产脂肪酶菌株的筛选、鉴定及产酶条件优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从海口市各地采集含油污土样10份,富集培养得到产脂肪酶细菌优势菌种,梯度稀释后,以花生油为唯一碳源采用油脂固体平板透明圈法进行分离纯化,得到145株产脂肪酶的菌株。再经摇瓶复筛,获得两株产脂肪酶活力较高的菌株,编号分别为C737-11和C7828-5。按照《常见细菌系统鉴定手册》和《伯杰氏细菌鉴定手册》(2004版)的方法对两株菌进行了生理生化鉴定,以及结合分子生物学鉴定,确定菌株C737-11为洋葱伯克霍尔德氏Ⅰ型菌,菌株C7828-5为铜绿假单胞菌。
     菌株C737-11粗酶的最适作用温度为37℃,最适pH值为8.0,初步优化了C737-11的产脂肪酶条件,获得高达10.5 U mL-1的脂肪酶活性。
     应用单因子试验和正交实验对铜绿假单胞菌C7828-5产脂肪酶发酵培养基进行了快速优化。首先应用单因子试验确定铜绿假单胞菌C7828-5产脂肪酶最适碳源和最适氮源分别是花生油和蔗糖组合及牛肉膏。在此基础上通过L9(34)正交试验,考察了花生油、蔗糖、牛肉膏、硫酸铵等四个因素对产酶的影响,获得优化的培养基组成。最后通过单因子试验确定最适发酵温度、最适起始pH、最适接种量及最适摇床转速等。试验获得的优化培养条件为:蔗糖5gL-1、牛肉膏20 g L-1、(NH4)2SO4 1 g L-1、MgSO4·7H2O 0.5 g/L、CaCl20.5gL-1,聚乙烯醇花生油乳化液120 mLL1,起始pH7.0,培养温度28℃,转速为200 r min-1,培养72h后,获得高达8.08 U mL-1的脂肪酶表达量。
     对菌株的发酵粗酶液进行了酶学性质探讨,结果表明菌株C737-11和C7828-5脂肪酶的最适作用温度和最适作用pH分别都是37℃和8.0,都属于中温弱碱性酶。菌株C737-11脂肪酶热稳定性良好,50℃处理60 min后还有82%的酶活力;60℃处理40 min后还有55%的酶活力;70℃处理20 min后还有63%的酶活力;该脂肪酶在pH6.0-8.0范围内具有较好的稳定性,不过,在强碱性条件下(pH9-10),该酶稳定性较差。菌株C7828-5脂肪酶60℃处理1 h后酶活力几乎丧失,在pH 5.0-10.0范围内具有较好的稳定性,而且在中性条件下(pH 7.0),该酶酶活性仍保持不变,pHH10.0温浴1 h后仍有45%的酶活性。
Ten oil-contaminated soil samples were collected from Haikou city.145 lipolytic bacterial strains were isolated from soil samples rich in oil. The screening method is based on the formation of clearance zones on turbid solid media supplemented with emulsified peanut oil. Two strains with high ability of lipases production were obtained by second flask assay. These strains were characterized according to their conventional morphplogical, physiological, biochenmistrica characteristics and also with phylogenetic methods. The strains C737-11 and C7828-5 were identified as B. cepacia and P. aeruginosa, respectively.
     The optimal reaction conditions of the lipase produced by C737-11 were 37℃, at a pH of 8.0. The optional medium for the induction or supporting of lipase from C737-11 was preliminarily determined, and the lipase activity reached the maximal level of 10.5 U mL-1.
     Lipase-induction conditions of P. aeruginosa C7828-5 were optimized using monofactorial experiment and orthogonal test. The optimum carbon source and nitrogen source for P. aeruginosa C7828-5 were peanut oil, sucrose and beaf extract. Fours factors, peanut oil, sugar, beaf extract and (NH4)2SO4 were investigated by orthogonal test to obtain optimal medium composition. The effect of pH、temperature、inoculum and speed of shaker on the production of the lipase was also examined with the optimized medium by monofactorial experiment. The optimized condition was:sugar 5 g L-1, beaf extract 20 g L"1, (NH4)2SO4 1 g L-1, MgSO4·7H2O 0.5 g L-1, CaCl2 0.5 g L-1, emulsified peanut oil 120 mL L-1; the initial pH of fermentation was pH 7.0, and the temperature was 28℃; After 72 h, the alkaline lipase activity reached the maximal level of 8.08 U mL"1.
     The enzymatic properties of the lipase produced by C737-11 and C7828-5 in the fermentation medium was studied. Result showed that they had the same optimal reaction pH and temperature, which were 8.0 and 37℃, respectively, suggesting that they were warm-adapted alkaline lipases. The lipase produced by C737-11 retained 97%,87.7%, and 62.9% of its activity after incubation at 50,60, and 70℃for 20 min, respectively; and 85.9%,55.3%, and 22.6% of its activity after incubation at 50,60, and 70℃for 40 min, respectively, similar to the lipase produced by C7828-5, which retained 97.8%,97%, and 54.3 % of its activity after incubation at 50,60 and 70℃for 20 min, respectively, and 87.2%, 61.5%, and 6.3% of its activity after incubation at 50,60, and 70℃for 40 min, respectively. The lipase produced by C7828-5 was stable between pH 5 and 10, and remained 45% of its activity after incubation at a pH of 10 for 1 h. However, the lipase produced by C737-11 was stable at a pH range of 6-8, and the activity dropped sharply after incubation at pH>9.0.
引文
[1]Rohit S, Uttam C B. Production, purification, characterization, and applications of lipases. Biotechnology Advances,2001,19:627-662
    [2]Lott J A, Lu C J. Lipase in forms and amylase in enzymes:assays and application in the diagnosis of acute pancreatitis. Clin. Chem,1991,37:361-368
    [3]Rashid N, Shimada Y et al. Low-temperature lipase from psychrorophic pseudomonas sp strain KB700A. Applied and Environmental Microbiology.2001,67(9):4064-4069
    [4]Hary R, Chrisophe B, Georges L. Inprovent of enzymatic synthesis yilds of flavor acetates:the example of the isoamyl acetate. Biotechnology Letters.1994,16:247-250
    [5]Jaeger K E, Reetz M T. Microbial lipase from versatile tools for biotechnology. Trends in biotechnology. 1998,16(9):396-403
    [6]Lee W M et al. Enzymatic resolution of racemic ibuprofen esters:evects of organic cosolvent and temperature. J. Ferment. Bloeng.1995,6:613-615
    [7]Ducret A, Trani M, Lortie R. Lipase catalysed enantioselective esterication of ibuprofen in organic solvent under controlled water activity. Enzyme Microb. Technol.1998,22:212-216
    [8]Xie Y C, Liu H Z, Chen J Y. Candida rugosa lipase catalyzed esterication of racemic ibuprofen and chemical hydrolysis of sester formed. Biotechnol. Lett.1998,20:455-458
    [9]施巧琴,李辉.碱性脂肪酶的研究Ⅰ-菌株的分离和筛选.微生物通报.1981,8(3):108-110
    [10]李香春,甄宗国.脂肪酶特性及其应用.粮食与油.2003,3:19-20
    [11]Cheng Y C, Tsai S W. Enantioselective esterification of (R,S)-2-(4-chiorophenoxy) proplonic acid Carica papaya lipase in organic solvents. Tetrahendron Asymmetry.2004,18:2917-2920
    [12]Jaeger K E et al. Bacterial lipases. FEMS Microbiol.1994,15:29-63
    [13]Hong W Y, Jin C W, Chi B C. Kinetic resolution of ibuprofen catalyzed by Candida rugosa lipase in ionic liquids. Chirality,2005,17(1):16-21
    [14]Yamada S et al. Efficient alternative synthetic route to diltiazem via(2R,3S)-3-(4-methox yphenyl) glycidamide. Chemical&Pharmaceutical Bulletin.1999,47:146-148
    [15]Ladner W E, Ditrich K. Biocatalytic production of chiral intermedistes. Chimica Oggi,1999,7(8): 51-55
    [16]Khattabi M E et al. Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone. Journal of Biological Chemistry,2000,275(35):268-291.
    [17]Kojima Y, Kobayashi M, Shimizu S. A novel lipase from Pseudomonas fluorescens HU380:gene cloning, overproduction, renaturation-activation, two-step purification, and characterization. journal of bioscience and bioengineering.2003,96:242-249
    [18]Jung H A, Jae G P, Joon S R. Homologous Expression of the Lipase and ABC Transporter Gene Cluster, tliDEFA, Enhances Lipase Secretion in Pseudomonas spp. Applied Environmental Microbiology, 2001,67:5506-5511.
    [19]Dharmsthiti S, Kuhasuntisuk B. Lipase from Pseudomonas aeruginosa LP602:biochemical properties and application for wasterwater treatment. Journal of industrial microbiology& biotechnology,1998,21: 75-80.
    [20]翁丽星,胡志浩,邓子新.类产碱假单胞菌耐热碱性脂肪基因的克隆.微生物学报.1997,37(6):434-437
    [21]Ma F, Hanna M A. Biodiesel production:A review[J]. Bioresource Technology,1999,70(1):1-15
    [22]马歌丽,彭新榜.微生物脂肪酶及其催化合成芳香酯研究进展[J].郑州轻工业学院学报(自然科学版).2002,17(3):50-53
    [23]Jaeger K E, Eggert T. Lipases for biotechnology. Current Opinion in Biotechnol-ogy. 2002,13(4):390-397
    [24]Kazlauskas R J, Bornscheuer U T. Biotransformations with lipases. Biotechnology. 1998,8:37-50
    [25]Sarda L, Desnuelle P. Action of pancreatic lipase on esters in emulsion. Biochimicaet Biophysica Acta,1958,30:513-521
    [26]Desnuelle P, Sarda L, Ailhaud G. Inhibition of pancreatic lipase by diethyl-p-nitr ophenyl phosphate in emulation. Biochimicaet Biophysica Acta.1960,37(2):570-571
    [27]Norin M, Olsen O, Svendsen A, et al. Theoretical studies of Rhizomucor miehei lipase activation. Protein Engineering.1993,6(8):855-863
    [28]郭净.脂肪酶的结构和化学修饰[J].中国油脂.2003,8(7):5-10
    [29]BaleaoV M, Paiva A L, Malcat F R. Bioreactors with immobilized lipase:state of the A rt[J]. Enzyme and Micorbial Technology.1996,18(6):392-416
    [30]Van T H, et al. Interfacial activation of the lipase-porcoilpase complex by mixed revealed by X-ray crystallography[J]. Natrue.1993,362:814-820
    [31]Brady L, Borzowshi A M, Derewenda Z S. A serine portease triad forms the cat-alytic centre of a triacylycerol lipase[J].Nature.1990,343:767-770
    [32]Schrag J D, et al. Ser-His-Glu triad forms the catalytic site of the lipase form Ge-otrichum candium[J].Nature.1991,351:761-764
    [33]Meher L C, Vidya S D, Naik S N. Technical aspects of biodiesel production by transesterification--a review. Renew Sust Energ Rev.2006,10:248-268
    [34]Ranganathan S V, Narasimhan S L, Muthukumar K. An overview of enzymatic production of biodiesel. Bioresource Technol.2007,99:3975-3981
    [35]Gupta R, Gupta N, Rathi P. Bacterial lipases:an overview of production,purif-ication and biochemical properties. Appl Microbiol Biotechnol.2004,64:763-781
    [36]Sharma R, Chisti Y, Banerjee U C. Production, purification, characterization, and applications of lipases. Biotechnol Adv.2001,19:627-662
    [37]Dalmau J L et al. Effect of different carbon sources on lipase production by Can-ida rugosa [J]. Enzyme and MicrobialTechnology.2000,26(9):657-663
    [38]Mohamed M et al. Improvement in lipasecatalyzed synthesis of fatty acid methyl esters from sunflower oil [J]. Enzymeand Microbial Technology.2003,33(1):97-103
    [39]吴松刚.碱性脂肪酶研究进展及其产业化对策[J].化工科技市场.2001,24(2):18-20
    [40]Dong W L et al. Purification and characterization of two oistinct thermostable lipases from the grampositive thermophilic bacterium Baclilus thermoleovorans ID-1. Enzyme and Microbial Technology.2001,29:363-371
    [41]Abel H et al. Production,purification and characterization of an extracellular lipase from Mucor hlemalis f. hlemails. Enzyme and Microbial Technology.1999,25:80-87
    [42]Lambit K, Pranab G. Isolation of a Pseudomonas lipase produced in pure hydrocarbon substrate and its application in the synthesis of isoamyl acetate using menbraneimmobilised lipase. Enzyme and Microbial Technology.2002,31:727-735
    [43]Wu J S T et al. Hepatic lipase:Purification and characterization. Biochem Biophys. 1984,792:330-337
    [44]Brady L et al. A serine protease triad forms the catalytic center of a triacylglycerol lipase. Nature.1990,243:760-770
    [45]Kim K K et al. Crystal structure of Carboxylesterase from Pseudomonas fluorescens, an alphydrolase with broad substrate specificity. Structure.1997,5:1517-84
    [46]Yahya A R M, Anderson W A, Moo-Young M. Eater synthesis in lipase catalyzed reactions[J]. Enzyme Micob.Technol.1998,23(7-8):438-450
    [47]曹淑桂.脂肪酶的底物特异性及其应用潜力[J].生物化学与生物物理进展.1995,22(1): 9-13
    [48]岩井美枝子,油脂,1989,42(3):84
    [49]Jensen R G. Characteristics of the lipase from the mold, Geotichum candidum:a review, Lipids.1974,9(3):149-157
    [50]宋欣.微生物酶转化技术[M].北京:化学工业出版社.2004,128-137
    [51]Lesuisse E, Colson C. Purification and preliminary charaterization of the extrace-llular lipase of Bacillus subtilis 168, an extremely basic pH tolerant enzyme.European journal of biochemistry.1993,216:155-160
    [52]Lentingh B M, Mulleners. Identification of a lipse for use in household detergen-ts. In:lipases Structure. function and protein engineering Elsinore.1993,346-351
    [53]Aoyama S, Yoshida N. Cloning, sequencing and expression of the lipase gene from pseudomonas fragi in E.coli. FEBS Letters.1988,242:36-40
    [54]Gilbert E J, Jones C W. Purification and properties of extracellular lipase from pseudomonas aeruginosa EF2. Journal of general Microbiology.1991,137:2223-2229
    [55]Asahara T et al. Production of two types of lipases with opposite positional specificity by Geotriclum.sp F0401B. Bioscience Biotechnology and Biochemistry.1993,57(3):390-394
    [56]施巧琴.一株碱性脂肪酶的筛选[J].微生物学报.1981,8(3):108-110
    [57]Jaeger K E, Reetz M T. Microbial lipase from versatile tools for biotechnology[J]. Trends Biotechnol.1998,16:396-403
    [58]李春华.一株产耐热碱性脂肪酶芽孢杆菌的筛选及其所产酶性质的研究.1999, 213:294-296
    [59]高修功,章克昌,曹淑桂.脂肪酶产生菌的选育及产酶条件的优化.微生物学报.1998,384:313-317
    [60]Cardenas F et al. Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. Journal of Molecular Catalysis B:Enzymatic.2001,14:111-123
    [61]Mohd Y A et al. A plate assay for primary screening of lipase activity. Journal of Microbiological Methods.1989,9:51-56
    [62]Ionita A et al. Screening of yeast and fungal strains for lipolytic potential and de-termination of some biochemical properties of microbial lipases. Journal of Molecular Catalysis B:Enzymatic.1997,3:147-151
    [63]Abbas H et al. Isolation and characterization of an extracellular lipase from Mucor sp strain isolated from palm fruit. Enzyme and Technology.2002,31:968-975
    [64]Kouker G, Jaeger K E. Specific and sensitive plate assay for bacterial lipase. Applied and Environmental Microbiology.1957,531:211-213
    [65]Fox P F, Stepaniak L. Isolation and some properties of extracellular heatstable lipases from Pseudomonas fluorescens strain AFT 26. Journal of Dairy Research.1983,50:77-89
    [66]Yeap C K. Screening and Purification of Lipase Enzyme from Bacteria. BSTM Thesis, Universiti Putra Malaysia, Serdang,Selangor, Malaysia.1998
    [67]Hee B Z, SheikhAbdul N H. Screening and identification of extracellular lipase producing thermophilic bacteria from a Malaysian hot spring. Word Journal of Microbiol Biotechnol.2003,19:961-968
    [68]Lee D W et al. Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1.FEMS Microbiology Letters.1999,179:393-400
    [69]Beisson F et al. Methods for lipase detection and assay:a critical review. Eur.J. Lipid Scl. Technol.2000,133-153
    [70]王艳茹,高贵.产脂肪酶菌种的筛选及部分酶学性质.吉林大学学报(自然科学版).1999,4:91-94
    [71]吴松刚等.类产碱假单胞菌耐热碱性脂肪酶的研究.微生物学报.1997,37(1):32-39
    [72]牛冬云,张义正.碱性脂肪酶产生菌的筛选及产酶条件的优化.食品与发酵工业.2002,29(5):28-31
    [73]邹文欣,刘慧,郁文焕.脂肪酶产生菌的分离及其酶学性质的研究.南京大学学报.1996,32(4):713-716
    [74]Houria Abbas et al. Isolation and characterization of an extracellular lipase from Mucor sp strain isolated from palm fruit. Enzyme and Microbial Technology.2003,31:968-975
    [75]开立,王芳,谭天伟.固定酶法生产生物柴油[J].现代化工.2003,9(23):35-38
    [76]Srivastava A, Prasad R. Renewable and sustainable energy review[Z].2002,4(2): 111-133
    [77]韩雪.催化生物柴油生产的脂肪酶产生菌的筛选及其相关基因的研究[D].黑龙江大学.2008
    [78]Demirbas A. Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Enery Conversion and Management.2006,47:2271-2282
    [79]Sharp C A. Transient emissions testing of biodiesel and other additives in a DDC series 60 engine. Southwest Research Institute.1994,12
    [80]Vicente G, Marrinez M, Aracil J. Integrated biodiesel production:a comparison of different homogeneous catalysts systems. Biores Technol.2004,92:297-305
    [81]Encinar J M et al. Preparation and properties form cynara cardunculus L.oil. Industrial& Engineering Chemistry Research.1999,38:2927-2931
    [82]Demirbas A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods:a survey, Energy Conversion and Management.2003,44:2093-2109
    [83]岳鹃,金青哲,刘元法.废煎炸油-甲醇-醚三元互溶体系合成生物柴油的研究.粮油加工.2006,56-59
    [84]周斌,李浩南,钟耕等.火锅废油合成生物柴油的研究.新能源新材料.2006:1-4
    [85]Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel.2001,80(2):225-231
    [86]Shimada Y et al. Enzymatic alcoholysis for biodiesel fuel production and applic-ation of the reaction to oil processing. Journal of Molecular Catalysis B:Enzymatic.2002,17(3-5): 133-142
    [87]Demirbas A. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management.2004,43:2349-2356
    [88]Demirbas A. Biodiesel production from vegetable oils via catalytic and non-supercritical methanol tranesterification methods. Progress in Energy and Combustion Science.2005, 3(1):466-487
    [89]朱海峰,程健,何寿林.超临界甲醇中的酷交换反应及其动力学.武汉化学院学报.2006,28(1):11-15
    [90]Madras G, Kolluru C, Kumar R. Synthesis of biodiesel in supercritical fluids. Fuel. 2004,83(9):2029-2033
    [91]Kusdiana D, Saka S. Effects of water on biodiesel fuel production by supercriti-cal methanol treatment. Bioresource Technology.2004,91:289-295
    [92]王文魁等.酯交换法生产生物柴油研究进展.拖拉机与农用运输车.2008,35(1):3-5
    [93]吴义真,邹有土,林琳.脂肪酶催化合成生物柴油的瓶颈问题及其对策.中国生物工程杂志.2008,28(2):117-123
    [94]Shieh C J, Liao H F, Lee C C. Optimization of lipase catalyzed biodiesel by response surface methodology. Bioresour Technol.2003,88:103-106
    [95]杨继国,林炜铁,吴军林.酶法合成生物柴油的研究进展[J].化工环保.2004,24(2):116-120
    [96]刘幽燕等.生物柴油制备方法的应用研究进展[J].现代化工.2006,26(4):15-20
    [97]Salis A et al. Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology.2005,119:291-299
    [98]高新亮.脂肪酶固定化法及其催化性能研究:(硕士学位论文).大连:大连理工大学,2006
    [99]Oznu K et al. Immobilized candida Antarctica lipase catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresource Technology.2002,83(2):125-129
    [100]Watanabe Y et al. Conversion of degummed soybean oil to biodiesel with immobilized candida Antarctica lipase. Journal of Molecular Catalysis B:Enzymatic.2002,17:151-155
    [101]Iso M et al. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. Journal of Molecular Catalysis B:Enzymatic.2001,16(1):53-58
    [102]Shimada Y et al. Enzymatic alcoholysis of biodiesel fuel production and applic-ation of the reaction of oil processing. Journal of Molecular Catalysis B:Enzymatic.2002,17: 1133-142
    [103]忻耀年.生物柴油的发展现状和在中国的应用前景[J].中国油脂.2005(3):49-53.
    [104]颊黎,高志刚.生物柴油产业化现状综述及工艺简介.医药工程设计.2009,3(30):59-62
    [105]东秀珠,蔡妙英等,常见细菌系统鉴定手册,北京:科学出版社,2001
    [106]Don JB, Noel RK, James TS. Bergey's Manual of Systematic Bacteriology Volume Two. Library of Congress Cataloging in Publication Data,2004
    [107]阳义健等.1种提取产紫杉醇内生真菌高质量核酸的方法.西南农业大学学报,2006,28(1):33-36
    [108]吴伟斌等.耐热脂肪酶产生菌FS1403的分离筛选和16SrDNA基因序列的分析[J].药物生物技术.2008,15(1):6-10
    [109]Karlene H et al. Development of a species specific fur genebased method for identification of the Burkholderia cepacia Complex. Journal of Clinical Microbiology,2008, 46(2):447-455
    [110]Coenye T.et al. Burkholderia cepacia genomovar VI, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. Int J Syst Evol Microbiol,2001, 51:271-279
    [111]Mahenthiralingam E. et al. Infection with Burkholderia cepacia complex geno-movars in patients with cystic fibrosis:virulent transmissible strains of genomovar Ⅲ can replace Burkholderia multivorans. Clin Infect Dis,2001,33:1469-1475
    [112]Magalhaes M, de Britto M C. Vandamme P. Burkholderia cepacia genomovar Ⅲ and Burkholderia vietnamiensis double infection in a cystic fibrosis child. J Cyst Fibros,2002, 1:292-294
    [113]Lipuma J J. Update on the Burkholderia cepacia complex. Curr Opin Pulm Med,2005, 11:528-533
    [114]Smalley J W et al. Transmissible Burkholderia cepacia genomovar Ⅲ a strains bind and convert monomeric iron(Ⅲ) protoporphyrin Ⅸ into the muoxo oligomeric form. Microbiology,2003,149:843-853
    [115]Singh R K et al. Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol,2006, 52:117-122
    [115]Mu Z et al. Identification and colonization of an antagonistic endophytic Burkholderia cepacia Lul0-1 isolated from mulberry. Wei Sheng Wu Xue Bao,2008,48:623-630
    [116]Bartholdson S J et al. Plant host and sugar alcohol induced exopolysaccharide biosynthesis in the Burkholderia cepacia complex. Microbiology,2008,154:2513-2521
    [117]Koenig D W, Mishra S K, Pierson D L. Removal of Burkholderia cepacia biofilms with oxidants. Biofouling,1995,9:51-62
    [118]Jacobs J L et al. Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil. Appl Environ Microbiol, 2008,74:3121-3129
    [119]Mendes R et al. Diversity of cultivated endophytic bacteria from sugarcane:genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol,2007,73:7259-7267
    [120]Brown A R, Govan J R. Assessment of fluorescent in situ hybridization and PCR-based methods for rapid identification of Burkholderia cepacia complex organisms directly from sputum samples. J Clin Microbiol,2007,45:1920-1926
    [121]Gupta R, Gupta N, Rathi P. Bacterial lipases:an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol,2004,64:763-781
    [122]Noureddini H, Gao X, Philkana R S. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol,2005,96:769-777
    [123]Turner C et al. Lipase-catalyzed esterification of 2-monoricinolein for 1,2 (2,3)-diricinolein synthesis. Lipids,2006,41:77-83
    [124]Kiran G S et al. Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057). Bioprocess Biosyst Eng,2008,31:483-492
    [125]Yan J Y, Yan Y J. Optimization for producing cell bound lipase from Geotrichum sp. and synthesis of methyl oleate in microaqueous solvent. Appl Microbiol Biotechnol,2008, 78:431-439
    [126]Papon M, Talon R. Factors affecting growth and lipase production by meat lactobacilli strains and Brochothrix thermosphacta. J Appl Bacteriol,1988,64:107-115
    [127]Ghosh P K et al. Microbial lipases:production and applications. Sci Prog,1996,79 (Pt 2):119-157
    [128]Sarkar S et al. Production and optimization of microbial lipase. Bioprocess and Biosystems Engineering,1998,19:29-32.
    [129]Shariff F M et al. Production of L2 lipase by Bacillus sp. strain L2:nutritional and physical factors. J Basic Microbiol,2007,47:406-412
    [130]Liu C H, Lu W B, Chang J S. Optimizing lipase production of Burkholderia sp. by response surface methodology Process Biochemistry,2006,41:1940-1944
    [131]Park D S et al. Characterization of an extracellular lipase in Burkholderia sp. HY-10 isolated from a longicorn beetle. J Microbiol,2007,45:409-417
    [132]熊宗贵.发酵工艺原理[M].北京:中国医药科技出版社,1995
    [133]Zheng Yi et al. Studies on alkaline-Mesophile lipase Ⅲ. Purification and some properties of alkaline lipase from Penicillium expansum PF868. Industry Mcrobiol,1996, 26(3):15-19
    [134]刘瑞娟等.低温碱性脂肪酶产生菌的筛选及产酶培养基的优化[J].天津科技大学学报,2009,24(1):6·10
    [135]Shweta S, Munishwar N G Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochemistry.2007,42(3):409-414
    [136]Du D D et al. Repeated production of fatty acid methyl ester with activated bleaching earth in solvent free system. Process Biochemistry.2006,41:1849-1853
    [137]Watana Y et al. Continuous production of biodiesel fuel from vegetable oil using immobilized candida Antarctica lipase. JAOCS.2002,77(4):355-360
    [138]Kaieda M et al. Biodiesel fuel production from plant oil catalyzed by phizopus oryzae lipase in a water-containing system without organic solvent. Bioscience bioengineering. 1999,88(6):627-631
    [139]Xiao M, Yin Z Z. Study on the process of synthesis biodiesel by supercritical (near-critical) methanol and enzyme-catalysed method.
    [140]韩德奇.生物柴油的现状和发展前景.国际石油经济.2002,10(2)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700