镍基层状前体催化生长碳材料的结构、形貌及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管和碳纳米纤维作为纳米材料和碳材料的结合,具备很多独特的物理化学性质,被广泛应用到复合增强材料、吸附材料、储氢材料、场发射材料、催化剂以及催化剂载体、锂离子电池、传感器、新型混纺材料、肌肉材料以及电子探针等诸多领域,随着研究工作的不断深入,碳纳米管和碳纳米纤维的应用前景将会更加广阔。
     目前制备碳纳米材料的方法比较常见的仍然是CVD法,近年来CVD法得到较快的发展,而催化剂是这种方法制备碳纳米材料的关键因素。目前除了传统的单元Fe、Co和Ni及其合金催化剂,人们正在努力研究更加高效的新型催化剂如引入助剂合成多元催化剂等,用来制备结构和形貌更加完美的碳材料以及更加适合于各个领域实际应用的碳纳米材料。
     水滑石作为一种层状结构材料,其层板上的金属阳离子在种类和组成上具有可调变性,而且金属离子在层板上分布具有整体均匀性,因此利用水滑石前体可以得到高分散的金属离子,经过焙烧或者还原可以得到高度分散粒径均匀的金属粒子。
     本论文分别利用成核晶化隔离法、动态尿素法等方法制备得到一系列不同层板阳离子组成的NiTi-LDHs以及CuNiCrSn-LDHs,将CuNiCrSn-LDHs经过高温焙烧得到CuNiCrSn-LDOs,利用所得的NiTi-LDHs和CuNiCrSn-LDOs分别催化乙炔分解制备得到不同结构和形貌的碳材料,利用XRD、TG-DTA和SEM对其进行表征。然后利用电化学沉积法在上述碳材料表面沉积贵金属Pt制备得到电催化剂Pt/碳材料应用于甲醇的电催化氧化研究,考察其电催化性能以及抗中毒性能,实验证明其电催化活性和稳定性都高于商业化的Pt/C电极。
     利用原位生长技术在γ-Al2O3表面制备得到NiAl-LDHs/γ-Al2O3,并将此水滑石直接用于催化乙炔气体分解生长碳材料,系统研究了前体不同制备方法、不同Ni含量以及催化生长碳材料时间等对所生长碳材料结构、形貌和产量等的影响,并研究在NiAl体系中引入Mg、Cu等金属元素制备得到多元负载型水滑石结构对碳材料结构和形貌的影响,最终分别得到了碳纳米管和螺旋形碳纤维等多种形貌的碳材料,可以通过调节催化剂前体中金属种类及组成来控制所得碳材料的形貌。分别使用了XRD、SEM、TEM、HRTEM、Raman和TG-DTA等分析手段对所得碳材料进行表征。并初步探索这种负载型催化剂的可重复利用性,运用简单的超声或者搅拌等物理手段将所得碳材料与载体分离,载体上保留的催化剂组分仍可以继续用于催化生长碳材料。
As combination of carbon materials and nano-materials, carbon nanotubes and carbon nanofibers have many unique physical and chemical properties. Based on these properties, many potential applications have been proposed for them, including composite reinforced materials, adsorption, hydrogen storage, field emission, catalysts and catalysts carriers, lithium-ion batteries, sensors, new blended and muscle materials, electronic probes and other areas. With the deepening of researchers'detailed work, carbon nanotubes and carbon nanofiber will have more application prospects.
     Among tens of synthesis methods for these carbon nanomaterials, the thermal chemical vapor deposition (CVD) method attracts more attention and has rapid development in low cost and high efficiency. The catalysts play a crucial role in the CVD process. In addition to the traditional catalysts like Fe, Co, Ni and their alloy, researchers have explored some new catalysts to synthesize carbon nanomaterials with more perfect structures and morphologies or more suitable for practical applications in more areas.
     It has been found that the basic nature of the exchangeable property of cation in the brucite layer of LDHs and in-situ transformation to composite metal oxides is useful for metal dispersion which is responsible for many potential applications. So the LDHs and the calcined productors LDOs can be used as catalysts and catalysts carriers for metal dispersion becomingly.
     In this work, we have synthesized NiTi-LDHs and CuNiCrSn-LDHs with different metal ratios. And using the NiTi-LDHs and calcined products of CuNiCrSn-LDHs as catalytic precursors, various morphologies of carbon nanostructures can be produced. The materials have been characterized by XRD, SEM, TG and CV tests. The electrocatalitic activity of the electrodes of Pt particles deposited on the as-grown carbon nanostructures has been attested to be excellent for methanol oxidation.
     We have synthesized NiAl-LDHs/γ-Al2O3 in y-Al2O3 using in-situ growth method. Carbon nanostructures have been prepared using these LDHs. We have done system exploration and research of effects of different Ni content, precipitation agents for the preparation of LDHs and catalytic time on the structures, morphologies and yield of the carbon nanostructures. And with the introduction of Mg and Cu to NiAl-LDHs/γ-Al2O3, we have investigated the catalyst components'influence on the morphologies of the carbon nanostructures produced by those LDHs. We have attained carbon nanotubes, coiled carbon nanotubes and carbon nanofiber and helical cabon nanofibers and so on. The carbon materials were characterized using XRD, SEM, TEM, Raman and TG-DTA. The supported catalysts have been attested to be reused to catalytic reaction expediently.
引文
[1]Iijima S. Helical microtubules of graphite carbon[J]. Nature,1991,354:56-58
    [2]Iijima S, Ichlhashi T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature,1993,363:603-605
    [3]Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F, Ruoff R S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science,2000,287:637-640
    [4]Yu M F, Files B S, Arepalli S, Ruoff R S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties[J]. Phys. Rev. Lett.,2000,84(24):5552-5555
    [5]Ebbesen T W, Lezee H J, Hiura H, Bennet J W, Ghawmi H F, Thio T. Electrical conductivity of individual carbon nanotubes[J]. Nature,1996,382:54-56
    [6]Lee C J, Park J. Growth model for bamboolike structured carbon nanotubes synthesized using thermal chemical vapor deposition[J]. J. Phys. Chem. B,2001,105:2365-2368
    [7]Hou H Q, Jun Z, Welter F, Greiner A. Large-scale synthesis and characterization of helically coiled carbon nanotubes by use of Fe(CO)5 floating catalyst precursor[J]. Chem. Mater.,2003,15: 3170-3175
    [8]Tang N J, Wen J F, Zhang Y, Liu F X, Lin K J, Du Y W. Helical carbon nanotubes: catalytic particle size-dependent growth and magnetic properties[J]. ACS NANO,2010, in press. xxx(xx):000-000
    [9]Qi X S, Zhong W, Deng Y, Au C T, Du Y W. Characterization and magnetic properties of helical carbon nanotubes and carbon nanobelts synthesized in acetylene decomposition over Fe-Cu nanoparticles at 450℃[J]. J. Phys. Chem. C,2009,113,15934-15940
    [10]Tao X Y, Zhang X B, Cheng J P, Liu F, Li Y, Van Tendeloo G. Controllable synthesis of novel one-dimensional carbon nanomaterials on an alkali-element-modified Cu catalyst[J]. Nanotechnology,2006,17:224-226
    [11]Chesnokov V V, Zaikovskii V I, Chichkan A S, Buyanov R A. The role of molybdenum in Fe-Mo-Al2O3 catalyst for synthesis of multiwalled carbon nanotubes from butadiene-1,3[J]. Appl. Catal. A: General,2009,363:86-92
    [12]罗志强,张孝彬,程继鹏,李星,刘芙,陶新永,印万忠,韩跃新.纳米CaCO3负载过渡金属CVD法制备多壁碳纳米管的研究[J].高等学校化学学报,2004,10:1879-1884
    [13]Dupuis A C. The catalyst in the CCVD of carbon nanotube-a review[J]. Progr. Mater. Sci.,2005,50: 929-961
    [14]Li Y, Zhang X B, Tao X Y, Xu J M, Chen F, Shen L H, Yang X F, Liu F, Van Tendeloo G, Geise H J. Single phase MgMoO4 as catalyst for the synthesis of bundled multi-walled carbon nanotubes by CVD[J]. Carbon,2005,43:1325-1328
    [15]Xu J M, Zhang X B, Li Y, Tao X Y, Chen F, Li T, Bao Y, Geise H J. Preparation of Mg1-xFexMoO4 catalyst and its application to grow MWNTs with high efficiency[J]. Diam. Relat. Mater.,2004,13: 1807-1811
    [16]Tao X Y, Zhang X B, Cheng J P. Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a CoxMg1_x MoO4 catalyst[J]. Diam. Relat. Mater.,2007,16(3):425-430
    [17]Li Y, Zhang X B, Tao X Y, Xu J M, Huang W Z, Luo J H, Luo Z Q, Li T, Liu F, Bao Y, Geise H J. Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst[J]. Carbon,2005,43:295-301
    [18]Venegoni D, Serp P, Feurer R, Kihn Y, Vahlas C, Kalck P. Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor[J]. Carbon,2002, 40:1799-1807
    [19]Hsieh C T, Lin Y T, Chen W Y, Wei J L. Parameter setting on growth of carbon nanotubes over transition metal/alumina catalysts in a fluidized bed reactor[J]. Powder Technology,2009,192: 16-22
    [20]Kathyayini H, Nagaraju H, Fonseca A, Nagy J B. Catalyst activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the snthesis of carbon nanotubes[J]. J. Mol. Catal. A: Chem.,2004,223:129-136
    [21]曹洁明,常欣,房宝青,郑明波,曹喻霖,张防,张爱民,须沁华.以分子筛为金属催化剂载体制备纳米碳管[J].催化学报,2005,26:847-850
    [22]Ding D Y, Chen Z, Rajaputra S, Singh V. Hydrogen sensors based on aligned carbon nanotubes in an anodic aluminum oxide template with palladium as a top electrode[J]. Sensors and Actuators B, 2007,124:12-17
    [23]姚素薇,陆平,张卫国.硅基AAO模板法制备纳米阵列研究进展[J].化工进展,2007,26(8):1088-1092
    [24]Titus E, Cabral G, Madaleno J C, Neto V F, Shokuhfar T, Blau W J, Ramesh Babu P, Misra D S, Gracio J. Synthesis of highly oriented carbon nanotube thin films by nickel functionalisation[J]. Diam. Relat. Mater.,2007,16:1195-1199
    [25]Yang Z X, Xia Y D, Mokaya R. Aligned N-doped carbon nanotube bundles prepared via CVD using zeolite substrates[J]. Chem. Mater.,2005,17:4502-4508
    [26]Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y, Kim S, Rinzler A, Colbert D, Scuseria G, Tomanek D, Fischer J, Smalley R. Crystalline ropes of metallic carbon nanotubes[J]. Science,1996,273:483-487
    [27]Libera J, Gogotsi Y. Hydrothermal synthesis of graphite tubes using Ni catalyst [J]. Carbon,2001, 39:1307-1318
    [28]Huang J Y, Yasuda H, Mori H. Highly curved carbon nanostructures produced by ball-milling[J]. Chem. Phys. Lett.,1999,303:130-134
    [29]卢怡,朱珍平,刘振宇.催化剂对爆炸法合成纳米碳管的影响[J].新型炭材料,2004,19:1-6
    [30]Lee D C, Mikulec F V, Korgel B A. Carbon nanotube synthesis in supercritical toluene[J]. J. Am. Chem. Soc.,2004,126:4951-4957
    [31]Su M, Zheng B, Liu J. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity[J]. Chem. Phys. Lett.,2000,322:321-326
    [32]Venegoni D, Serp P, Feurer R, Kihn Y, Vahlas C, Kalck P. Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor[J]. Carbon,2002, 40:1799-1807
    [33]An L, Owens J M, Mcneil L E, Liu J. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts[J]. J. Am. Chem. Soc.,2002, 124:13688-13689
    [34]Zhou D, Anoshkina E V, Chow L, Chai G. Synthesis of carbon nanotubes by electrochemical deposition at room temperature[J]. Carbon,2006,44:1013-1024
    [35]Terranova M L, Sessa V, Rossi M. The world of carbon nanotubes:an overview of CVD methodologies[J]. Chem. Vap. Deposition,2006,12:315-325
    [36]Tu Y, Huang Z P, Wang D Z, Wen J G, Ren Z F. Growth of aligned carbon nanotubes with controlled site density[J]. Appl. Phys. Lett.,2002,80:4018-4020
    [37]Jo S H, Tu Y, Huang Z P, Carnahan D L, Wang D Z, Ren Z F. Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties[J]. Appl. Phys. Lett.,2003,82: 3520-3522
    [38]Tatsuya I, Taiko M, Tohru D. Multiwalled carbon nanotubes growth in anodic alumina nanoholes[J]. Appl. Phys. Lett.,1999,75:2044-2046
    [39]Tang D S, Xie S S, Pan Z W, Sun L F, Liu Z Q, Zou X P, Li Y B, Ci L J, Liu W, Zou B S, Zhou W Y. Preparation of monodispersed multi-walled carbon nanotubes in chemical vapor deposition[J]. Chem. Phys. Lett.,2002,356:563-566
    [40]Lee C J, Park J, Huh Y. Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition[J]. Chem. Phys. Lett.,2001,343:33-38
    [41]Hernadi K, Fonseca A, Nagy J B, Siska A, Kiricsi I. Production of nanotubes by the catalytic decomposition of different carbon-containing compounds[J]. Appl. Catal. A,2000,199:245-255
    [42]Sharon M, Apte P R, Purandare S C, Zacharia R. Application of the Taguchi analytical method for optimization of effective parameters of the chemical vapor deposition process controlling the production of nanotubes/nanobeads[J]. J. Nanosci. Nanotech.,2005,5:288-295
    [43]Tapaszto L, Kertesz K, Vertesy Z, Horvath Z E, Koos A A, Osvath Z, Sarkozi Z, Darabont A, Biro L P. Diameter and morphology dependence on experimental conditions of carbon nanotubes arrays grown by spray pyrolysis[J]. Carbon,2005,43:970-977
    [44]Zhang G Y, Mann D, Zhang L, Javey A, Li Y M, Yenilmez E, Wang Q, McVittie J P, Nishi Y, Gibbons J, Dai H J. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen[J]. Proc. Natl. Acad. Sci.,2005,102:16141-16145
    [45]Liang E J, Ding P, Zhang H R, Guo X Y, Du Z L. Synthesis and correlation study on the morphology and raman spectra of CNx nanotube by thermal decomposition of ferrocene/ethylenediamine[J]. Diam. Relat. Mater.,2004,13:69-73
    [46]王志,巴德纯,蔺增,曹培江,刘飞,粱吉.气体配比对硼掺杂纳米碳管生长特性的影响[J].新型炭材料,2005,20:350-354
    [47]Byrne M T, Gun'ko Y K. Recent advances in research on carbon nanotube-polymer composites [J]. Adv. Mater.,2009,21:1-17
    [48]Yamamoto G, Omori M, Yokomizo K, Hashida T, Adachi K. Structural characterization and frictional properties of carbon nanotube/alumina composites prepared by precursor method[J]. Mater. Sci. Eng. B,2008,148:265-269
    [49]Liang P, Liu Y, Guo L. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry [J]. J. Anal. At. Spectrom.,2004,19:1489-1492
    [50]Liang P, Ding Q, Song F. Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples[J]. J. Sep. Sci.,2005,28:2339-2343
    [51]Ding Q, Liang P, Song F, Xiang A M. Separation and preconcentration of silver ion using multiwalled carbon nanotubes as solid phase extraction sorbent[J]. Sep. Sci. Technol.,2007,41: 2723-2732
    [52]Barbosa A F, Segatelli M G, Pereira A C, Santos A S, Kubota L T, Luccas P O, Tarley C R T. Solid-phase extraction system for Pb (Ⅱ) ions enrichment based on multiwall carbon nanotubes coupled on-line to flame atomic absorption spectrometry [J]. Talanta,2007,71:1512-1519
    [53]Munoz J, Gallego M, Valcarcel M. Speciation of organometallic compounds in environmetal samples by gas chromatography after flow preconcentration on fullerenes and nanotubes[J]. Anal. Chem.,2005,77:5389-5395
    [54]Cai Y Q, Cai Y E, Mou S F, Lu Y Q. Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples [J]. J. Chromatogr. A,2005,1081(2):245-247
    [55]Saridara C, Brukh R, Ipbal Z, Mitra, S. Preconcentration of volatile organics on self-assembled, carbon nanotubes in a microtrap[J]. Anal. Chem.,2005,77(4):1183-1187
    [56]Huang W Z, Zhang X B, Tu J P, Kong F Z, Ma J X, Liu F, Lu H M, Chen C P. The effects of pretreatment on hydrogen adsorption of multi-walled carbon nanotubes[J]. Mater. Chem. Phys., 2002,78:144-148
    [57]Zacharia R, Kim K Y, Kibria A K M F, Nahm K S. Enhancement of the hydrogen storage capacity of carbon nanotubes via the spill-over from vanadium and palladium nanoparticles [J]. Chem. Phys. Lett.,2005,412:369-375
    [58]Yilidirm T, Ciraci S. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium [J]. Phys. Rev. Lett.,2005,94:175501-175504
    [59]Badzian A, Badzian T, Breval E, Piotrowski A. Nanostructured, nitrogen- doped carbon materials for hydrogen storage[J]. Thin Solid Films,2001,398-399:170-174
    [60]Lueking A, Yang R T. Hydrogen storage in carbon nanotubes - residual metal content and pretreatment temperature [J]. AIChE J.,2004,49:1556-1568
    [61]Huang W Z, Zhang X B., Tu J P, Kong F Z, Ma J X, Liu F, Lu H M, Chen C P. The effects of pretreatment on hydrogen adsorption of multi-walled carbon nanotubes[J]. Mater. Chem. Phys., 2002,78:144-148
    [62]Fan S S, Chapline M G, Franklin N R. Self-oriented regular arrays of carbon nanotubes and their emission properties [J]. Science,1999,283:512-514
    [63]Yue G Z, Qiu Q, Gao B. Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode[J]. Phys. Lett.,2002,81:355-357
    [64]Keane M A. Carbon nanofibers and nanotubes as novel metal catalyst supports. Dekker Encyclopedia of nanoscience and Nanotechnology,2004,14
    [65]Serp P, Catillejos E, catalysis in carbon nanotubes [J]. Chem. Cat. Chem.,2010,2:41-47
    [66]Luo J Z, Gao L Z, Y Leung L, Au C T. The decomposition of NO on CNTs and 1 wt% Rh/CNTs[J]. Catal. Lett.,2000,66:91-97
    [67]Giordano R,Serp P, Kalck P, Kihn Y, Schreiber J, Marhic C, Duvail J L. Preparation of rhodium supported on carbon nanotubes catalysts via surface mediated organometallic reaction[J]. Eur. J. Inorg. Chem.,2003,4:610-617
    [68]Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis [J]. Appl. Catal. A: Gen., 2003,253:337-358
    [69]Liu Z J, Xu Z, Yuan Z Y, Lu D, Chen W, Zhou W. Cyclohexanol dehydrogenation over Co/carbon nanotube catalysts and the effect of promoter K on performance[J]. Catal. Lett.,2001,72:203-206
    [70]Chen H B, Lin J D, Cai Y, Wang X Y, Yi J, Wang J, Wei G, Lin Y Z, Liao D W. Novel MWNT-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure [J], Appl. Surf. Sci.,2001,180:328-335
    [71]van Steen E, Prinsloo F F. Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts [J]. Catal. Today,2002,71:327-334
    [72]Planeix J M, Coustel N, Coq B. Application of carbon nanotubes as supports in heterogeneous catalysis [J]. J. Am. Chem. Soc.,1994,116:7935-7936
    [73]Qin Y, Zhang Z K, Cui Z L. Helical carbon nanofibers prepared by pyrolysis of acetylene with a catalyst derived from the decomposition of copper tartrate[J]. Carbon,2003,41(15):3072-3074
    [74]Qin Y, Zhang Q, Cui Z L. Effect of synthesis method of nanocopper catalysts on the morphologies of carbon nanofibers prepared by catalytic decomposition of acetylene[J]. J. Catal.,2004,223(2): 389-394
    [75]Tibbetts G G, Gorkiewicz D W, Alig R L. A new reactor for growing carbon fibers from liquid and vapor-phase hydrocarbon[J]. Carbon,1993,31(5):809-814
    [76]成会明.纳米碳管制备、结构、性能及应用[M].北京:化学化工出版社,2002:436
    [77]Randall L, Dander W, Lee J H. Flame synthesis of Fe catalyzed single-walled carbon naotubes and Ni catalyzed nanofibers: growth mechanisms and consequences[J]. Chem. Phys. Lett.,2001, 349(3-4):178-184
    [78]Kato T, Matsumoto T, Saito T, Hayashi J I, Kusakabe K, Morooka S. Effect of carbon source on formation of vapor-grown carbon fiber[J]. Carbon,1993,31(6):937-940
    [79]Rodriguez N M.A review of catalytically grown carbon nanofibers [J]. J. Mater. Res.,1993,8(12): 3233-3250
    [80]Kim M S, Rodriguez N M, Baker R T K. The interplay between sulfur adsorption and carbon deposition on cobalt catalysts [J]. J. Catal.,1993,143(2):449-463
    [81]Ishioka M, Okada T, Matsubara K. Formation and characteristics of vapor grown carbon fibers prepared in Linz-Donawitz converter gas[J]. Carbon,1992,30(7):975-979
    [82]Nessim G D, Acquaviva D, Seita M, O'Brien K P, Thompson C V. The critical role of the underlayer material and thickness in growing vertically aligned carbon nanotubes and nanofibers on metallic substrates by chemical vapor deposition[J]. Adv. Funct. Mater.,2010,20:1-7
    [83]Chai S P, Zein S H S, Mohamed A R. Synthesizing carbon nanotubes and carbon nanofibers over supported-nickel oxide catalysts via catalytic decomposition of methane [J]. Diam. Relat. Mater., 2007,16:1656-664
    [84]Hima H I, Xiang X, Zhang L, Li F. Novel carbon nanostructures of caterpillar-like fibers and interwoven spheres with excellent surface super-hydrophobicity produced by chemical vapor deposition[J]. J. Mater. Chem.,2008,18:1245-1252
    [85]Cuong P H, Ricardo V, Benoit L, Alain C, Julien A, Thierry D, Marc J L. About the octopus-like growth mechanism of carbon nanofibers over graphite supported nickel catalyst[J]. J. Catal.,2006, 240(2):194-202
    [86]Yang S M, Hasegawa M, Chen X Q, Motojima S. Synthesis and morphology of carbon microcoils produced using methane as a carbon source[J]. Carbon,2007,45(7):1592-1595
    [87]Dussault L, Dupin J C, Guimon C, Monthioux M, Latorre N, Ubieto T, Romeo E, Royo C, Monzon A. Development of Ni-Cu-Mg-Al catalysts for the synthesis of carbon nanofibers by catalytic decomposition of methane [J]. J. Catal.,2007,251:223-232
    [88]Tao X Y, Zhang X B, Zhang L, Cheng J P, Liu F, Luo J H, Luo Z Q, Geise H J. Synthesis of multi-branched porous carbon nanofibers and their application in electrochemical double-layer capacitors[J]. Carbon,2006,44(8):1425-1428
    [89]Qin Y H, Zhang Y H, Sun X. Synthesis of helical and straight carbon nanofibers by chemical vapor deposition using alkali chloride catalysts[J]. Microchimica Acta,2009,164(3-4):425-430
    [90]Qin Y, Zhang Z K, Cui Z L. Helical carbon nanofibers prepared by pyrolysis of acetylene with a catalyst derived from the decomposition of copper tartrate[J]. Carbon,2003,41:3072-3074
    [91]Qin Y, Zhang Q, Cui Z L. Effect of synthesis method of nanocopper catalysts on the morphologies of carbon nanofibers prepared by catalytic decomposition of acetylene[J]. J. Catal.,2004,223: 389-394
    [92]Zhang Q, Cui Z L. Synthesis and characterization of Y-shaped carbon fibers by chemical vapor deposition[J]. Mater. Lett.,2009,63(11):850-851
    [93]Zhang Q, Yu L Y, Cui Z L. Effects of the size of nano-copper catalysts and reaction temperature on the morphology of carbon fibers [J]. Mater. Res. Bulletin,2008,43(3):735-742
    [94]Choi Y C, Choi W B. Synthesis of Y junction single-wall carbon nanotubes[J]. Carbon,2005, 43(13):2737-2741
    [95]Blank V D, Kulnitskiy B A. Proposed formation mechanism for helically coiled carbon nanofibers[J]. Carbon,2004,42(14):3009-3011
    [96]Balan B K, Unni S M, Kurungot S. Carbon nanofiber with selectively decorated Pt both on inner and outer walls as an efficient electrocatalyst for fuel cell applications[J]. J. Phys. Chem. C,2009, 113:17572-17578
    [97]Ressler T, Walter A, Scholz J, Tessonnier J-P, Su D S. Structure and properties of a Mo oxide catalyst supported on hollow carbon nanofibers in selective propene oxidation[J]. J. Catal.,2010, in press.
    [98]Ordonez S, Diaz E, Bueres R F, Asedegbega-Nieto E, Sastre H. Carbon nanofibre-supported palladium catalysts as model hydrodechlorination catalysts [J]. J. Catal.,2010, in press.
    [99]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays:preparation, properties and applications [J]. Catal. Today,1991,11:173-301
    [100]Rives V. Layered Double Hydroxides: Present and Future [M]. Nova Science Publishers, New York,2001
    [101]Evans D G, Duan X. Preparation of layered double hydroxides and their application as additives in polymers, as precursors to magnetic materials and in biology and medicine[J]. Chem. Commun., 2006,485-496
    [102]Saber O, Hatano B, Tagaya H. Controlling of the morphology of Co-Ti LDH[J]. Mater. Sci. Eng. C,2005,25:462-471
    [103]Valente J S, Figueras F, Gravelle M, Kumbhar P, Lopez J, Bessey J P. Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcites containing different metallic compositions [J]. J. Catal.,2000,189:370-381
    [104]Shen J, Guang B, Tu M, Chen Y. Preparation and characterization if Fe-MgO catalysts obtained from hydrotalcite-like compounds [J]. Catal. Today,1996,30:77-82
    [105]Millange F, Walton R I, O'Hare D. Time-resolved in site X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds [J]. J. Mater. Chem., 2002,10:1713-1720
    [106]Zhao Y, Li F, Zhang R, Evans D G, Duan X. Preparation of Layered Double-Hydroxide Nanomaterials with a Uniform Crystallite Size Using a New Method Involving Separate Nucleation and Aging Steps[J]. Chem. Mater.2002,14:4286-4291
    [107]段雪,矫庆泽.全返混液膜反应器制备均分散超细(纳米)层状材料[P]. CN Patent, 00132145.5,2000
    [108]Drezdzon M A. Synthesis of isopolymetalate-pillared hydrotalcite via organic anion pillared precursors [J]. Inorg. Chem.,1988,27(25):4628-4632
    [109]Chen H Y, Zhang F Z, Fu S S, Duan X. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials[J]. Adv. Mater.,2006,18:3089-3093
    [110]杜以波,Evans D G,孙鹏,段雪.阴离子型层柱材料研究进展[J].化学通报,2000,63(5):20-24
    [1 11]杨飘萍,宿美平,杨胥微,刘国宗,于剑峰,吴通好,赵得熙,张泰善,李东求.尿素法合成高结晶度类水滑石[J].无机化学学报,2003,19:485-490
    [112]Miyata S. Physico-chemical properties of synthetic hydrotalcites in relation to composition [J]. Clays Clay Miner.,1980,28(1):50-56
    [113]Benito P, Guinea I, Labajos F M, Rocha J, Rives V. Microwave-hydrothermally aged Zn,Al hydrotalcite-like compounds: Influence of the composition and the irradiation conditions[J]. Micropor. Mesopor. Mater.,2008,110:292-302
    [114]雷志轶.新型高比表面固体碱催化剂制备、结构及其性能研究[D].北京,北京化工大学,2009
    [115]Mok K B, Ross J R H, Sambrook R M. Thermally and mechanically stable catalysts for steam reforming or methanation. A new concept in catalyst design[J]. Studies in surface science and catalysis.1983,16:291-299
    [116]d'Espinose de la Caillerie J B, Kermarec M, Clause O. Impregnation of gamma-alumina with Ni or Co ions at neutral pH :hydrotalcite-type Co precipitate formation and characterization[J]. J. Am. Chem. Soc.,1995,117:11471-11481
    [117]毛纾冰,李殿卿,张法智,Evans D G,段雪y-Al2O3表面原位合成Ni-Al-CO3 LDHs研究[J].无机化学学报,2004,20(5):596-602
    [118]张蕊,李殿卿,张法智,Evans D G,段雪γ-Al2O3载体孔内原为合成水滑石[J].复旦学报(自然科学版),2003,42(3):333-338
    [119]张立红.高分散铜基复合氧化物的均匀制备及其结构和催化性能[D].北京,北京化工大学,2006
    [120]Zhang F Z, Zhao L L, Chen H Y, Xu S L, Evans D G, Duan X. Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum[J]. Angew. Chem. Int. Ed.2008, 47:2466-2469
    [121]Hosni K, Srasra E. Simplified synthesis of layered double hydroxide using a natural source of magnesium. Appl. Clay Sci.,2009,43:415-419
    [122]Arai Y, Ogawa M. Preparation of Co-Al layered double hydroxides by the hydrothermal urea method for controlled particle size[J]. Appl. Clay Sci.,2009,42:601-604
    [123]Gao L J, Xu B, Xiao G, Lv J H. Transesterification of Palm Oil with Methanol to Biodiesel over a KF/Hydrotalcite Solid Catalyst [J]. Energy Fuels,2008,22:3531-3535
    [124]Kapoor M P, Matsumura Y. Liquid-phase methanol carbonylation catalyzed over tin promoted nickel-aluminium layered double hydroxide [J]. Catal. Today,2004,93-95:287-291
    [125]Valente J S., Hernandez-Cortez J, Cantu M S, Ferrat G, Lo'pez-Salinas E. Calcined layered double hydroxides Mg-Me-Al (Me:Cu, Fe, Ni, Zn) as bifunctional catalysts [J]. Catal. Today,2010,150: 340-45
    [126]Tzou Y M, Wang S L, Hsu L C, Chang R R, Lin C F. Deintercalation of Li/Al LDH and its application to recover adsorbed chromate from used adsorbent[J]. Appl. Clay Sci.,2007,37: 107-114
    [127]许国志,郭灿雄,段雪,姜传庚.PE膜中层状双羟基复合氢氧化物的红外吸收性能[J].应用化学,1999,19:71-75
    [128]欧育湘.阻燃剂的现状与未来[J].塑料助剂,1997(3):1-4
    [129]黄宝晟,李峰,张慧,矫庆泽,段雪,郝建薇.纳米双羟基复合金属氧化物的阻燃性能[J].应用化学,2002,19:71-75
    [130]戴冬坡.银锌基防霉杀菌材料的制备和性能研究[D].北京:北京化工大学,2002
    [131]Ogawa M, Kuroda K. Photofunctions of intercalation compounds[J]. Chem. Rev.,1995,95(2): 399-438
    [132]Mousty C, Therias S, Forano C, Besse J. Anion-exchanging clay-modified electrodes: synthetic layered double hydroxides intercalated with electroactive organic anions [J]. J. Electroanal. Chem., 1994,374(1-2):63-69
    [133]刘俊杰,李峰,Evans D G,段雪.由Mg-Fe(Ⅱ)-Fe(Ⅲ)LDH层状前体制备MgFe2O4尖晶石的研究[J].化学学报,2003,61(1):51-57
    [134]Miyata S. Gastric antacid and method for controlling pH of gastric juice [P]. U.S. Patent,4514389. 1985-4-30
    [135]Khan A I, Lei L X, Norquist A J, O'Hare D. Intercalation and controlled release of 'pharmaceutically active compounds from a layered double hydroxide Electronic Supplementary Information (ESI) available [J]. Chem. Commun.,2001, (22):2342-2343
    [136]Ragavan A, Khan A I, O'Hare D. Intercalation and controlled release of 2,4-dichlorophenoxyacetic acid using rhombohedral [LiAl2(OH)6]Cl-xH2O. J. Phys. Chem. Solids, 2006,67:983-986
    [137]Ambrogi V, Fardella G, Grandolini G, Perioli L. Intercalation compounds of hydrotalcite-like clays with anti-inflammatory agents, I. Intercalation and in vitro release of ibuprofen[J]. Int. J. Pharm.,2001,220(1-2):23-32
    [138]孟锦宏,张慧,Evans D G,段雪.超分子结构草甘膦插层水滑石的组装及结构研究[J].高等学校化学学报.2003,24(7):1315-1319
    [139]衣宝廉.燃料电池—原理、技术、应用[M].北京:化学工业出版社,2003
    [140]王林山,李瑛.燃料电池(第二版)[M].北京:冶金工业出版社,2005
    [141]Lovie J. The kinetics and mechanism of methanol oxidation on Pt and PtRu catalysts in alkaline and acid media [J]. J. Am. Chem. Soc.,2007,72:709-712
    [142]Papageorgopoulos D C, Keijzer M, Veldhuis J B J, De Bruijn F A. CO tolerance of Pd-rich PtPd carbon-supported electrocatalysts:Proton exchange membrane fuel cell application [J]. Electrochem. Soc,2002,149:A1400-1404
    [143]Kim C, Kwon H H, Song I K, Sung Y E, Chung W S, Lee H I. Preparation of PtRu nanoparticles on various carbon supports using surfactants and their catalytic activities for methanol electro-oxidation [J]. J. Power Sources,2007,171(2):404-411
    [144]Zhou Z H, Li W S, Guo P P, Yang H Y, Xiang X D, Zeng L Z, Fu Z. Catalytic activity and stability toward methanol oxidation of PtRu/CNTs prepared by adsorption in aqueous solution and reduction in ethylene glycol [J]. J. Solid State Electrochem.,2010,14(2):191-196
    [145]Mathiyarasu J, Remona A, Mani M A, Phani K L N, Yegnaraman V. Exploration of electrodeposited platinum alloy catalysts for methanol electro-oxidation in 0.5 M H2SO4: Pt-Ni system [J]. J. Solid. State. Electrochem.,2004,8:968-975
    [146]Dupont C, Jugnet Y, Loffreda D. Theoretical evidence of PtSn alloy efficiency for CO oxidation [J]. J. Am. Chem. Soc.,2006,128:9129-9136
    [147]Santiago E L, Camara G A, Ticianelli E A. CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method [J]. Electrochim. Acta,2003,48:3527-3534
    [148]Zhang X, Zhang F, Guan R F, Chan K Y. Preparation of Pt-Ru-Ni ternary nanoparticles by microemulsion and electrocatalytic activity for methanol oxidation [J]. Mater. Research. Bullein., 2007,42(2):327-333
    [149]Liu R, Iddir H, Fan Q, Hou G, Bo A, Ley K L, Smotkin E S, Sung Y E, Kim H, Thomas S, Wieckowski A. Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes [J]. J. Phys. Chem. B,2000,104:3518-3531
    [151]Park K W, Choi J H, Lee S A, Pak C, Chang H, Sung Y E. PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell [J]. J. Catal,2004,224:236-242
    [151]Reetz M T, Lopez M, Grulnert W G. Preparation of colloidal nanoparticles of mixed metal oxides containing platinum, ruthenium, osmium, and iridium and their use as electrocatalysts [J]. J. Phys. Chem. B,2003,107:7414-7419
    [152]Arico A S, Poltrzewski Z, Kim H. Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells [J]. J. Power. Sources,1995,55:159-166
    [153]Chai G S, Yoon S B, Yu J S, Choi J H, Sung Y E. Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell [J]. J. Phys. Chem. B,2004,108:7074-7079
    [154]Su F B, Tian Z Q, Poh C K, Wang Z, Lim S H, Liu Z L, Lin J Y. Pt nanoparticles supported on nitrogen-doped porous carbon nanospheres as an electrocatalyst for fuel cells[J]. Chem. Mater., 2010,22(3):832-839
    [155]Xia B Y, Wang J N, Wang X X, Niu J J, Sheng Z M,Hu M R, Yu Q C. Synthesis and application of graphitic carbon with high surface area[J]. Adv. Funct. Mater.,2008,18:1790-1798
    [156]Liu Y C, Qiu X P, Huang Y Q, Zhu W T, Wu G S. Influence of preparation process of MEA with mesocarbon microbeads supported PtRu catalysts on methanol electrooxidation [J]. J. Appl. Electrochem.,2002,32:1279-1285
    [157]Steigerwalt E S, Deluga G A, Lukehalt C M. Pt-Ru/Carbon fiber nanocomposites:synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance[J]. J. Phys. Chem. B,2002,106:760-766
    [158]Bessel C A, Laubernds K, Rodriguez N M, Baker R T K. Graphite nanofibers as an electrode for fuel cell applications [J]. J. Phys. Chem. B,2001,105:1115-1118
    [159]Prabhuram J, Zhao T S, Tang Z K, Chen R, Liang Z X. Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells [J]. J. Phys. Chem. B,2006,110:5245-5252
    [160]Liu Z L, Lee J M, Chen W X, Han M, Gan L M. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon supported PtRu nanoparticles [J]. Langmuir, 2004,20:181-187
    [161]HsinY L, Hwang K C, Yeh C T. Poly(vinylpyrrolidone)-Modified Graphite Carbon Nanofibers as promising supports for PtRu catalysts in Direct Methanol Fuel Cells[J]. J. Am. Chem. Soc.,2007, 129:9999-10010
    [162]Liu B, Chen J H, Xiao C H, Cui K Z, Yang L, Pang H L, Kuang Y F. Preparation of Pt/MgO/CNT hybrid catalysts and their electrocatalytic properties for ethanol electrooxidation[J]. Energy Fuels, 2007,21:1365-1369
    [163]Praburam J, Zhao T S, Liang Z X, Chen R. A simple method for the synthesis of PtRu nanoparticles on the multi-walled carbon nanotube for the anode of a DMFC [J]. Electrochim. Aeta,2007,52:2649-2656
    [164]Kawaguchi T, Sugimoto W, Murakami Y, Takasu Y. Particle growth behavior of carbon-supported Pt, Ru, PtRu catalysts prepared by an impregnation reductive-pyrolysis method for direct methanol fuel cell anodes[J]. J. Catal.,2005,229:176-184
    [165]Yang B, Lu Q Y, Wang Y, Zhuang L, Lu J T, Liu P F. Simple and low-cost preparation method for highly dispersed PtRu/C catalysts[J]. Chem. Mater.,2003,15:3552-3557
    [166]He Z B, Chen J W, Liu D Y, Tang H, Deng W, Kuang Y F. Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation[J]. Mater. Chem. Phys.,2004,85:396-401
    [167]Jow J J, Yang S W, Chen H R, Wu M S, Ling T R, Wei T Y. Co-electrodeposition of Pt-Ru electrocatalysts in electrolytes with varying compositions by a double-potential pulse method for the oxidation of MeOH and CO[J]. Int. J. hydrogen energy,2009,34:665-671
    [168]Yuan J H, Wang Z J, Zhang Y J, Shen Y F, Han D X, Zhang Q X, Xu X Y, Niu L. Electrostatic layer-by-layer a of platinum-loaded multiwall carbon nanotube multilayer: A tunable catalyst film for anodic methanol oxidation [J]. Thin Solid Films,2008,516:6531-6535
    [169]Yu K L, Ruan G L, Ben Y H, Zou J J. Synthesis of carbon nanotubes within Pt nanoparticles-decorated AAO template [J]. Mater. Lett.,2007,61:97-100
    [170]Mackiewicz N, Surendran G, Remita H, Keita B, Zhang G J, Nadjo L, Hagege A, Doris E, Mioskowski C. Supramolecular Self-Assembly of Amphiphiles on Carbon Nanotubes: A Versatile Strategy for the Construction of CNT/Metal Nanohybrids, Application to Electrocatalysis[J]. J. AM. CHEM. SOC.,2008,130:8110-8111
    [171]Singh M, Ogden M I, Parkinson G M, Buckley C E, Connolly J. Delamination and re-assembly of surfactant-containing Li/Al layered double hydroxides [J]. J. Mater. Chem.,2004,14:871-874
    [172]Zhang W H, Guo X D, He J, Qian Z Y. Preparation of Ni(II)/Ti(IV) layered double hydroxide at high supersaturation[J]. J. Eur. Ceram. Soc.,2008,28:1623-1629
    [173]Shu X, Zhang W H, He J, Gao F X, Zhu Y X. Formation of Ni-Ti-layered double hydroxides using homogeneous precipitation method[J]. Solid State Sci.,2006,8:634-639
    [174]Moriguchi I, Hidaka R, Yamada H, Kudo T, Murakami H, Nakashima N. Mesoporous nanocomposite of TiO2/carbon nanotubes as a high Li-intercalation electrode material[J]. Adv. Mater.,2006,18:69-73
    [175]Orlanducci S, Sessa V, Terranova M L, Battiston G A, Battiston S, Gerbasi R. Nanocrystalline TiO2 on single walled carbon nanotube arrays: towards the assembly of organized C/TiO2 nanosystems[J]. Carbon,2006,44 (13):2839-2843
    [176]Lee S W, Sigmund W M. Formation of anatase TiO2 nanoparticles on carbon nanotubes[J]. Chem. Commun.,2003,780-781
    [177]Wang Z Y, Ergang N S, Al-Daous M A, Stein A. Synthesis and characterization of three-dimensionally ordered macroporous carbon/titania nanoparticle composites[J]. Chem. Mater. 2005,17:6805-6813
    [178]Kedem S, Schmidt J, Paz Y, Cohen Y. Composite polymer nanofibers with carbon nanotubes and titanium dioxide particles[J]. Langmuir,2005,21:5600-5604
    [179]Liu B, Zeng H C. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2 [J]. Chem. Mater.2008,20:2711-2718
    [180]褚道葆,冯德香,张金花,林华水,胡维玲,田昭武.直接甲醇燃料电池阳极催化剂的新体系:纳米TiO2-CNT-PtNi复合纳米催化剂[J].化学学报,2005,63(22):2027-2031
    [181]Gothard N, Daraio C, Gaillard J, Zidan R, Jin S, Rao A M. Controlled growth of Y-junction nanotubes using Ti-doped vapor catalyst[J]. Nano Lett.,2004,4(2):213-217
    [182]Saber O, Tagaya H. Preparation and intercalation reactions of Zn-Sn LDH and Zn-Al-Sn LDH [J]. J. Por. Mater.,2003,10 (2):83-91
    [183]Saber O. Preparation and characterization of a new nano-structural material, Co-Sn LDH [J]. J. Phy.:Conference Series,2007,61 (1):825-830
    [184]Saber O, Hatano B, Tagaya H. Controlling of the morphology of Co-Ti LDH[J]. Mater. Sci. Eng. C: Biomimetic and Supramolecular Systems,2005,25 (4):462-471
    [185]Saber O. Preparation and characterization of a new nano layered material, Co-Zr LDH[J]. J. Mater. Sci.,2007,42 (23):9905-9912
    [186]Velu S., Ramasamy V, Ramani A., Chanda B M, Sivasanker S. New hydrotalcite-like anionic clays containing Zr4+ in the layers[J]. Chem. Comm.,1997,21:2107-2108
    [187]Velu S, Sabde D P, Shah N, Sivasanker S. New hydrotalcite-like anionic clays containing Zr4+ in the layers: synthesis and physicochemical properties[J]. Chem. Mater.,1998,10 (11):3451-3458
    [188]Velu S, Suzuki K, Okazaki M, Osaki T, Tomura S, Ohashi F. Synthesis of new Sn-incorporated layered double hydroxides and their thermal evolution to mixed oxides[J]. Chem. Mater.,1999,11 (8):2163-2172
    [189]Pillai U R, Sahle-Demessie E. Sn-exchanged hydrotalcites as catalysts for clean and selective Baeyer-Villiger oxidation of ketones using hydrogen peroxide[J]. J. Mol. Catal. A-Chem.,2003, 191:93-100
    [190]Kapoor M P, Matsumura Y. Liquid-phase methanol carbonylation catalyzed over tin promoted nickel-aluminium layered double hydroxide[J]. Catal. Today,2004,93-95:287-291
    [191]Seftel E M, Popovici E, Mertens M, Stefaniak E A, Grieken R V, Cool P, Vansant E F. SnIV-containing layered double hydroxides as precursors for nano-sized ZnO/SnO2 photocatalysts[J]. Appl. Catal. B:Environ.,2008,84:699-705
    [192]Lee C J, Park J, Kim J M, Huh Y, Lee J Y, No K S. Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst[J]. Chem. Phys. Lett., 2000,327:277-283

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700