymers. Ann N Y Acad Sci. 1968, 146:225-250
    26 Salthouse T N, Matlage B F. Some cellular effects related to implant shape and surface. In:Rubin LR, editor. Biomaterials in Reconstructive Surgery. St. Louis: Mosby. 1983:40-45
    27 Cassell O. C. S., Hofer S. O. P., Morrison W. A. and Knight K. R., Vascularisation of tissue-engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. British Journal of Plastic Surgery. 2002, 55:603-610
    28 Stern, R., McPherson, M. Longaker, M. T. Histologic study of artificial skin used in the treatment of full thickness thermal injury. J. Burn Care Rehabil. 1990, 11:7-13
    29 Moiemen N S, Staiano J J, Ojeh N O, Thway Y, Frame J D. Reconstructive surgery with a dermal regeneration template: clinical and histologic study. Plast Reconstr Surg. 2001, 8(1):93-103
    30 Kazutaka Soejima, Xin Chen , Motohiro Nozaki , Keijiro Hori , Hiroyuki Sakurai. Masaki Takeuchi Novel application method of artificial dermis: One-step grafting procedure of artificial dermis and skin: rat experimental study. Burns. 2006, 32:312-318
    31 Boyd M, Flasza M, Johnson P A, Roberts J St C, Kemp P. Integration and persistence of an investigational human living skin equivalent (ICX-SKN) in human surgical wounds. Regen. Med. 2007, 2(4):363-370
    32 Maeda M, Nakamura T, Fukui A, et al. The role of serum imbibition for skin grafts. Plast Reconstr Surg. 1999, 104(7):2100-2107
    33 Convers J M, Uhlschmid G K, Ballantyne D L. Plasmatic circulation in skin grafts: the phase of serum imbibition. Plast Reconstr Surg. 1969, 43:495-499
    1 Santin M, Motta A, Freddi G, Cannas M. In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res. 1999, 46(3):382-389
    2 Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials. 2005, 26(2):147-155
    3 Yumin Yang, Xuemei Chen, Fei Ding, Peiyun Zhang, Jie Liu, Xiaosong Gu. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials. 2007, 28:1643-1652
    4 Mingzhong Li, Masayo Ogisob. Norihiko Minoura, Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials. 2003, 24:357-365
    5 Arai T, Freddi G, Innocenti R, Tsukada M. Biodegradation of B. mori silk fibroin fibers and films. J Appl Polym Sci. 2004, 91:2383-2390
    6 Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, et al. In vitro degradation of silk fibroin. Biomaterials. 2005, 26(17):3385-3393
    7 Jing-cheng Miao, Wei-hua Sheng, Ming-zhong Li, Yu-feng Xie,Ai-hua Gong, Ji-cheng Yang. Genotoxic Potential of Regenerated Silk Fibroin Films by Different Cross-linking Mode. Key Engineering Materials. 2007, 342-343:257-260
    8 Nazarov R, Jin HJ, Kaplan DL. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules. 2004, 5(3):718-726
    9 Kim H, Kim H, Matsμmoto A, Chin I, Jin H, Kaplan D. Processing windows for forming silk fibroin biomaterials into a 3D porous matrix. Aust J Chem. 2005, 58:716-7120
    10 Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006, 27(16):3115-3124
    11 Qiang Lv, Kun Hu, QingLing Feng, Fuzhai Cui. Fibroin/collagen hybrid hydrogels with crosslinking method: Preparation, properties, and cytocompatibility. Journal of Biomedical Materials Research Part A . Published Online: 2 Jul 2007
    12 Li Wang, Gui-Ling Ning, Mamoru Senna. Microstructure and gelation behavior of hydroxyapatite-based nanocomposite sol containing chemically modified silk fibroin. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2005, 254:159-164
    13 Wu C Y. Properties and applications of wound protective membrane made from fibroin. Third international silk conference, Suzhou, China. 1996
    14 Sugihara A, Sugiura K, Morita H, Ninagawa T, Tubouchi K, Tobe R, et al. Promotive effects of a silk film on epidermal recovery from full-thickness skin wounds. Proc Soc Exp Biol Med. 2000, 225(1):58-64
    15 Yeo JH, Lee KG, Kim HC, Oh HYL, Kim AJ, Kim SY. The effects of PVA /chitosan/fibroin (PCF)-blended spongy sheets on wound healing in rats. Biol Pharm Bull. 2000, 23(10):1220-1223
    16 Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B, et al. Silk implants for the healing of critical size bone defects. Bone. 2005, 37(5):688-698
    17 Kim HJ, Kim UJ, Vunjak-Novakovic G, Min BH, Kaplan DL. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials. 2005, 26(21):4442-4452
    18 Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N, et al. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials. 2006, 27(36):6138-6149
    19 Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L, et al. Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and mediμm flow. Ann Biomed Eng. 2004, 32(1):112-122
    20 Wang Y, Blasioli DJ, Kim HJ, Kim HS, Kaplan DL. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials. 2006, 27(25):4434-4442
    21 Gregory H. Altmana, Rebecca L. Horana, Helen H. Lua, Jodie Moreaua, Ivan Martinb, John C. Richmondc, David L. Kaplana. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials. 2002, 23:4131-4141
    22 Moreau JE, Chen J, Horan RL, Kaplan DL, Altman GH. Sequential growth factor application in bone marrow stromal cell ligament engineering. Tissue Eng. 2005, 11(11-12):1887-1897
    23 Hu K, Lv Q, Cui F, Feng Q, Kong X, Wang H, et al. Biocompatible fibroin blended films with recombinant human-like collagen for hepatic tissue engineering. J Bioactive Compatible Polym. 2006, 21(1):23-37
    24 Dal Pra I, Freddi G, Minic J, Chiarini A, Armato U. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials. 2005, 26(14): 1987-1999
    25 Unger RE, Peters K, Wolf M, Motta A, Migliaresi C, Kirkpatrick CJ. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials. 2004, 5(21):5137-5146
    26 Fuchs S, Motta A, Migliaresi C, Kirkpatrick CJ. Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials. Biomaterials. 2006, 27(31): 5399- 5408
    27 Nuttelman CR, Mortisen DJ, Henry SM, et a1. Attachment of fibronectin to poly (vinyl alcoho1) hydrogels promotes NIH3T3 cell adhesion proliferation and migration. J Biomed Mater Res. 2001, 57:217
    28 Nuttelman CR, Henry SM, Anseth KS, et a1. Synthesis and characterization of photocrosslinkable, degradable poly (vinyl alcoho1) based tissue engineering scaffolds. Biomaterials. 2002, 23:3617
    29 Gu Zhengqiu, Xiao Jiumei, Zhang Xianghong. The development of Artificial Cartilage PVA hydrogel. J Bio-Medical Materials and Engineering. 1998, 8(2):75-81
    30 Kobayashi M, Toguchida J, Oka M, et a1. Preliminiary study of polyvinyl alcohol- hydrogel (PVA-H ) artificial meniscus. Biomaterials. 2003, 24:639
    31 Wojciech Swieszkowski, David N. Ku, Harald E.N. Bersee, Krzysztof J. Kurzydlowski, An elastic material for cartilage replacement in an arthritic shoulder joint. Biomaterials. 2006, 27 :1534-1541
    32 Yu-Song Pan, Dang-Sheng Xiong, Ru-Yin Ma. A study on the friction properties of poly (vinyl alcohol) hydrogel as articular cartilage against titaniμm alloy. Wear. 2007, 262: 1021-1025
    33 Tai-Horng Young, Nan-Kuang Yao, Rong-Fu Chang and Leo-Wang Chen. Evaluation of asymmetric poly (viny1 alcohol) membranes for use in artificial islets. Biomaterials. 1996, 17: 2139-2145
    34 Tai-Horng Young, Wen-Yuan Chuang, Meng-Ying Hsieh, Leo-Wang Chen, Jyh-Ping Hsu. Assessment and modeling of poly (vinyl alcohol) bioartificial pancreas in vivo. Biomaterials. 2002, 23 3495-3501
    35 Kobayashi M, Toguchida J, Masanori O, et a1. Development of the shields for tendon injury repair using polyvinyl alcohol-hydrogel (PVA-H). J Biomed Mater Res. 2001, 58(4):344
    36 Brazel CS, Peppas NA, et a1. Dimensionless analysis of swelling of hydrophilic glassy polymers with subsequent drug release from relaxing structures. Biomaterials. 1999, 20:72l
    37 Li J K, Wang N, Wu XS, el a1. Ploy (vinyl alcoho1) nanoparticles prepared by freezing-thawing process for protein/peptide drug delivery. J Controlled Release. l998, 56:117
    38 Weiming Tian, Themis R Kyriakides. Thrombospondin 2-null mice display an altered brain foreign body response to polyvinyl alcohol sponge implants. Biomed, Mater. 2009, 4:1-8
    39 Mingzhong Li, Zhengyu Wu, Changsheng Zhang, Shenzhou Lu, Haojing Yan. Study on Porous Silk Fibroin Materials. II. Preparation and Characteristics of Spongy Porous Silk Fibroin Materials. Journal of Applied Polymer Science. 2001, 79:2192-2199
    40 Altavilla D, Saitta A, Cucinotta D, et al. Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis. Diabetes 2001, 50:667-674
    41 Bengt Kasemo. Biological surface science. Surface Science. 2002, 500: 656-677
    42 Risau, W. Mechanisms of angiogenesis. Nature. 1997, 386: 671-674
    43 Gibbons D F. Tissue response to resorbable synthetic polymers. In: Plank H, Dauner M, Renardy M, editors. Degradation phenomena on polymeric biomaterials. New York: Springer. 1992, 97-104.
    44 Woodward S C. Physiological and biochemical evaluation of implanted polymers. Ann N Y Acad Sci. 1968, 146:225-250.
    45 Salthouse T N, Matlage B F. Some cellular effects related to implant shape and surface. In: Rubin LR, editor. Biomaterials in Reconstructive Surgery. St. Louis Mosby. 1983:40-45
    46 Boyd M, Flasza M, Johnson P A, Roberts J St C, Kemp P. Integration and persistence of an investigational human living skin equivalent (ICX-SKN) in human surgical wounds. Regen. Med. 2007, 2(4):363-370
    47 Bai Lun, Xu Jianmei, Sun Qilong, Di Chuanxia, Song Jiangchao, Wu Zhengyu. On the growth model of the capillaries in the porous silk fibroin films. J Mater Sci: Mater Med. 2007, 18:1917-1921
    48 Bai Lun, Xu Jianmei, Sun Qilong, Di Chuanxia, Zuo Baoqi, Guan Guoping, Wu Zhengyu. Density of capillaries in the porous silk fibroin films. Front. Mater. Sci. China. 2007, 1(3): 237-242
    1 Kasemo B. Biological surface science. Surface science. 2002, 500(1-3): 656-677
    2 Iseult Lynch. Are there generic mechanisms governing interactions between nanoparticles and cells? Epitope mapping the outer layer of the protein-material interface. Physica A. 2007, 373:511-520
    3 Hong Chen, Lin Yuan,Wei Song, Zhongkui Wu, Dan Li. Biocompatible polymer materials: Role of protein-surface interactions. Progress in Polymer Science. 2008, 33:1059-1087
    4 Yun Sun, Jon Collett, Nigel J. Fullwood, Sheila Mac Neil, S. Rimmer. Culture of dermal fibroblasts and protein adsorption on block conetworks of poly(butyl methacrylate-block- (2,3-propandiol-1-methacrylate-stat-ethandiol dimethacrylate)). Biomaterials. 2007, 28: 661-670
    5 Hailong Zhou, Tao Wu, Xiuli Dong, Qi Wang, Jiawei Shen. Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces. Biochemical and Biophysical ResearchCommunications. 2007, 361:91-96
    6 Ida E. Svendsen , Liselott Lindh , Thomas Arnebrant. Adsorption behaviour and surfactant elution of cationic salivary proteins at solid/liquid interfaces, studied by in situ ellipsometry. Colloids and Surfaces B: Biointerfaces. 2006, 53:157-166
    7 Alexander Welle , Antonio Chiumiento , Rolando Barbucci. Competitive protein adsorption on micro patterned polymeric biomaterials, and viscoelastic properties of tailor made extracellular matrices. Biomolecular Engineering. 2007, 24:87-91
    8 Valeriya M. Trusova , Galyna P. Gorbenko. Electrostatically-controlled protein adsorption onto lipid bilayer: Modeling adsorbate aggregation behavior. Biophysical Chemistry. 2008, 133:90-103
    9 Xiaoqiang Wang , Yuming Wang, Hai Xu, Honghong Shan , Jian R. Lu. Dynamic adsorption of monoclonal antibody layers on hydrophilic silica surface: A combined study by spectroscopic ellipsometry and AFM. Journal of Colloid and Interface Science. 2008, 323: 18-25
    10 Jia-Wei Shen, Tao Wu, Qi Wang, Hai-Hua Pan. Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces. Biomaterials. 2008, 29:513-532
    11 Xin Chen, Tao Wu, Qi Wang, Jia-Wei Shen. Shield effect of silicate on adsorption of proteins onto silicon-doped hydroxyapatite (100) surface. Biomaterials. 2008, 29: 2423- 2432
    12 Aleksandar Backovic, Dolores Wolfram, Barbara Del-Frari, Hildegunde Piza, Lukas A. Huber, Georg Wick. Simultaneous analysis of multiple serum proteins adhering to the surface of medical grade polydimethylsiloxane elastomers. Journal of Immunological Methods. 2007, 328:118-127
    13 Kousha Rahmati, Julius Koifman, Valeria Tsoukanova. Two-step pattern in the kinetics of protein adsorption onto poly(ethylene glycol)-grafted phospholipid monolayers. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2008, 321:181-188
    14 Alexandra Michiardi, Conrado Aparicio, Buddy D. Ratner, Josep A. Planell, Javier Gil.The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials. 2007, 28:586-594
    15 Hailong Zhou, Tao Wu, Xiuli Dong, Qi Wang , Jiawei Shen. Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces. Biochemical and Biophysical Research Communications. 2007, 361:91-96
    16 Zheng Zhang, Min Zhang, Shengfu Chen, Thomas A. Horbett, Buddy D. Ratner, Shaoyi Jiang. Blood compatibility of surfaces with superlow protein adsorption. Biomaterials. 2008, 29:4285-4291
    17 Catarina M. Alves, Y. Yang, D.L. Carnes, J.L. Ong, V.L. Sylvia, D.D. Dean, C.M. Agrawal, R.L. Reis. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Biomaterials. 2007, 28:307-315
    18 Evan A. Scott, Michael D. Nichols, Lee H. Cordova, Brandon J. George, Young-ShinJun, Donald L. Elbert. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels. Biomaterials. 2008, 29: 4481- 4493
    19 Hana Vaisocherová, Zheng Zhang, Wei Yang, Zhiqiang Cao, Gang Cheng, Allen D. Taylor, Marek Piliarik, Ji ríHomola, Shaoyi Jiang. Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma-Material selection and protein immobilization optimization. Biosensors and Bioelectronics. 2009, 24(7):1924-1930
    20 Kyung Mi Woo, Jihye Seo, Ruiyun Zhang, Peter X. Ma. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials. 2007, 28:2622-2630
    21 Amber A. Sawyer, Kristin M. Hennessy, Susan L. Bellis. The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials. 2007, 28:383-392
    22 B. Clarke, P. Kingshott, X. Hou, Y. Rochev, A. Gorelov, W. Carroll. Effect of nitinol wire surface properties on albumin adsorption. Acta Biomaterialia. 2007, 3:103-111
    23 Chaozong Liu, Brian J. Meenan. Effect of Air Plasma Processing on the Adsorption Behaviour of Bovine Serum Albumin on Spin-Coated PMMA Surfaces. Journal of Bionic Engineering. 2008, 5:204-214
    24 Corinne R. Wittmer, Jennifer A. Phelps, W. Mark Saltzman, Paul R. Van Tassel. Fibronectin terminated multilayer films: Protein adsorption and cell attachment studies. Biomaterials. 2007, 28:851-860
    25 Koji Nagahama, Yoshihiro Nishimura, Yuichi Ohya, Tatsuro Ouchi. Impacts of stereo- regularity and stereocomplex formation on physicochemical, protein adsorption and cell adhesion behaviors of star-shaped 8-arms poly(ethylene glycol)epoly(lactide) block copolymer films. Polymer. 2007, 48:2649-2658
    26 Li Guicai, Shi Xiaoli, Yang Ping , Zhao Ansha, Huang Nan. Investigation of fibrinogen adsorption on solid surface by quartz crystal microbalance with dissipation(QCM-D) and ELISA. Solid State Ionics. 2008, 179:932-935
    27 Jing Zhou, Sheng Meng, Zhang Guo, Qiangguo Du, Wei Zhong. Phosphorylcholine- modified poly(ethylene-co-vinyl alcohol) microporous membranes with improved protein- adsorption- resistance property. Journal of Membrane Science. 2007, 305:279-286
    28 Thelma I. Valdes, Winston Ciridon, Buddy D. Ratner, James D. Bryers. Surface modification of a perfluorinated ionomer using a glow discharge deposition method to control protein adsorption. Biomaterials. 2008, 29:1356-1366
    29 Benevides C.C. Pessela, Cesar Mateo, Miguel Filho, Alfonso Carrascosa, Roberto Fernandez-Lafuente, Jose M. Guisan. Selective adsorption of large proteins on highly activated IMAC supports in the presence of high imidazole concentrations: Purification, reversibleimmobilization and stabilization of thermophilic a- and b-galactosidases. Enzyme and Microbial Technology. 2007, 40:242-248
    30 Sara Alibeik, Amin S. Rizkalla, Kibret Mequanint. The effect of thiolation on the mechanical and protein adsorption properties of polyurethanes. European Polymer Journal. 2007, 43:1415-1427
    31 Dongwoo Khang, Sung Yeol Kim, Peishan Liu-Snyder, G. Tayhas R. Palmore, Stephen M. Durbin, Thomas J. Webster. Enhanced fibronectin adsorption on carbon nanotube/poly (carbonate) urethane: Independent role of surface nano-roughness and associated surface energy. Biomaterials. 2007, 28:4756-4768
    32 Gui-Yin Li, Yu-Ren Jiang, Ke-Long Huang, Ping Ding, Li-Li Yao. Kinetics of adsorption of Saccharomyces cerevisiae mandelated dehydrogenase on magnetic Fe3O4-chitosan nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2008, 320:11-18
    33 Morton S. Ehrenberg, Alan E. Friedman, Jacob N. Finkelstein, Gunter Oberdorster, James L. McGrath. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials. 2009, 30:603-610
    34 Mark Van Beek, Lyndon Jones, Heather Sheardown. Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials. 2008, 29:780-789
    35 Doerte Luensmann , Lyndon Jones. Albumin adsorption to contact lens materials: A review. Contact Lens & Anterior Eye. 2008, 31:179-187
    36 Livia Santos, Diana Rodrigues, Madalena Lira, M. Elisabete C.D. Real Oliveira, Rosario Oliveira, Eva Yebra-Pimentel Vilar, Joana Azeredo. The influence of surface treatment on hydrophobicity, protein adsorption and microbial colonisation of silicone hydrogel contact lenses. Contact Lens & Anterior Eye. 2007, 30:183-188
    37 Vepari C, Kaplan D L, Silk as a biomaterial. Prog. Polym. Sci. 2007, 32: 991-1007
    38 Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials. 2005, 26:147-155
    39 Wu C Y. Properties and applications of wound protective membrane made from fibroin. Third international silk conference, Suzhou, China, 1996
    40 Li M Z, Lu S Z, Wu Z Y, Yan H J et al. Study on Porous Silk Fibroin Materials. I. Fine Structure of Freeze Dried Silk Fibroin. Journal of Applied Polymer Science. 2001, 79:2185 -2191
    41 Li M Z, Wu Z Y, Zhang C S et al. Study on Porous Silk Fibroin Materials. II. Preparation and Characteristics of Spongy Porous Silk Fibroin Materials. Journal of Applied Polymer Science. 2001, 79: 2192-2199
    42 Miao J C, Sheng W H, Li M Z et al. Genotoxic Potential of Regenerated Silk Fibroin Films by Different Cross-linking Mode. Key Engineering Materials. 2007, 342-343:257-260
    43 Luan X Y, Wang Y, Duan X et al. Attachment and growth of human bone marrowderived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films. Biomed. Mater. 2006,1:181-187
    44 Gu Z Q, Xiao J M,Zhang X H. The development of Artificial Cartilage PVA hydrogel. BioMedical Materials and Engineering. 1998, 8(2):75-81
    45 Nuttelman C R, Henry S M, Anseth K S et a1. Synthesis and characterization of photo- crosslinkable degradable poly (vinyl alcoho1) based tissue engineering scaffolds. Biomaterials. 2002, 23:3617-3626
    46 Swieszkowski W, Ku D N, Bersee H E N, Kurzydlowski K J, An elastic material for cartilage replacement in an arthritic shoulder joint. Biomaterials. 2006, 27:1534-1541
    47 Yu S P, Dang S X, Ru Y M, A study on the friction properties of poly(vinyl alcohol) hydrogel as articular cartilage against titaniμm alloy. Wear. 2007, 262:1021-1025
    48 Tai H Y, Nan K Y, Rong F C et al. Evaluation of asymmetric poly(viny1 alcohol) membranes for use in artificial islets. Biomaterials. 1996, 17:2139-2145
    49 Tai H Y, Wen Y C, Meng Y H et al. Assessment and modeling of poly(vinyl alcohol) bioartificial pancreas in vivo. Biomaterials. 2002, 23:3495-3501
    50 Kobayashi M, Toguchida J, Oka M, et a1 . Preliminiary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials. 2003, 24:639-647
    51 Kobayashi M, Toguchida J, Masanori O, et a1. Development of the shields for tendon injury repair using polyvinyl alcohol-hydrogel(PVA-H). J Biomed Mater Res. 2001, 58(4):344-351
    52 Brazel C S, Peppas N A, et a1. Dimensionless analysis of swelling of hydrophilic glassy polymers with subsequent drug release from relaxing structures. Biomaterials. 1999, 20: 72l-732
    53 Li J K, Wang N, Wu X S, el a1. Ploy(vinyl alcoho1) nanoparticles prepared by freezing thawing process for protein/peptide drug delivery. J Controlled Release. l998, 56: 117-126
    54 Li M Z, Wei T, Lu S Z, Zhao C X. Porous 3-D scaffolds from regenerated Antheraea pernyi silk fibroin. Polym. Adv. Technol. 2008, 19: 207-212
    55 Woodward S C. Physiological and biochemical evaluation of implanted polymers. Ann N Y Acad Sci. 1968, 146:225-250
    56生物材料组织诱导国际发展动态专题研讨会,2008年12月4日-5日,福建武夷山
    57 Hiromi Yamada, Yumiko Igarashi, Yoko Takasu, Hitoshi Saito, Kozo Tsubouchi, Identification of fibroin-derived peptides enhancing the proliferation of cultured human skin fibroblasts, Biomaterials 2004 (25): 467-472
    1 Lam K H, Nijenhuis A J, Bartels H, Postema A R, Jonkman M F, Pennings AJ,Nieuwen huis P. Reinforced poly(l-Lactic Acid) fibers as suture material. J Appl Biomater 1995;6:191-197
    2 Woodward S C. Physiological and biochemical evaluation of implanted polymers. Ann N Y Acad Sci, 1968,146:225-250
    3 Salthouse T N, Matlage B F. Some cellular effects related to implant shape and surface. In: Rubin LR, editor. Biomaterials in Reconstructive Surgery, St. Louis: Mosby; 1983:40-45
    4 Mikos A G, Wald H L, Sarakinos G, Leite S M, Langer R. Biodegradable Cell Transplantation Devices for Tissue Regeneration. Tissue-Inducing Biomaterials, Materials Research Society, ater. Res. Soc. Symp. Proc. 1992, 252: 353-358
    5 Mikos A G, Bao Y, Cima L G, Ingber D E, Vacanti J P, Langer R. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 1993; 27(2):183-189
    6 D.J. Mooney, L. Cima, R. Langer, L. Johnson, L.K. Hansen, D.E. Ingber and J.P. Vacanti, Principles of tissue engineering and reconstruction using polymer-cell constructs. Mater. Res. Soc. Symp. Proc. 1992 (252):345-352
    7 Cima L G, Vacanti J P, Vacanti C, Ingber D, Mooney D, Langer R. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng 1991;113:143-151
    8 Healy KE, Tsai D, Kim JE. Osteogenic cell attachment to biodegradable polymers. Mater Res Soc Symp Proc 1992;. 252:109-114
    9 Curtis, A., Riehle, M., The adhesion, spreading and motility of cells on biomaterial surfaces is influenced by chemical and mechanical stimuli Phys. Med. Biol. 2001. 46, 47-65
    10 Anderson J M. Inflammation,wound healing, and the foreign body response. In: Ratner BD, Hoffman A S, Schoen F J, Lemons J E, editors. Biomaterials science: an introduction to materials in medicine. Boston: Academic Press, 1996:165-172
    11 Boyd M, Flasza M, Johnson P A, Roberts J St C, Kemp P. Integration and persistence of an investigational human living skin equivalent (ICX-SKN) in human surgical wounds. Regen. Med, 2007; 2(4):363-370
    12 Yongzhong Wang , Darya D. Rudym, Ashley Walsh, et al. In vivo degradation of three- dimensional silk fibroin scaffolds, Biomaterials. 2008, (29): 3415-3428
    13 Mingzhong Li, Shenzhou Lu, Zhengyu Wu, Haojing Yan, Jingyu Mo, Lihong Wang. Study on Porous Silk Fibroin Materials. I. Fine Structure of Freeze Dried Silk Fibroin. Journal of Applied Polymer Science. 2001, 79:2185-2191
    14 Mingzhong Li, Zhengyu Wu, Changsheng Zhang, Shenzhou Lu, Haojing Yan, Dong Huang Huilan Ye. Study on Porous Silk Fibroin Materials. II. Preparation and Characteristics of Spongy Porous Silk Fibroin Materials. Journal of Applied Polymer Science. 2001, 79: 2192-2199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700