人骨肉瘤细胞多药耐药机制及其逆转剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨肉瘤作为一种常见的骨源性恶性肿瘤,其化疗后的多药耐药现象严重影响患者的治疗效果和预后,其耐药机制和逆转剂的研究一直是研究的热点。在体外建立多药耐药的细胞模型已逐渐成为研究骨肉瘤多药耐药性的有利工具。氨甲蝶呤作为骨肉瘤化疗的基础药物,其在临床初始化疗缓解后常会产生耐药性。
     目前临床上己证实与肿瘤多药耐药有关的耐药基因主要有MDRl、MRP、LRP、GST-π、TOPOⅡa等。因此,检测U-2 OS/MTXr中这5个耐药基因及其表达产物表达水平的变化,基本能反映出骨肉瘤组织产生耐药时耐药基因表达水平的变化情况。放疗作为骨肉瘤化疗的辅助手段,也可以收到不错的治疗效果,但骨肉瘤放疗与其多药耐药的关系尚无人研究。骨肉瘤多药耐药逆转的研究也不是很多,这和以往的逆转剂效果不理想有关。
     本实验采用氨甲蝶呤大剂量冲击间歇诱导的方法建立了骨肉瘤多药耐药细胞模型,通过对耐药细胞的基本特征、交叉耐药、细胞生长曲线、细胞周期及凋亡以及5个耐药基因的表达变化情况、放疗与骨肉瘤多药耐药的关系、新的逆转剂的尝试等进行了研究。为进一步研究人骨肉瘤耐药机制和耐药逆转剂提供一定的帮助。
Objective: Osteosarcomas are the most frequent malignant bone tumors. Further studies have shown that multidrug resistance (MDR) to chemotherapeutic agents is a major barrier to the successful treatment of Osteosarcomas. As the basic drug of chemotherapy, methotrexate will create drug resistance after chemotherapy has become effective. To establish a multidrug resistance cell model anti-methotrexate of human osteosarcoma from the U-2 OS cell line is very necessary for testing its attributes, crossing-drug resistance, cell growth curve, cell periodicity and apoptosis through laboratory methods and providing some assistance for studying and researching mechanism of multidrug resistance and reversal agent of drug resistance about human osteosarcoma.
     At present drug resistance genes about multidrug resistance clinically include MDRl, MRP, LRP, GST-π, TOPOⅡa, et al. Accordingly, detecting to the expression of five genes in osteosarcoma multidrug resistance cells can react the change of the expression of drug resistance genes in human osteosarcoma tissue. constantly MDR1 gene is the target gene for reversing osteosarcoma MDR. But mechanism of osteosarcoma acquired MDR incriminate the participate of multiple genes. The interception to MDR1 only can’t raise the sensibility of all chemotherapeutics. Our experiment researched the expression of five genes in Osteosarcoma multidrug resistance cells and sensitive cells for finding of other mechanisms of Osteosarcoma acquired MDR and reversing target.
     Now clinically lots of doctors deal with osteosarcoma patients by the means of the combination chemo and radiotherapy. And the means receive satisfied curative effect. Because the tumor cells create multidrug resistance after chemo, radiotherapy will be applicated at the same time or after chemo, its premise is that tumor cells are sensitive to radioactive rays. This viewpoint needs be confirmed. Records about osteosarcoma chemo are much more than about osteosarcoma radiotherapy, its reason is possibly that osteosarcoma tissues aren’t sensitive at radioactive rays. Our research will prove the change of the expression of osteosarcoma drug resistance genes AP:PA of radiotherapy, this research can offer reference for clinical practice.
     Lots of specialists think highly of the research of reversal agent of drug resistance domestic at abroad and domestic. The reports about reversal agent of osteosarcoma drug resistance are less, it concerned with the effect of formerly reversal agents. Our research will investigate reversal densities and reversal spectrums of verapamil and the shen-mai injection, it can provide experiment and theory foundation for the osteosarcoma chemotherapeutic effect. Methods: The human osteosarcoma U-2 OS cells were exposed to high dose of methotrexate to introduce it’s multidrug resistance (U-2 OS/MTXr). The morphology and ultramicrostructure of the cells were observed using light microscope and transmission electron microscopy. The sensitivity of the multidrug resistance was measured by MTT assay. The proliferation ability of the cells was measured by growth curve. The cell cycle and apoptosis are detected by flow cytometer(FCM). The change of the expression of MDR1, MRP, LRP, GST-π, TOPOⅡa are detected by RT-PCR. The change of the expression of P-gp is detected by westenblot. The Osteosarcoma multidrug resistance cells and sensitive cells are exposed to 5,10,15,20,25 Gy rays. Survival curve under rays is measured by MTT assay.
     The changes of the expression of MDR1, MRP, TOPOⅡa are detected by RT-PCR. The reversal densities of verapamil and the shen-mai injection are measured by MTT assay, reversal spectrums of verapamil and the shen-mai injection are detected by this way.
     Results: The human osteosarcoma U-2 OS/MTXr cell line that it can grow under 5μg/ml methotrexate is established. Disordered structure of the U-2 OS/MTXr cells was observed through microscopy. The increase of granular endoplasmic reticulums and apophyses was observed throught transmission electron microscopy. The resistance index of the U-2 OS/MTXr cells to methotrexate in was 63.The cells also had resistance to other anticancer drug.
     The proliferation ability of U-2 OS/MTXr increased significantly by the drawing of growth curve. The cell G1 period and G2 period reduce and S period increase. The cell proliferation index of the U-2 OS/MTXr cells increased, but apoptotic index degraded. The expression of bcl-2 increased, but the expression of p53 degraded. The U-2 OS/MTXr cell displayed multidrug resistance molecule alteration. The result of RT-PCR manifested that in the U-2 OS/MTXr cells, the expression of MDR1 and MRP increased, and the expression of TOPOⅡa reduced. The result of westenblot displayed that the expression of P-gp increased in the U-2 OS/MTXr cells. The 50% inhibitory dose of the U-2 OS/MTXr cells was (24.2±0.24) Gy, and the 50% inhibitory dose of the U-2 OS cells was (19.45±0.32) Gy. It was increased 1.24 times. The result of RT-PCR increased unobviouslly after radiotherapy manifested the expression of drug resistance genes. Uninhibitory dose verapamil can raise the depressant effect on the U-2 OS/MTXr cell to MTX, ADM, VCR and MIT, the depressant effect to CDDP is ambiguous, the depressant effect to cyclophosphamide is between the former; and uninhibitory dose shen-mai injection can raise the depressant effect on the U-2 OS/MTXr cell to MTX, ADM, VCR and CDDP, the depressant effect to CDDP and MIT is ambiguous.
     Conclusion:
     1. A multidrug resistance cell line (U-2 OS/MTXr)of human osteosarcoma is established, which will benefit to further studies as a new experimental model.
     2. The mechanism of osteosarcoma acquired MDR furthermore is concerned with MRP and TOPOⅡa besides MDR1 and P-gp.
     3. The radiotherapy of osteosarcoma can’t raise multidrug resistance. But the toleration to radioactive of osteosarcoma drug resistance cell ray is higher than that of osteosarcoma sensitive cell.
     4. Verapamil and the shen-mai injection can partly reverse the U-2 OS/MTXr cell MDR.
引文
1. Biedler JL, Riehm H.Cellular resistance to actinomycin D in Chinese hamster cells in vitro: Cross-resisitance, radioautographic and cytogenetic studies. Cancer Res, 1970; 30(4):1174-1184
    2. Ling V, Thompson LH. Reduced permeability in CHO cell as a mechanism of resisitance to colchicines. J Cell Physiol, 1974; 83(1): 103-116
    3. Juliano RL, Limg V.A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutans. Biochem Biophys Acta, 1976, 455: 152-156
    4. 欣星,聂广,胡继鹰主编. 医学分子生物学原理与方法,北京:科学技术出版社,2000:232
    5. Gottesman MM, Fojo T, Bates SE, Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer, 2002, 2 (1): 48-58.
    6. 陈曦,季天海,姚丽青等. MDR 基因及 MDR 基因编码产物在咽喉部恶性黑色素瘤中的表达及其意义. 中国现代医学杂志,2002,22:13-15
    7. Benderra Z, Faussat AM, Sayada L, et al. Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias. Clin Cancer Res, 2004, 10(23): 7896-7902.
    8. Kim DH, Lee NY, Sung WJ et al. Multidrug resistance as a potential prognostic indicator in acute myeloid leukemia with normal karyotypes. Acta Haematol, 2005, 114(2): 78-83.
    9. 郑德先,吴克复等主编. 现代实验血液学研究方法与技术. 北京:北京医科大学·中国协和医科大学联合出版社,1999:455
    10.Holland IB, Blight MA. ABC-ATPases, adaptable energy generaters fuellingtransmembrane movement of a variety of molecules in organism from bacteria to humans[J]. J Mol Biol, 1999, 293(2): 381 -399.
    11.Seeling A, Blatter XL, Wohnsland F. Substrate recognition by P-glycoprotein and multidrug resistance-associated protein MRP1: a comparison[J]. Int J Clin Pharmacol Ther, 2000, 38(3): 111-121.
    12.Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents[J]. Pharmacol Ther, 2000, 85(3): 217-229.
    13.EVERS R, ZAMAN GJ, VAN DEEMTER L, et al. Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells [J]. J Clin Invest, 1996, 97: 1211-1218.
    14.Wheeler R, Neo SY, Chew J, et al. Use of membrane vesicles to investigate drug interaction with transporter protein, P-glycoprotein and multidrug resistance-associated protein[J]. Int J Clin Pharmacol Ther, 2000, 38(3): 122-129.
    15.李续建,王椿,乔振华等. 急性髓性白血病细胞 MRP 基因表达. 中华肿瘤杂志,1998,20 (1):11.
    16.Kawabata S, Oka M, Shiozawa K, et al. Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem Biophys Res Commun, 2001, 280: 1216-1223.
    17.Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Nat1Acad Sci USA, 1998, 95(26): 15665-15670.
    18.Rocchi E, Khodjakov A, Volk EL, et al. The product of the ABC half-transporter gene ABC62 (BCRP/MXR/ABCP) is expressed in theplasma membrane. Biochem Biophys Res Commun, 2000, 271(1): 42-46.
    19.ZEISE E, Rensing L. Hyperthermic pre-treatment protects rat IPC-91 leukemia cells against heat and hydrogen peroxide-induced apoptosis. Int J Hyperthermia. 2002, 18(4): 344-360.
    20.Karlseder J, Wissing D, Holzer G, et al. HSP70 over expression mediates the escape of a doxorubicin-inducedG2 cell cycle arrest[J]. Biochem Biophys Res Commun, 1996, 220: 153-159.
    21.Chin KV, Tanaka S, Darlington G, et al. Heat shock and arsente increase expression of the multidrug in resistance(MDR1) gene in human renal carcinoma cells. J Biol Chem. 1990, 265(1): 221-226
    22.Ciocca DR, Fuqua SA, Lock Lim S, et al. Response of human breast cancer cells to heat shock and chemotherapeutic drugs. Cancer Res. 1992, 52(13): 3648-3654.
    23.Blagosklonny MV, Fojo T, Bhalla KN, et al. The hsp90 inhibitor geldanamycin selective sensitizes Bcr-Abl-expressing leukemia cells to cytotoxic chemotheraphy. Leukemia, 2001, 15: 1537-1543.
    24.胡静,蒋永培. 肿瘤多药耐药机制与拮抗方法. 西北药学杂志, 1997; 12 (6): 280-281.
    25.BanN, TakahaShi Y, Takayama T, et al. Transfection of glutathione S-transferase (GST)-pi antisense complementary DNA increases the sensitivity of a colon cancer cell line to adriamycin, cisplatin, melphalan, and etoposide. Cancer Res, 1996, 56(15): 3577-3582.
    26.Kuroda H, Sugimoto T, Ueda K et al. Different drug sensitivity in two neutoblastoma cell lines established from the same patiart before and after chemotherapy. Int J Cancer, 1991; 47(5): 732-737
    27. 张 新 宇 , 肿 瘤 细 胞 多 药 耐 药 机 理 的 研 究 进 展 . 实 用 癌 症 杂志,1999;14(3):233-236.
    28.SaleemA, Ibrahim N, Patel M, et al. Mechanisms of resistance in a human cell line exposed to sequential topoisomerase poisoning. Cancer Res, 1997, 57(22): 5100-5106.
    29.Perry RR, Kang Y, Greaves B. Biochemical characterization of mitomycin C resistant colon cancer cell line variant. Biochem pharmacol, 1993; 46(11): 1999-2005.
    30.Fox ME, Smith PJ. Subcelluar localization of the antitumor drug mitoxantrone and the induction of DNA damage in resistant and sensitive human colon carcinoma cells. Cancer chemother Pharmacol, 1995; 35(5): 403-410.
    31.Laredo J,.Huynh A,.muller C et al. Effect of the protein Kinase C inhibitor saturosporine on chemosensitivity to claunorubicin of norual and leademic fresh myeloid cells. Blood, 1994, 84(1):229-237.
    32.李江涛,彭淑牖,刘颖斌等. 糖基化神经酰胺合成酶及相关基因的表达与人胆囊癌多药耐药. 中华普通外科杂志, 2005, 20(6): 382-383.
    33.魏尔清主编. 药理学前沿-信号、蛋白因子、基因与现代药理,北京:科学出版社,1999:396.
    34.Hannun YA. Apoptosis and the dilemma of cancer chemotherapy[J].Blood, 2002, 89(6): 1845-1853.
    35.Thomas A, Reed JC. Drug induced apoptosis in B-cell chronic lymphocytic leukemia: relationship between p53 gene mutation and Bcl-2/Bax protein in drug resistance[J].Oncogene,2001, 12: 1055-1062.
    36.Markova V. Quantitative analysis of the expression of apoptosis-relatedgenes. Folia Med(plovdiv), 1998; 40(3): 51-57.
    37.Perkins C, Kim CN, Gang G et al. Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express BcrAbl or overexpress MDR, MRP, bcl-2 or bcl-x(L). Blood, 2000; 95(3):1014-1022.
    38.Kohler T, Leiblein S, Borchert S et al. Absolute levels of MDR-1, MRP, and bcl-2 mRNA and tumor remission in acute leukemia. Adv Exp Med Biol, 1999; 457: 177-185.
    39.Asakura T, Ohkawa K. Chemotherapeutic agent s that induce mitochondrial apoptosis. Curr Cancer Drug Target s[J ], 2004, 4(7): 577-590
    40.Kuo CC, Hsieh HP, Pan WY, et al. BPROL075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective anti tumoral activity in vivo[J]. Cancer Res, 2004, 64(13): 4621-4628
    41.Xiao B, Shi YQ, Zhao YQ, et al. Transduction of Fas gene or Bcl-2 antisense RNA sensitizes cultured drug resistant gastric cancer cells to chemotherapeutic drugs.World J Gast roenterol[J], 1998, 4(5): 421-425.
    42.Q Wang and WT Beck. Transcriptional suppression of multidrug resistance-associated protein (MRP) gene expression by wild type p53[J]. Cancer Res, 1998, 58: 5762-5769.
    43.朱静娟,沈方臻,陈维刚等. 实体瘤多药耐药性与 P-gp 和 p53 表达的关系. 青岛医学院学报,1998;34(3):175-177.
    44.Nicoletti Mi, Myers TG, Fojo T, et al Wild-type P53 marginally induces endogenous MDR-1 mRNA without causing a measurable drug resistance in human cancer cells[J]. Int J Oncol, 2001, 18(2): 375-381.
    45.Strauss BE, Haas M. The region 3’ to the major transcriptional start site of the MDR-1 downstream promoter mediates activation by a subset of mutantof p53 proteins. Biochem-biophyscommun, 1995; 217(1): 333-340.
    46.Gregory F Sullivan, Jin Ming Yang, Andrew Vassil, et a1. Regulation of expression of the multidrug resistance protein MRPl by p53 in human prostate cancer cell [J ] .J Clin Invest, 2000, 105: 1261-1267.
    47.Oliver B, Wolfgang Wick, Michael Welle. Modulation of MDR/MRP by wild type and mutant p53[J]. JClin Invest, 2001, 107(5), 643-645.
    48.Lange C, Walther W, Schwabe H, et a1. Cloning and initial analysis of the human multidrug resistance-related MVP/ LRP gene promoter. Biochem Biophys Res Commur[J], 2000, 278(1): 125-133.
    49.Correnti M, Cavazza ME, Guedez N et al. Expression of the multidrug-resistance gene in breast cancer. J Chemother, 1995; 7(5): 449-451.
    50.Norris MD, Bordow SB, marshall GM et al. Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuoblastoma. N Engl J Med, 1996; 334(4): 231-238.
    51.J Prados, C Melguizo, A Fernandez, et al Inverse expression of mdr1 and c-myc genes in arhabdomyosarcoma cell line resistant to actinomycind [J]. J Pathol, 1996, 180(1): 85-89.
    52.B Liu, D Sun, W Xia, et al. Cross reavtivity of C219 anti-p170(mdr1) antibidy with p185(cerbB2) inbreast cancer cells: cautions on evaluating p170(mdr1)[J]. Journal Of The National Cancer Institute, 1997, 89: 1524-1529.
    53.St relow A, Bernardo K, Adam-Klages S, et al. Over expression of acid ceramidase protect s from tumor necrosis factor2induced cell death[J]. J Exp Med, 2000, 192: 601-12.
    54.Bentires Alj M, Barbu V, Fillet M, et a1. NF-kappa B transcription factor induces drug resistance through MDR1 expression in cancer cells[J]. Omcogene, 2003, 22(1): 90-97.
    55.梁克. 肿瘤分子放射生物学研究展望. 见:殷蔚伯,谷铣之,主编. 肿瘤放射治疗学(第三版). 北京: 中国协和医科大学出版社, 2002. 425-432.
    56.Harvie RM, Davey MW, Davey RA. Increased MRP expression is associated with resistance to radiation anthracyclines and etoposide in cellstreated with fractionated γ-radiation. Int J Cancer, 1995, 61: 375-380.
    57.Hill BT, Moran E, Etie C, et al. Low-dose twice-daily fractionated X-irradiation of ovarian tumor cells in vitro generates drug-resistant cells overexpressing two multidrug resistance associated proteins, P-glycoprotein and MRP1. Anti Cancer Drugs, 2000, 11, 193-200.
    58.Henness S, Davey MW, Harvie RM, et al. Fractionated irradiation of H69 small-cell lung cancer cells causes stable radiation and drug resistance with increased MRP1, MRP2, and topoisomerase Ⅱ alpha expression. Int J Radiat Oncol Biol Phys, 2002, 54: 895-902.
    59.Andersson U, Grankvist K, Bergenheim AT. Papid induction of longlasting drug efflux activity in brain vascular endothelial cells but not malignant glioma following irradiation. Med Oncol, 2002, 19: 129.
    60.Ryu JS, UmJH, Kang CD, et al. Fractionated irradiation leads to restoration of drug sensitivity in MDR cells that correlates with downregulation of P-gp and DNA-dependent protein kinase activity. Radiat Res, 2004, 162: 527-535.
    61.Dempke WC, Whelan RDH, Hill BT. Mechanisms associated with the expression of cisplatin vitro. Carcinogenesis, 1992, 13: 1209-1210.
    62.Dempke WCM, Whelan RDH, Hill BT. Expression of resistance to etoposide and vincristine in vitro and in vivo after X-irradiation of ovarian tumer cells. Anti-Cancer Drugs, 1992, 3: 395-399.
    63.Mattern J, Efferth T, Volm M. Overexpression of P-glycoprotein in human lung carcinoma xenografts after fractionated irradiation in vivo. Radiat Res, 1991, 127: 335-338.
    64.Smith G, Dawe RS, Clark C, et al. Quantitative realtime reverse transcription-polymerase chain reaction analysis of drug metabolizing and cytoprotective genes in psoriasis and regulation by ultraviolet radiation. JInvest Dermatol, 2003, 2: 390-398.
    65.刘宇, 张幸平, 陈晓品, 等. P 糖蛋白在鼻咽癌放射治疗前后的表达及临床意义探讨. 中华放射肿瘤学杂志, 2004, 13: 243-244.
    66.McClean S, Hosking LK, Hill, et al. Dominant expression of multiple drug resistance after in viro X-irradiation exposure in intraspecific Chinese hamster ovary hybrid cells. J Natl Cancer lnst, 1993, 85: 48-53.
    67.Thacker J, Stretch A, Stephens A, et al. The induction of thioguanine resistant mutants of Chinese hamster cells by X-ray. Mutat Res, 1997, 42: 313-326.
    68.聂青, 康静波, 段蕴. 累积高剂量照射对体外培养的小细胞肺癌细胞系的总RNA及其多药耐药基因的影响. 解放军医学杂志, 2002, 9: 829-831.
    69.卜俊国,袁亚维,陈俊,等. X 射线照射后鼻咽癌细胞多药耐药基因的表达. 第一军医大学学报, 2004, 24: 646-649.
    70.McClean S, Whelan RD, Hosking LK, et al. Characterization of the P-glycoprotein over-expressing drug resistance phenotype exhibited by Chinese hamster ovary cells following their invitro exposure to fractionatedX-irradiation. Biochim Biophys Acta, 1993, 1177: 117-126.
    71.Hill BT, Deuchars K, Hosking LK, et al. Overexpression of P-glycoprotein in mammalian tumor cell lines after fractionated X-irradiation in vitro. J Natl Cancer Inst, 1990, 82: 607-612.
    72.Hill BT, Whelan RD, Hurst HC, et al. Identification of a distinctive P-glycoprotein mediated resistance phenotype in human ovarian carcinoma cells after their in vitro exposure to fractionated X-irradiation. Cancer, 1994, 73: 2990-2999.
    73.Stammler G, Pommerenke EW, Mattern J, et al. Resistance of human multidrug-resistant neoplastic cell. Carcinogenesis, 1995, 16: 2051-2055.
    74.Stammler G, Pommerenke EW, Masanek U, et al. Messenger RNA expression of resistance factors in human tumor cell lines after single exposure to radiation. J Exp Ther Oncol, 1996, 1: 39-48.
    75.Harvie RM, Davey MW, Davey RA, et al. Increased MRP expression is associated with resistance to radiation, anthracyclines and etoposidein cells treated with fractionated gamma-radiation. Int J Cancer, 1997, 73: 164-167.
    76.Nielsen D, Maare C, Eriksen J, et al. Expression of P-glycoprotein and multidrug resistance associated protein in Ehrlich ascites tumor cells after fractionated irradiation. Int J Radiat Oncol Biol Phys, 2001, 51: 1050-1057.
    77.Bottke T, Wiegel AM, Asemissen K, et al. Induction of multidrug resistance on mRNA and on protein level by fractionated irradiation. J Clin Oncol, 2004, 22:16.
    78.Uchiumi T, Kohno K, Tanimura H, et al. Enhanced expression of the human multidrug resistance 1 gene in response to UV light irradiation. Cell Growth Differ, 1993, 4: 147-157.
    79.Hill BT. Evidence of differential regulation of P-glycoprotein overexpressing in drug-resistance tumer cells selected by exposure to X-irradiation as opposed to antitumour drugs. Onkologie, 1996, 19 Suppl 1: 629.
    80.Dumitriu IE, Roedel F, Beyer TD, et al. UV or X-irradiation increases the eytoplasmic accumulation of rhodamine in various cancer cell lines. Strahlenther Onkol, 2003, 179: 564-570.文献第二部分完
    81.焦保华. 环胞菌素 K 逆转数种人类胶质瘤细胞多药耐药性的体外实验研究[J]. 肿瘤防治与研究, 2001, 28(6): 457-459.
    82.孙士勇,韩锐. 谷胱甘肽 S-转移酶与肿瘤防治[J],国外医学药学分册,1992,19(2):66-71.
    83.Minderman H, O’Loughlin KL, Pendyala L, et al. VX-710(biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing multidrug resistance protein, and breast cancer resistance protein[J]. Clin Cancer Res, 2004, 10(5): 1826-1834.
    84.魏志霞田韧,端木中. 干扰素对肝癌多药耐药 SMMC-7221/ADM 的逆转及其机制研究[J]. 临床肿瘤学杂志,2001,6(4):339-341.
    85.胡军,赵瑾瑶,杨佩满等. 榄香烯乳剂逆转多药耐药细胞株 MCF-7/ADM 对阿霉素耐药性研究. 中国微生物学杂志,2003,14:214-215.
    86.Walter RT, Shtil AA, Roninson IB, et al. 60-Hz elelctric fields inhibitprotein kinase C activity and multidrug resistance gene(MDR1) upregulation. Radiat Res, 1997, 147(3): 369-375.
    87.Larrivee B, Averill DA. Melphalan resistance and photoaffinity labeling of P-glycoprotein in multidrug-resistance Chenese hamster ovary cells: reversal of resistance by cyclospor in A and Biochem Pharmacol, 1999, 58(2): 291-302.
    88.Averill DA, Su C. Sensitization to the cytotoxicity of adriamycin by verapamil and heat in multidrug-resistance Chinese hamster ovary cells. Radiat Res, 1999, 151(6):694-702.
    89.Dumonter C, Bodin F, Wichal Y.. potential interactions between antitubulin agents and temperature: implications for modulation of multidrug resistance. Clin Cancer Res. 1998, 4(6): 1563-1566.
    90.宋燕爽,刘红,王立梅等. 加温或/和化疗对结肠癌细胞系THC-8908多药耐药基因表达的影响. 中国肿瘤临床. 1997, 24(2): 131-134.
    91.徐建业,周琦,卢萍等. 加温诱导肿瘤细胞凋亡与逆转多药耐药性的实验研究. 中华理疗杂志. 2000, 23(1): 33-36.).
    92.张洪新,刘燕,郭卫平等. 阿霉素加热化疗对人肝癌细胞耐药模型-7721/ADM 多药耐药性的影响. 中华物理医学与康复杂志. 2000, 22(6):366-369.
    93.郭伟剑,罗建明,于尔辛. 电化学治疗对人肝癌细胞 SMMC-7721 化疗耐药性的影响. 中华物理医学与康复杂志. 2000, 22(3): 151-153.
    94.毛平传,吴孟超,陈汉. 化疗药和热休克对人肝癌细胞株 SMMC-7721 中MDR1 基因表达的影响. 肝胆外科杂志. 1995, 3(3): 181-183.
    95.王宝成,郭军,顾广玉,等. 切割 MDRRNA 的核酯肝癌多药耐药细胞株BEX-7402/DOX 化疗耐药的逆转作用 [J]. 中国肿瘤生物治疗杂志,1997,4:106-109.
    96.Rago RP, Einstein A Jr, Lush R, et al. Safety and efficacy of the MDR inhibitor Incel(biricodar, VX-710) in combination with mitoxantrone and prednisone in hormone-refractory prostate cancer[J]. Cancer Chemother Pharmacol, 2003, 51(4): 297-305.
    97.Kankesan J, Vanama R, Yusuf A et al. Effect of P53, and inhibitor ofP-glycoprotein on N-methyl-N-nitrosourea induced mammary carcino- genesis in rats[J]. Carcinogenesis, 2004, 25(3): 425-430.
    98.Rosen G, Suwansirikul S, Kwon C, et al High-dose methotrexate with citrovorum factor rescue and adriamycin in childhood osteogenic sarcoma. Cancer, 1974, 33: 1151-1163.
    99.Uchida A, Myoui A, Araki N, et al Neoadjuvant chemotherapy for pediatric osteosarcoma patients. Cancer, 1997, 79: 411-415.
    100.Jaffe N, Paed D, Frei E, et al. Weekly-high-dose mithotrexate-citrovorum factor in osteogenic sarcoma. Pre-surgical treatment of primary. Tumor and of overt pulmonary metadstases. Cancer, 1977, 39: 45-50.
    101.Stein TL. Walther W. wunerlich V. Point matstions in the mdr1 pro moter of human osteosarcomes are associated with in vitro responsiven. Eur J Cancer. 1994: 30A: 1541-1545.
    102.Udzaki C, Gibassier J. Expression of multidrug resistance related marders in gastriccancer. Anticaner Res, 2000, 20: 4809-4814.
    103.Jedlitschky G, Leier I, Buchholz U, et al. ATP dependent transport of glutathiones-conjugates by the multidrug resistane-associated protein[J]. Cancer Res, 1994, 54(8): 4833-4836.
    104.屠重棋,田永刚,裴福兴. 多药耐药相关蛋白 1 在骨肉瘤中的表达[J]. 四川大学学报(医学版),2003,34(4):684-687
    105.Udzaki C, Gibassier J. Expression of multdrug resistance related marders in gastriccancer. Anticaner Res, 2000, 20: 4809-4814.
    106.Wang JC. DNA topoisomerases[J]. Annu Rev Biochem, 1996, 65: 635-692.
    107.徐萌等,恶性肿瘤化疗及其对策[M]. 北京: 军事医学科学出版社, 2002. 113- 118.
    108.Duan YB, Kim OH JH, et al. The co expression of P53 protein and P-glycoprotein is correlated to a poor prognosis in osteosarcoma. Int Orthop, 2001, 24: 307-310.
    109.Shnyder SD, Hayes AJ, Pringle J, et al. P-glycoprotein and metallothionein expression and resistance to chemotherapy in osteosarcoma[J]. Br J Cancer, 1998, 78(6): 757-759.
    110.Chin JL, Banerjee D, Kadhim SA, et al. Metallothionein in testicu largerm cell tumors and drug resistance[J]. Cancer, 1993, 72(10): 3029-3035.
    111.Kelley SL, Basu A, Teicher BA, et al. Overexpression of metallo thione in confers resistance to anticancer drugs[J]. Science, 1988, 241(4874): 1813-1815.
    112.Hockenbery DM, Zutter M, Hickey W, et al. Bcl-2 protein is topographically restricted in tissues characterized by apoptotic cell death. J Proc Natal Acad Sci USA, 1991, 88: 6961.
    113.朱晋军,廖威明,李佛保等. p33ING1b 增强骨肉瘤 U2OS 对足叶乙甙的敏感性. 癌症, 2004, 23(6): 640-644.
    114.Takeshita H, Kusuzaki K, Ashihara T, et al. Intrinsic resistance to chemotherapeutic agents in murine osteosarcoma cells[J]. J Bone Joint Surg Am, 2000, 82-A(7): 963-969.
    115.Lee PD, Noble-Topham SE, Bell RS, et al. Quantitative analysis of multidrug resistance gene expression in human osteosarcomas[J]. Br J Cancer, 1996, 74(7): 1046-1050.
    116.Postl M, Grahl K, Amling M, et al. P-glycoprotein in osteosarcoma[J]. Pathologe, 1996, 17(1): 50-55.
    117.Stein U, Walther W, Wunderlich V. Point mutations in the mdr1 promoterof human osteosarcomas are associated with in vitro responsiveness to multidrug resistance revevant drugs[J]. Eur J Cancer, 1994, 30A(10): 1541-1545.
    118.Molinari A, Cianfriglia M, Meschini S, et al. P-glycoprotein expression in the Golgi apparatus of multidrug-resistance cells[J]. Int J Cancer, 1994, 59(6): 789-795.
    119.Zini N, Scotloandi N, Nini G, et al. Multidrug-resistance(MDR) phenotype of human osteosarcoma cells evaluated by quantitative morphological and electron microscopy analysis[J]. Biol Cell, 1995, 84 (3): 195-204.
    120.Wunder TS, Bell RS, Wold L, et al. Expression of the multidrug resistance gene in osteosarcoma. apilot study[J]. J Orthop Res, 1993, 11(3): 396-403.
    121.Imanishi T, Abe Y, Suto R, et al. Expression of the human multidrug resistance gene(MDR1) and prognostic correlation in human osteogenic sarcoma. Tokai-J-Exp-Clin-Med, 1994, 19(1-2): 39-46.
    122.Serra M, Scotlandi K, Manara MC, et al. Analysis of P-glycoprotein expression in osteosarcoma[J]. Eur J Cancer, 1995, 31A(12): 1998-2002.
    123.Park YB, Kim HS, Oh JH, et al. The coexpression of p53 protein and P-glycoprotein is correlation to a poor prognosis in osteosarcoma[J]. Int Orthop, 2001, 24(6): 307-310.
    124.Grundmann E, Roessner A, Ueda Y, et al. Current aspects of the pathology of osteosarcoma[J]. Anticancer Res, 1995, 15(3): 1023-1032.
    125.Trammel RA, Johnson CB, Barken TR, et al. Multidrug resistance-1 gene expression does not increase during tumor progression in MGHOGS murine osteosarcoma tumor model[J]. J Orthop Res, 2000, 18(3): 449-455.
    126.Wunder Ts, Bull SB, Aneliunes V, et al. MDR1 gene expression andoutcome in osteosarcoma a propoctive, multicenter study[J]. J Clin Oncol, 2000, 18 (14): 2685-2694.
    127.汪毅,周琪. 多药耐药相关蛋白 1、谷胱甘肽 S 转移酶和 DNA 拓扑酶Ⅱ在骨肉瘤中的表达. 重庆医学. 2006, 35(14): 1273-1275.
    128.于秀淳,刘晓平,周银等. P 糖蛋白及 p53 蛋白基因在骨肉瘤组织中的表达及相关性. 肿瘤防治研究. 2003, 30(1): 26-28
    129.孙庆,杨小玉等. 人骨肉瘤蛋白质组双向电泳图像分析方法的建立. 中国实验诊断学,2006, 10(7): 730-732.
    130.Smith MA, Merry S, Smith JG, et al. Clinically relevantcon centra tions of verapamil do not enchance the sensitivity of human bone marrow. CFU. GM to adriamycin and VP-16[J]. Br J Cancer, 1988, 57(6): 576-582.
    131.Norimasa S, Tetsuro M, Tatsuto K, et al. Two dyridineana logues with more effective ability to reverse multidrug resistance and with lower calcium channe blocking activity than their dihydropri- dine counter parts[J]. Cancer Res, 1990, 50(5): 3055-3059.
    132.Muller F, Ferrandis GE, Cornil SI, et al. Evidence for transcrip tional control of human mdr1 gene expression by verapami in multidrug resistant leukemiacell[J]. Molecular Pharma Col, 1995, 47(6): 51-57.
    133.Sato W, Fukazawa N, Nakanishi O, et al. Resersal of multidrug resistance by a novel quinoline derivative, MS-209[J]. Cancer Chemother Pharmacol, 1995, 35(4): 271-277.
    134.Oda Y, M atsumo to Y, Harimaya K. Establishment of new multidrug-resistant human osteosarcoma cell lines. Oncol Rep, 2000, 7(4): 859-866
    135.Devarajan E, Chen J, Multani AS, et al. Human breast cancer MCF-7 cellline contains inherently drug-resistant subclones with distinct genotypic and phenotypic features[J].Int J Oncol, 2002, 20(5): 913-920.
    136.邵泽勇,沈鼎明,伍烽等. 两种方法建立的人肝癌细胞多药耐药模型的比较[J]. 肿瘤,2005,25(1): 51-54.
    137.Chu JJ, Chiang CD, Rao CS, et al. Establishment and characterization of a paclitaxel; resistant human non-small cell lung cancer cell line. Anticancer Res, 2000; 20(4): 2449-2456
    138.Mattern J, BakM , Volm M. Intrinsic and acquired multidrug resistance in human lung carcinomas grown in nude mice. Anticancer Res, 1990; 10(1): 177-180
    139.周向东,钱桂生,刘凌志.人小细胞肺癌 SH77 多药耐药细胞系的建立及其生物学特征分析. 第三军医大学学报, 2003; 25(16): 1405-1407.
    140.Hoeijmaker JH, Genoma maintenance mechanism for preventing cancer.Nature, 2001; 411(6835): 366-368.
    141.Hellwinkel OJ, Muller J, Pollman A, et al. Osteosarcoma cell lines display variable individual reactions on wild-p53 and Rb tumor-suppressor transgenes[J]Gene Med, 2004, 11(10):542-549.
    142.Fichner I, Paal K, Borgmann A, et al chemo-and radiation sensitivety of xenografted acute lymphoblastic leukemias-correlation to expression of multidrug resistance proteins. Anticancer Res, 2003, 23(3B): 2657.
    143.张建文,吴敬波,范娟,等. 鼻咽癌多药耐药相关蛋白表达与颈淋巴结放疗敏感性的研究. 实用肿瘤学杂志,2006, 20(1): 21
    144.Koike K, Uchiumi T, Ohga T, et al. Nuclear translocation of the Y-box binding protein by ultraviolet irradiation FEBS Lett, 1997, 417(3):390.
    145.曹建平,马岛秀行,山口千鹤. 应用脉冲电场凝胶电泳分析 X 射线诱发人骨肉瘤细胞 DNA 双链断裂与损伤修复效应. 中国放射医学与防护杂志. 2000, 20(3): 159-163.
    146.司徒镇强,吴军正. 细胞培养[M].西安,世界图书出版西安公司, 2004. 197-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700