稀土掺杂钇铝石榴石纳米粉体的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对Nd:YAG纳米粉体及透明陶瓷的发展和制备方法作了综述,并介绍了超临界干燥技术的发展和应用。
     本论文以硝酸铝、硝酸钇、硝酸钕为原料,分别以碳酸氢铵和尿素为沉淀剂,化学沉淀法结合CO2超临界流体干燥技术合成一系列钕掺杂的钇铝石榴石前驱体粉末,并在不同温度下煅烧得到Nd:YAG样品。采用XRD、FT-IR、TG/DTA、SEM、BET和荧光分光光度计等测试手段对前驱体及煅烧产物进行表征。结果表明,采用碳酸氢铵共沉淀法结合CO2超临界干燥制备的1%Nd:YAG前驱体,比表面积为271.64m2·g-1,XRD结果表明前驱体为晶态,1100℃空气中煅烧2h后出现YAG晶相,同时夹杂Y2O3和YAM相,1400℃煅烧2h后仍未得到纯YAG。尿素均匀沉淀法制备的前驱体为非晶态氢氧化物和碳酸盐混合物,常规干燥法得到的前驱体比表面积较小,且发生严重团聚,1000℃煅烧得到纯Nd:YAG,颗粒粒径分布不均匀、分散性较差,团聚严重。与常规干燥法结果比较,CO2超临界干燥明显改善了常规干燥时发生的严重团聚问题,使前驱体粉末具有良好的分散性、较高的比表面积及烧结活性,800℃煅烧后直接生成纯YAG相,未出现中间相,1000℃煅烧后粉体仍能保持良好的分散性,颗粒呈类球形状,尺寸分布于35-45nm之间。不同钕掺杂量前驱体的晶化产物均为YAG相,没有出现中间相。其晶胞参数随钕掺杂量的增大而变大,2e值则随钕掺杂量的增大而变小。荧光光谱分析表明Nd:YAG粉体的荧光发射光谱和激发光谱的相对发光强度均随煅烧温度升高而增强,随钕掺杂量的增加呈先增大后减小的变化趋势,掺杂量为0.8%时发光强度最大。
In this paper, We briefly illustrated the development and synthesis methods of Nd:YAG nanopowders and transparent ceramics. In addition, the development and application of supercritical drying technology were also introduced.
     In this paper, aluminum nitrate, yttrium nitrate, neodymium nitrate as raw materials, ammonium bicarbonate and urea as precipitation, respectively, a series of neodymium-doped yttrium aluminum garnet precursor powders were synthesized by chemical precipitation method combined with CO2 supercritical fluid drying, and calcined at different temperatures. The precursor and calcined products were characterized by XRD, FT-IR, TG/DTA, SEM, BET and fluorescence spectrophotometer test. The results showed that 1% Nd:YAG precursor powders were synthesized by ammonium bicarbonate co-precipitation combined with CO2 supercritical fluid drying, the specific surface area was 271.64m2·g-1. XRD results showed that the precursor powders were crystalline, YAG generated at 1100℃in air for 2h, including Y2O3 and YAM. When calcined temperature was 1400℃, pure YAG was not still obtained. The precursor powders which synthesized by urea homogeneous precipitation combined with conventional drying method composed of mixtures of amorphous hydroxide and carbonate, the specific surface area are small and serious agglomeration, after calcined at 1000℃in air for 2h, pure Nd:YAG were obtained, but the size distribution of particles was uneven, the dispersity were poor and agglomerate seriously. Compared with conventional drying method, CO2 supercritical fluid drying improved serious agglomeration that appeared in conventional drying method, so the precursor powders had good dispersion and high specific surface area and sintering activity. CO2 supercritical fluid drying samples which calcined at 800℃could be directly generated single YAG crystal phase, and intermediate phase did not appear. The powders which calcined at 1000℃still maintain a good dispersion, and particles were spherical shape, size distribution was between 35-45nm. In addition, the samples with different Nd doped were crystalline YAG phase, no intermediate phase. The cell parameters increased with the amount of Nd doping, but 20 decreased with the Nd increasing. The fluorescence spectra showed that the emission spectra and excitation spectra intensity increased with the rising of the sintering temperature, but it increased before the Nd-doped content 0.8%, and then descend with the increase of Nd-doped content.
引文
[1]E. Coal, Improved Polycrystalline ceramics lasers[J], Mater.sci.Res,1966(3):165-173
    [2]J.Kong,D.YTang,et al., Diode pumped Yb:Y2O3 ceramic laser[J], Porc.SPIE:4914:69-76
    [3]De With G Translucent Y3A15O12 Ceramics[J].Material Research Bulletins,1984, 19(12):1669-1674
    [4]M.Sekita, H.Hnaeda, et al., Indueed emission cross section of Nd:Y3Al5O12 ceramics [J],J.APPI.Phys,1990(67):453-458
    [5]A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida. Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid state lasers[J], J. Am. Ceram. Soc.,1995,78(4):1033-1040
    [6]Ikesue.A. Polycrystalline Nd:YAG ceramic lasers[J]. Opt.Mater.2002,19(1):183
    [7]Jianren Lu, Ken-ichi Ueda, and A.A.Kaminskii, Neodymium doped yttrium aluminum garnet(Y3Al5O12) nano-crystalline ceramics-a new generation of solid state laser and optical materials[J], J Alloy Compounds,2002,341:220-225
    [8]K.Ueda, H.Yagi, et al., High power ceramic lasers,128W output and future[A].In: european physical Society ed.CLEO europr&EOEC foucs Meeting[C].munich, Germany:[s.n],2001:18-20
    [9]闻雷,孙旭东等.固相反应法制备YAG透明陶瓷[J],硅酸盐学报.2003,31(9):819-822
    [10]潘裕柏,徐军等.Nd:YAG透明陶瓷的制备与激光输出[J].无机材料学报.2006,21(5):1278-1280
    [11]李劲东,潘裕柏等.国产Nd.YAG陶瓷获得激光输出[J].中国激光.2006,33(6):864-864
    [12]Jiang Li, Yusong Wu, Yubai Pan. Fabrication of transparent Yb,Cr:YAG ceramics by a solid-state reaction method[J]. Ceramics international.2006,32:785-788
    [13]Jiang Li, Yusong Wu, et al. Fabrication of Cr4+,Nd3+:YAG transparent ceramics for self-Q-switched laser[J]. Journal of Non-Crystalline Solids.2006,(352):2404-2407
    [14]L.Lipinska, L.Lojko, et al. Nanopowders and crystals in (Y1-xNdx)3Al5O12 system: Preparation and properties[J]. Journal of Alloys and Compounds,2007,432(1-2):177-182
    [15]D.Klimm, S.Ganschow, et al. On the solubility of Nd3+in Y3A15O12 [J]. Journal of Alloys and Compounds,2007,436(1-2):204-208
    [16]L.I.Kazakova, GM.Kuzmicheva, E.M.Suchkova.Inorg.Mater.2003,39(9):959-970
    [17]陆学善.激光基质钇铝石榴石的发展[J].北京:科学出版社,1972
    [18]张玉龙,唐磊.人工晶体生长技术、性能与应用[J].化学工业出版社,2005,1(p):97-98
    [19]卡明斯基A.A.激光晶体[M].北京:科学出版社,1981.75
    [20]B. Hoghooghi, et.al. Vitrification and crystallization of barium aluminosilicate glass ceramics from zeolite precursors [J]. Journal of Non-crystalline Solids,1996, 197(2-3):170-178
    [21]张书生,庄卫东等.助溶剂对Y3Al5012:Ce荧光粉性能的影响[J].中国稀土学报,2002,6(20):605-607
    [22]Zhou Y, L iu J, Yu M, et al. Comparative study on the luminescent properties of Y3Al5O12:RE3+(RE:Eu, Dy) phosphors synthesized by three methods [J]. Journal of alloys and compounds,2004,375:93-97
    [23]Zhang Qiwu, Saito Fumio. Mechanochemical solid reaction of yttrium oxide with alumina leading to the synthesis of yttrium aluminum garnet [J]. Powder Technology,2003, 129(1-3):86-91
    [24]Zhihong Sun, Duorong Yuan, et al, Synthesis of yttrium aluminum garnet (YAG) by a new sol-gel method [J]. Journal of Alloys and Compounds 2004,379:L1-L3
    [25]Manalert R.,Rahaman M.N.Grain Boundary Mobility of BaTiO3 Doped with Aliovalent Cations[J].Journal of the European Ceramic Society,1998,18(8):1063-1071
    [26]杨隽.闫卫平等.溶胶-凝胶法合成YAG:Ce3+荧光粉及其发光性能研究[J].中国稀土学报.2005,23:27-29
    [27]ZHANG Jun-ji, N I NG Jin-wei, L I U Xue-jian, et al.Synthesis of ultrafine YAG:Tb phosphor by nitrate-citrate sol-gel combustion process [J]. Material research bulletin, 2003,38:1249-1256
    [28]张华山,苏春辉等.柠檬酸-凝胶燃烧法制备钇铝石榴石纳米粉体的研究[J].材料开发与应用,2005,20(3):5-13
    [29]李永绣,闵宇霖等.有机-无机杂化凝胶法合成YAG:Ce3+荧光粉的包膜及其稳定性[J].无机化学学报,2003,19(11):1169-117
    [30]丁志立,韩杰才等.以碳酸氢铵为沉淀剂制备纳米钇铝石榴石粉体[J].材料工程2005(2):48-50
    [31]C.C. Chiang a, M.S. Tsai, C.S. Hsiao, M.H. Hon. Synthesis of YAG:Ce phosphor via different aluminum sources and precipitation processes[J]. Journal of Alloys and Compounds 2006,416:265-269
    [32]Xia Li, Qiang Li, et al. Synthesis of Nd3+doped nano-crystalline yttrium aluminum garnet (YAG) powders leading to transparent ceramic[J]. Optical Materials 29 (2007) 528-531
    [33]Guogang Xu, Xudong Zhang, Wen He, Hong Liu, Hong Li, Robert I. Boughton. Preparation of highly dispersed YAG nano-sized powder by co-precipitation method [J]. Materials Letters,2006,60:962-965
    [34]李江,潘裕柏等.共沉淀法制备钇铝(YAG)石榴石纳米粉体[J].硅酸盐学报,2003,31(5):490-493
    [35]Li JG, Lee JH, Mori T, et al. Crystal phase and sinterability of Wet-chemically derived YAG powders [J]. J Ceram Soc Jpn,2000,108(5):439-444
    [36]苏静,张庆礼等.共沉淀法YAG, Nd:YAG纳米粉体的制备,结构与光谱性能研究[J].功能材料,2005,5(36):717-722
    [37]王宏志,高濂.共沉淀法制备纳米粉体[J].无机材料学报,2001,16(4):630-634
    [38]Wang J. Q., Xu H. Y, Wang Y, et al. Effect of sulfate Ions on YAG powders synthesized by microwave homogeneous precipitation [J]. J. Rare Earths,2006,24(1):284-287
    [39]Matsushita N, Tsuchiya N, Nakatsuka K. Precipitation and calcinations processes for yttrium aluminum garnet precursors synthesized by the urea method [J]. J Am Ceram Soc, 1999,82(8):1977-1984
    [40]Yuexiao Pan, Mingmei Wu, Qiang Su. Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor[J]. Materials Science and Engineering B 2004, 106:251-256
    [41]张华山,荆敏等.均相共沉淀法合成钇铝石榴石(YAG)纳米粉末的研究[J].材料科学与工程学报,2004,22(6):831-834
    [42]Wang Y, Yuan P., Xu H. Y, et al. Synthesis of Ce:YAG phosphor via Homogeneous Precipitation under Microwave Irradiation[J]. J. Rare Earths,2006,24(1):183-186
    [43]J. Su, Q.L. Zhang, C.J. Gu, D.L. Sun, Z.B. Wang, H.L. Qiu, A.H. Wang, S.T. Yin. Preparation and characterization of Y3Al5O12 (YAG) nano-powder by co-precipitation method [J]. Materials Research Bulletin 2005,40:1279-1285
    [44]Yung-Tang Nien, Yu-Lin Chen, In-Gann Chen, Chii-Shyang Hwang, Yan-Kuin Su, Shoou-Jinn Chang, Fuh-Shyang Juang. Synthesis of nano-scaled yttrium aluminum garnet phosphor by co-precipitation method with HMDS treatment [J]. Materials Chemistry and Physics 2005,93:79-83
    [45]Ynkiya Hakuta, Kazuei Scino et al. J.Mater.Chem.1999.9:2671-2674
    [46]韦志仁,姚金宝等.水热法制备微米级钇铝石榴石(YAG)晶体[J],人工晶体学报.2009,38(1):179-183
    [47]张旭东,王继扬等.混合溶剂热合成球形YAG微粉[J].稀有金属材料与工程.2004,33(4):763-767
    [48]LI Xia, LIU Hong, WNAG Ji-yang, et al. YAG:Ce nano-sized phosphor particles prepared by a solvothermal method[J] Material research bulletin,2004,39:1923-1930
    [49]Y. C. Kang, I. W. Lenggoro, S. B. Park et al. J. Phys. Chem. Sol,1999,60:1855-1858
    [50]Kang Y. C. Lenggoro I. W. Park S. B., et al. Mater Res Bull,2000,35:789-798
    [51]李强.高濂等.YAG:Ce3+微粉的制备及光谱性能[J].无机材料学报.1997,4(12):575-578
    [52]张大江.高分子网络凝胶法制备纳米YAG粉体[D],硕士论文,山东科技大学,2007,6
    [53]Huo D, Zhang J S, Xu ZJ, et al. Synthesis of mixed conducting ceramic oxides SrFeCoO powders by hybrid microwave beating[J]. J Am Ceram Soc,2002,85 (2):510-512
    [54]Solomon S M, Sigamani J P, Manju L R, et al. Microwave assisted synthesis of fine paricle oxides employing wetredoxmixtures [J]. J Am Cream Soc,2002, 85(10):2469-2471
    [55]金钦汉.微波化学[M],北京:科学出版社,2001.110-112
    [56]Wang J Q, Gao X R, Jiang F H, et al. Synthesis yttrium aluminum garnet precursor via homogeneous precipitation under microwave irradiation. Journal of rare earths,2004, 22(6):780-784
    [57]袁鹏,王勇等.微波均相沉淀法制备Nd:YAG纳米粉体及其表征[J].纳米粉体技术,2007(2):8-11
    [58]李保平,张晓琳等.微波均相沉淀法制备YAG透明陶瓷.人工晶体学报.2008,37(1):224-228
    [59]Paula F. S. Pereira,Jose'M.A. Caiut, Sidney J.LRibeiro, et al. Microwave synthesis of YAG:Eu by so-gel methodology[J].J.Lumin.,2007,126:378-382
    [60]Burnno T J, Ely J F. Supercritical fluid technology, Review in Modem Theoyr and Applications, CRC PRESS, Boston, MA,1991
    [6l]张镜澄.超临界流体萃取[M],北京,化学工业出版社,200:1-4
    [62]AE-YOUNG JEONG Characterization of HydroPhobic SiO2 Powders Prepared by Surface Modification on Wet Gel[J]. Jounral of Sol-Gel Seience and Technology, 2000,19:483-487
    [63]Z. Ding, H.Y, Zhu. P.F. Greenfield, and GQ. Lu. Characterization of pore structure and coordination of Titanium in TiO2 and SiO2-TiO2 Sol-Pillaered calys [J]. Journal of Colloid and Interface Science,2001,238:267-272
    [64]Kistler S.S., Coherent expand aerorgels and jellies[J].Nature,1931,127:741-745
    [65]Stengl V et al. Titania aerogel prepared by low temperature supercritical drying [J].
    Microporous and Mesoporous Materials,2006,91:1-6
    [66]姜国伟,周亚松.CO2超临界干燥制备超细TiO2粉体的研究[J].燃料化学学报,2001,29[suppl):167-169
    [67]梁丽萍,党淑娥等.超临界流休干操法合成无团聚ZrO2(CaO)纳米粉体及其烧结性行为[J].硅酸盐学报2002,30(5)623-628
    [68]杨儒,张广延等.超临界干燥制备纳米Si02粉体及其性质[J].硅酸盐学报,2005,33(3):28 1-286
    [69]高希等.乙醇为溶剂超临界干燥法制备纳米A12O3[J].北京化工大学学报,2008,35(5):8-12
    [70]Yang Ru, Qin Jie, et al. Synthesis of yttrium aluminum garnet (YAG) powder by homogeneous precipitation combined with supercritical carbon dioxide or ethanol fluid drying [J]. Journal of the European Ceramic Society,2008,28(15):2903-2914
    [71]赵美丽,刘太昂等.超临界流体技术的应用[J].山东师范大学学报(自然科学版),2003,18(4):34-35
    [72]宋启煌,宋照等.超临界流体萃取原理及发展动向[J].广东化工,1999,1:50-52
    [73]谷满仓,钱亚芳等.超临界流体分离技术萃取中药活性成分的研究进展[J].药物研究.2009,18(16):21-22
    [74]陈龙武,甘礼华等.块状TiO2气凝胶的制备及其表征[J].高等学校化学学报,2001,22(11):1916-1918
    [75]叶钊,郭可勇等.超临界干燥制备的纳米TiO2对光催化降解甲基橙的影响[J].福州大学学报(自然科学版),2003,31(2):243-246
    [76]Zhang J C, Gao L L, Cao W L. Synthesis and characterization of TiO2-CeO2 nanocomposite by supercritical carbon dioxide drying[J].J. Rare Earth, 2003,21(suppl):134
    [77]Doug J S, Tae Jin P. Synthesis of high-surface-area zirconia aerogels with a well-developed mesoporous texture using CO2 supercritical drying [J].Chem. Mater. 2002,14(12):1452-1454
    [78]廖传华,柴本银等.超临界流体干燥技术在纳米粉体制备中的应用[J].无机盐工业,2006,38(10):1-4
    [79]Ikesue A. Polycrystalline Nd:YAG ceramics lasers[J]. Opt. Materials,2002,19:183-187
    [80]Xianxue Li, Wenju Wang. Preparation of uniformly dispersed YAG ultrafine powders by co-precipitationmethod with SDS treatment [J]. Powder Technology,2009,196:26-29
    [81]. Hua Gong, Ding-Yuan Tang, and Hui Huang, Jan Ma. Agglomeration Control of Nd:YAG Nanoparticles Via Freeze Drying for Transparent Nd:YAG Ceramics[J]. J. Am. Ceram. Soc.,2009,92(4):812-817
    [82]Y. Rabinovitch, C. Bogicevic, F. Karolak, D. Tetard, and H. Dammak. Freeze-Dried Nanometric Neodymium-Doped YAG Powders for Transparent Ceramics [J]. J. Mater. Process. Tech.,2008,199:314-320
    [83]Hsuan-Min Lee, Chao-Chi Cheng, Chi-Yuen Huang. The synthesis and optical property of solid-state-prepared YAG:Ce phosphor by a spray-drying method[J]. Materials Research Bulletin 2009,44:1081-1085
    [84]陈小兵等.纳米粉体干燥方法的研究进展[J].无机盐工业,2004,36(1):7-9
    [85]刘全生等.Nd3+:YAG纳米粉的共沉淀合成[J].长春理工大学学报,2008,31(4):29-34
    [86]张永明,于洪明.共沉淀法制备YAG粉体[J].沈阳化工学院学报,2008,22(4):324-340
    [87]李先学,钕掺杂石榴石基透明陶瓷的若干问题研究[D].博士论文,中科院,2007
    [88]郑吉,苟立等.Nd:YAG粉体的分散性研究[J].化学研究与应用,2008,20(7):900-903
    [89]吕光哲,孙旭东等.硫酸盐共沉淀法制备YAG粉体及透明陶瓷[J].材料导报2008,22(8):241-246
    [90]闻雷等.共沉淀法制备YAG超细粉及透明陶瓷[J].功能材料,2004,1(35):89-91
    [91]Hirano M et al. J Am Ceram Soc[S],1999,82:786
    [92]John A Dean. Inorganic Chemistry. Lange's handbook of chemistry [M],12th ed., New York,1979, pp.7-12
    [93]Matsushita N et al. J Am Ceram Soc[J],1999,82:1977
    [94]Sordelet D J et al. JEur Ceram Soc[J],1994,14:123
    [95]Eeckhaut L et al. Anal Chim Acta[S],1964,30:369
    [96]Huttl R et al. Thermochim Acta[J],1995,250:1
    [97]卢利平,刘景和等.:Nd:YAG激光透明陶瓷超细粉体的合成及其性能表征[J].光学技术,2005,31(2):306-308
    [98]宋琼,苏春辉等.均相沉淀法制备Nd:YAG透明激光陶瓷材料研究[J].激光与红外,2006,36(1):44-46
    [99]Su J et al. Preparation and characterization of Y3Al5O12 (YAG) nano-powder by co-precipitation method. Materials Research Bulletin[J],2005,40:1279-1285
    [100]Jiang Li, Yubai Pan, Fagui Qiu et al. Synthesis of nanosized Nd:YAG powders via gel combustion [J]. Ceramics International,2007,33:1047-1052
    [101]Li X, Li u H, Wang J Y etal. Production of nanosized YAG powders with spherical morphology and nonaggregation via a solvothermat method [J]. J Am Ceram Soc, 2004,87(12):2288-2290
    [102]Nien, Y. T., Chen, Y. L., Chen, I. G., Hwang, C. S., Su, Y. K., Chang, S.J. et al., Synthesis of nano-scaled yttrium aluminum garnet phosphor by co-precipitation method with HMDS treatment[J]. Mater. Chem. Phys.,2005,93:79-83
    [103]Li, X., Liu, H., Wang, J. Y., Zhang, X. D. and Cui, H. M., Preparation and properties of YAG nano-sized powder from different precipitating agent[J]. Opt. Mater.,2004, 25:407-412
    [104]朱虎刚,田宜灵等.超临界CO2+CH3OH及C2H5OH二元系的气液平衡.高等学校化学学报[J],2002,23(8):1588-1591
    [105]Van Bommel M J, de Hana A B. Dyring of silica gels with supercritical carbon dioxide [J]. Journal of Material science,1994,29:943-948
    [106]Hay R S et al. Phase transformation and microstructure evolution in sol-gel derived yttrium-aluminum garnet films [J]. J. Mater. Res.,1993,8:578-604
    [107]LI Chang-qing, ZUO Hong-bo, ZHANG Ming-fu, et al. Fabrication of transparent YAG ceramics by traditional solid-state-reaction method [J]. Trans. Nonferrous Met. SOC. China.,2007,17:148-153
    [108]张邦星,王化莹.Nd:YAG晶体中色心的发光特性和激光超辐射实验[J].四川大学学报,1997,8,4(34):440-443
    [109]Agus Purwanto, Wei-Ning Wang, Takashi Ogi, I. Wuled Lenggoro, Eishi Tanabe, Kikuo Okuyama. High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process [J]. Journal of Alloys and Compounds,2008,463:350-357
    [110]马海霞,楼祺洪等.陶瓷激光器的研究进展[J].激光与光电子学进展,2003,40(2):45-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700