静电纺丝法制备稀土/聚合物发光纳米纤维复合材料及其结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电纺丝法制备的纳米纤维材料具有比表面积大、孔径尺寸小且复杂,易表面功能化及物理机械性能优良等特点,因而被广泛应用在光学和化学传感器、高效过滤材料、生物医用材料、纳米复合材料等领域。然而,当前静电纺丝的研究热点主要局限于塑料材料,而橡胶材料的纳米纤维化却鲜见报道,所制得的橡胶纤维形貌也不理想。针对橡胶类材料由于玻璃化转变温度较低,静电纺丝后容易回弹而难以得到纳米级纤维的难题,本论文采用同轴静电纺丝技术,借助外层刚性塑料的保护限制作用,成功制备出直径在400~600nm范围的室温硫化硅橡胶(RTV)纳米纤维。同时,结合稀土β-二酮类有机配合物优异的荧光性能,如发光色彩纯度高、荧光寿命长以及量子产率高等,应用静电纺丝技术制备出具有良好分散结构(纳米尺寸和较高分散度)的高发光效率的稀土纳米纤维复合材料。本论文的主要研究内容如下:
     (1)应用静电纺丝技术制备了具有较高荧光强度和量子产率的Eu(TTA)3phen/PVP(其中,TTA:噻吩甲酰三氟丙酮,phen:邻菲啰啉,PVP:聚乙烯吡咯烷酮)纳米纤维复合材料(120-170nm)。通过高倍TEM、能谱(EDS)及XRD测试表明,Eu(TTA)3phen在PVP纤维基体中以分子簇或极小颗粒(小于10nm)的状态存在,在分散效果上接近了聚合法制备的单分子级别的分散。荧光性能测试及Judd-Ofelt理论分析表明,这种良好的分散减小了光电子在跃迁过程中非辐射跃迁的速率,从而使纤维的荧光强度和量子效率得到显著提高。
     (2)应用同轴纺丝技术制备了具有芯-壳结构的RTV/PVP纳米纤维,通过SEM和TEM,考察了聚合物的种类及分子链结构、纺丝液浓度、内外层纺丝液互溶性、推进速度、纺丝电压等对同轴静电纺丝过程及纤维形貌和结构的影响,进而阐明橡胶纳米纤维的形成机制和形貌调控方法,并制备出纳米橡胶纤维。同时,结合RTV优异的耐低温性能及Eu(TTA)3phen优异荧光性能,应用同轴静电纺丝技术制备出了Eu(TTA)3phen/RTV/PVP弹性体基纳米荧光纤维。并结合荧光光谱、荧光寿命和Judd-Ofelt理论深入研究了复合材料的低温荧光性能,探讨了橡胶基体对Eu(TTA)3phen低温荧光性能的贡献以及Eu(TTA)3phen在纤维基体中的分散结构与其荧光性能之间的关系。
Nanofibers prepared by electrospinning technique are characterized with large specific surface area, small aperture size, easy to be surface functionalized and excellent mechanical properties, and thus can be widely applied as optical and chemical sensors, high efficient filtering materials, biomaterials, and nano-composite materials, etc. However, the current research focuses of electrospinning are limited to plastic materials and the nano-fibrosis of rubber materials has been rarely reported. As the glass transition temperature (Tg) of rubber-like material is low, the prepared fibers are easy to rebound after electrospinning and thus difficult to obtain nano-fibrous structure. In view of these problems, the coaxial electrospinning technique was adopted in the present work to realize the nano-fibrosis of rubber-like materials by means of the protective effect of outer rigid plastic materials. Finally, the room temperature vulcanized silicone rubber (RTV) nanofiber with the diameter in the range of 400~600 nm had been successfully prepared by coaxial electrospinning. Besides, in combination of the excellent fluorescent properties of rare-earthβ-diketone complexes such as extremely sharp emission bands, long lifetime, and potential high internal quantum efficiency, rare-earth complex/composite nanofibers with good dispersion state and outstanding optical properties were successfully prepared by electrospinning. The main works of the present thesis are listed as follows:
     (1) Eu(TTA)3phen/PVP (TTA=2-thenoyltrifluoroacetone, phen= 1,10-phenanthroline, PVP=polyvinylpyrrolidone) composite nanofibers (120~170nm) with high fluorescent intensity and quantum efficicency were successfully prepared by electrospinning. High resolution TEM, EDS, and XRD measurements revealed that the Eu(TTA)3phen complex predominantly dispersed as molecular clusters and/or nanoparticles with sizes smaller than 10nm in the PVP fiber matrix. This kind of distribution state of Eu(TTA)3phen was similar as the unimolecular distribution of the complex units along macromolecular chains fabricated by copolymerization. Fluorescence investigation and Judd-Ofelt analysis revealed that the fine dispersion of Eu(TTA)3phen decreased the nonradiative transition rate and further resulting in the significant enhancement of the fluorescent intensity and quantum efficiency of the composite nanofiber.
     (2) The RTV/PVP nanofibers with core-sheath structure were successfully prepared by coaxial electrospinning. SEM and TEM measurements were applied to investigate the effects of polymer chain structure, solution concentration and viscosity, solvent miscibility, electrospinning rate, and driving voltage on the co-axial electrospinning process and morphology of electrospun fibers; and thus to provide some references for the elucidation of co-axial electrospinning mechanism and fiber morphology control methods. Moreover, combined with the excellent low temperature performance of RTV and outstanding fluorescent properties of Eu(TTA)3phen, the Eu(TTA)3phen/RTV/PVP core-sheath nanofibers were fabricated by coaxial electrospinning. By investigating the fluorescent spectral characteristics, fluorescence lifetime and Judd-Ofelt parameters of the composite, the contribution of RTV matrix to the low temperature fluorescence properties of Eu(TTA)3phen and the relationship between the dispersion of Eu(TTA)3phen and the fluorescent properties of the composite were deeply discussed.
引文
[1]Greiner A, Wendorff J H. Electrospinning:A fascinating method for the preparation of ultrathin fibers[J]. Angew. Chem. Int. Ed.,2007,46:5670-5703.
    [2]Bose G M. Recherches Sur La cause at Sur La veritable theorie de lelectricite[P]. Wittenberg, 1745.
    [3]Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity [J]. Philos. Mag.,1882,14:184-186.
    [4]Formhals A. Process and apparatus for preparing artificial threads[P]. US,1975504.1934.
    [5]Formhals A. Artificial thread and method of producing same[P]. US,2187306.1940.
    [6]Taylor G I. Electrically driven jets[J]. Proc. Soc. Lond.,1964, A313:453-475.
    [7]Simons H L. Process and apparatus for producing patterned non-woven[P].US,3280229.1966.
    [8]Baumgarten P K. Electrostatic spinning of acrylic microfibers[J]. J. Colloid Interface Sci.,1971, 36:71-79.
    [9]Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Compos. Sci. Technol.,2003,63: 2223-2253.
    [10]Wang X, Lee S H, Drew C, Senecal K J, Kumar J, Samuelson L A. Fluorescent electrospun polymer films for the detection of explosives [J]. Abstr. Pap. Amer. Chem. Soc.,2002,223:407.
    [11]Fong H, Liu W D, Wang C S, Vaia R A. Generation of electrospun fibers of nylon-6 and nylon 6-montmorillonnite nanocomposite[J]. Polymer,2002,43:775-780.
    [12]Deitzel J M, Kosik W, Mcknight S H, Tan N C B, Desimone J M, Crette S. Electrospinning of polymer nanofibers with specific surface chemistry[J]. Polymer,2002,43:1025-1029.
    [13]Kenawy E R, Bowlin G L, Mansfield K, Layman J, Simpson D G, Sanders E H. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend[J]. J. Control. Release.,2002,81:57-64.
    [14]Matthews J A, Wnek G E, Simpson D G, Bowlin G L. Electrospinning of collagen nanofibers[J]. Biomacromolecules,2002,3:232-238.
    [15]Gibson P W, Schreuder-Gibson H L, Rivin D. Transport properties of porous membranes based on electrospun nanofibers [J]. Colloid. Surface. A.,2001,187:469-481.
    [16]Loscertales I G, Barrero A, Guerrero I, Cortijo R, Marquez M. Micro/nano encapsulation via electrified coaxial liquid jets[J]. Science,2002,295:1659-1662.
    [17]Sun Z, Zussman E, Yarin A L, Wendorff J H, Greiner A. Compound core-shell polymer nanofibers by co-electrospinning [J]. Adv. Mater.,2003,15:1929-1932.
    [18]Li D, Xia Y N. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[J]. Nano. Lett.,2004,4:933-938.
    [19]Zhang Y Z, Wang X, Feng Y, Li J, Lim C T, Ramakrishna S. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release[J]. Biomacromolecules,2006,7:1049-1057.
    [20]Sun B, Duan B, Yuan X. Preparation of core/shell PVP/PLA ultrafine fibers by coaxial electrospinning[J]. J. Appl. Polym. Sci.,2006,102:39-45.
    [21]Huang Z M, He C L, Yang A, Zhang Y Z, Han X J, Yin J L, Wu Q S. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning[J]. Inc. J. Biomed. Mater. Res., 2006,77:169-179.
    [22]Zhang Y Z, Huang Z M, Xu X J, Lim C T, Ramakrishna S. Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning[J]. Chem. Mater.,2004,16: 3406-3409.
    [23]Deitzel J M, Kleinmeyer J, Harris D, Becktan N C. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer,2001,42:261-272.
    [24]Andreas Greiner J W. Electrospinning:A fascinating method for the preparation of ultrathin fibers[J]. Angew. Chem. Int. Ed.,2007,46:5670-5703.
    [25]Li D, Xia Y N. Electrospinning of nanofibers:reinventing the wheel?[J]. Adv. Mater.,2004,16: 1151-1170.
    [26]Yarin A L, Koombhongse S, Reneker D H. Bending instability in electrospinning of nanofibers[J]. J. Appl. Phys.,2001,89:3018-3026.
    [27]Yarin A L, Koombhongse S, Reneker D H. Taylor cone and jetting fromliquid droplets in electrospinning of nanofibers[J]. J. Appl. Phys.,2001,90:4836-4846.
    [28]Reneker D H, Yarin A L, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. J. Appl. Phys.,2000,87:4531-4547.
    [29]Hohman M M, Shin M, Rutledge G, Brenner M P. Electrospinning and electrically forced jets. Ⅱ. Applications.[J]. Phys. Fluids.,2001,13:2221-2236.
    [30]Hohman M M, Shin M, Rutledge G, Brenner M P. Electrospinning and electrically forced jets. Ⅰ. Stability theory. [J]. Phys. Fluids.,2001,13:2201-2220.
    [31]Shin Y M, Hohman M M, Brenner M P, Rutledge G C. Experimental characterization of electrospinning:The electrically forced jet and instabilities[J]. Polymer,2001,42:9955-9967.
    [32]Shin Y M, Hohman M M, Brenner M P, Rutledge G C. Electrospinning:A whipping fluid jet generates submicron polymer fibers[J]. Appl. Phys. Lett.,2001,78:1149-1151.
    [33]Camposeo A, Benedetto F D, Cingolani R, Pisignanoa D. Full color control and white emission from conjugated polymer nanofibers[J]. Appl. Phys. Lett.,2009,94:043109-043111.
    [34]Tan S H, Inai R, Kotaki M. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process[J]. Polymer,2005,46:6128-6134.
    [35]Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999,40:4585-4592.
    [36]Doshi J, Reneker D H. Electrospinning process and applications of electrospun[J]. J Electrostatics, 1995,35:151-160.
    [37]Christopher J. Buchko, Loui C. Chen, Yu Shen, Martin D C. Processing and microstructural characterization of porous biocompatible protein polymer thin films[J]. Polymer,1999,40: 7397-7407.
    [38]Zheng J, He A, Li J, Xu J, Han C C. Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying[J]. Polymer,2006,47:7095-7102.
    [39]Megelski S, Tephens J S S. Micro-and nanostructured surface morphology on electrospun polymer fibers[J]. Macromolecules,2002,35:8456-8466.
    [40]Demir M M, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers[J]. Polymer, 2002,43:3303-3309.
    [41]Bognitzki M, Hou H, Ishaque M, Frese T, Hellwig M. Polymer, metal, and hybrid nano-and mesotubes by coating degradable polymer template fibers (tuft process)[J]. Adv. Mater.,2000,12: 637-640.
    [42]Theron S A, Zussman E, Yarin A L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions[J]. Polymer,2004,45:2017-2030.
    [43]Shenoy S L, Bates W D, Frisch H L. Role of chain entanglements on fiber formation during electrospinning of polymer solutions:good solvent,non-specific polymer-polymer interaction limit[J]. Polymer,2005,46:3372-3384.
    [44]Megelski S, Stephens J S, Chase D B, Rabolt J F. Micro-and nanostructured surface morphology on electrospun polymer fibers[J]. Macromolecules,2002,35:8456-8466.
    [45]Liu H, Tang C. Electrospinning of cellulose acetate in solvent mixture N,N-dimethylacetamide(DMAC)/acetone[J]. Polymer,2007,39:65-72.
    [46]Macossay J, Marruffo A, Rincon R. Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate)[J]. Polym. Adv. Technol.,2007,18:180-183.
    [47]Tripaanasuwan S, Zhong Z, Reneker D H. Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide)aqueous solution[J]. Polymer,2007,48:5742-5746.
    [48]Mckee M G, Wilkes G L, Colby R H, Long T E. Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters[J]. Macromolecules,2004,37: 1760-1767.
    [49]Sun Z, Zussman E, Yarin A L, Wendorff J H, Greiner A. Compound core-shell polymer nanofibers by co-electrospinning [J]. Adv. Mater.,2003,15:1929-1932.
    [50]Zhao Y, Cao X, Jiang L. Bio-mimic multichannel microtubes by a facile method[J]. J. Am. Chem. Soc.,2007,129:764-765.
    [51]Li D, Xia Y. Electrospinning of nanofibers:Reinventing the wheel?[J]. Adv. Mater.,2004,16: 1151-1170.
    [52]Dzenis Y. Spinning continuous fibers for nanotechnology[J]. Science,2004,304:1917-1919.
    [53]Lopez-Herrera J M, Barrero A, Lopez A, Loscertales I G, Marquez M. Coaxial jets generated from electrified taylor cones. Scaling laws[J]. J. Aerosol Sci.,2003,34:535-552.
    [54]Diaz J E, Barrero A, Marquez M, Loscertales I G. Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning[J]. Adv. Funct. Mater.,2006,16: 2110-2116.
    [55]Townsend-Nicholson A, S N Jayasinghe. Cell electrospinning:A unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds[J]. Biomacromol,2006,7:3364-3369.
    [56]Mccann J T, Marquez M, Xia Y. Melt coaxial electrospinning:A versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers [J]. Nano. Lett.,2006, 6:2868-2872.
    [57]He C L, Huang Z M, Han X J, Liu L, Zhang H S, Chen L S. Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery[J]. J. Macromol. Sci., Part B:Phys,2006,45: 515-524.
    [58]Jian H L, Hu Y Q, Li. Y. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents[J]. J. Control. Release.,2005,108:237-243.
    [59]Yu H, Song H, Pan G, Li S, Liu Z, Bai X, Wang T, Lu S, Zhao H. Preparation and luminescent properties of europium-doped yttria fibers by electrospinning[J]. J. Luminesc.,2007,124:39-44.
    [60]Sun Z Z, E.; Yarin, A. L.; Wendorff J. H.; Greiner, A.. Compound core-shell polymer nanofibers by co-electrospinning[J].Adv. Mater.,2003,15:1929-1932.
    [61]Yu J H, Fridrikh S V, Rutledge G C. Production of submicrometer diameter fibers by twofluid electrospinning[J]. Adv. Mater.,2004,16:1562-1566.
    [62]Li D, Babel A, Jenekhe S A, Xia Y. Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret[J]. Adv. Mater.,2004,16:2062-2067.
    [63]Kim J S, Reneker D H. Mechanical properties of composites using ultrafine electrospun fibers[J]. Polym. Composite.,1999,20:124-131.
    [64]Bergshoef M M, Vancso G J. Transparent nanocomposites with ultrathin, electrospun Nylon-4,6 fiber reinforcement[J]. Adv. Mater.,1999,11:1362-1365.
    [65]Halpin J C, Kardos J L. The Halpin-TSAI equations:A review[J]. Polym. Eng. Sci.,1976,16: 344-352.
    [66]Tsai P P, Schreuder-Gibson H, Gibson P. Different electrostatic methods for making electret filters[J]. J. Electrostat.,2002,54:333-341.
    [67]Lu X, Zhao Y, Wang C. Fabrication of PBS nanoparticles in polymer-fiber matrices by electrospinning[J]. Adv. Mater.,2005,17:2485-2488.
    [68]Lu X, Zhao Y, Wang C, Wei Y. Fabrication of CDS nanorods in PVP fiber matrices by electrospinning[J]. Macromol. Rapid. Commun.,2005,26:1325-1329.
    [69]Cepak V M, Martin C R. Preparation of polymeric micro-and nanostructures using a template-based deposition method[J]. Chem. Mater.,1999,11:1363-1367.
    [70]Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang G L, Li C, Willis P. Electrospinning of continuous carbon nanotube-filled nanofiber yarns[J]. Adv. Mater.,2003,15:1161-1165.
    [71]Yang Q B, Li D M, Hong Y L, Li Z Y, Wang C, Qiu S L, Wei Y. Preparation and characterization of a pan nanofibre containing ag nanoparticles via electrospinning[J]. Synth. Met.,2003,137: 973-974.
    [72]Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker D H, Wang P. Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts[J]. Biotechnol. Progr.,2002, 18:1027-1032.
    [73]Min B M, You Y, Kim J M. Formation of nanostructured poly(laetic co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts[J]. Carbohyd. Polym.,2004,57:285-292.
    [74]Huang Z M, Zhang Y Z, Ramakrishna S, Lim C T. Electrospinning and mechanical characterization of gelatin nanofibers[J]. Polymer,2004,45:5361-5368.
    [75]Liang D, Luu Y K, Kim K, Hsiao B S. In vitro non-viral gene delivery with nanofibrous scaffolds[J]. Nucleic. Acids. Res.,2005,33:e170.
    [76]Nair L S, Bhattacharyya S, Laurencin C T. Development of novel tissue engineering scaffolds via electrospinning[J]. Expert. Opin. Biol. Ther.,2004,4:659-668.
    [77]Khil M S, Bhattarai S R, Kim H Y, Kim S Z, Lee K H. Novel fabricated matrix via electrospinning for tissue engineering[J]. J Biomed. Mater. Res. Part B,2004,72:117-124.
    [78]Martindale D. Car parts from chickens. Researchers hatch a plan to make plastic from feathers[J]. Sci. Am.2000,282:34-36.
    [79]Cui W G, Li X H, Zhu X L. Investigation of drug release and matrix degration of eleetrospun poly(D,L-lactide) fibers with paracetanol inoculation[J]. Biomacromolecules,2006,7:1623-1629.
    [80]Jiang H, Hu Y, Zhao P, Li Y, Zhu K. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning[J]. J. Biomed. Mater. Res. Part. B,2006, 79(B):50-57.
    [81]刘光华,稀土材料学[M].2007,北京:化学工业出版社.
    [82]Liu L, Zhang W, Li X L, Wu X F, Yang C, Liu Y D, He L, Lu Y L, Xu R W, Zhan X J. Preparation and luminescence properties of Sm(TTA)3Phen/NBR composites[J]. Compos. Sci. Technol.,2007, 67:2199-2207.
    [83]Tomadakis M M, Sotirchos S V. Effective kundsen diffusivities in structures of randomly overlapping fibers[J]. Aiche. J.,1991,37:74-86.
    [84]Tomadakis M M, Sotirchos S V. Ordinary and transition regime diffusion in random fiber structures[J]. Aiche. J.,1993,39:397-412.
    [85]Xie J, Hsieh Y L. Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme[J]. J. Mater. Sci.,2003,38:2125-2133.
    [86]Zhang R J, Liu H G, Yang K Z, Si Z K, Zhu G Y, Zhang H W. Fabrication and fluorescence characterization of the LB films of luminous rare earth complexes Eu(TTA)3Phen and Sm(TTA)3Phen[J]. Thin Solid Films,1997,295:228-233.
    [87]Zhang Q, Ming H, Zhai Y. A novel unclad Nd3+-doped polymer optical fiber[J]. J. Appl. Polym. Sci.,1996,62:887-892.
    [88]Zhang Q J, Wang P, Sun X F, Zhai Y, Dai P, Yang B, Hai M, Xie J P. Amplified spontaneous emission of an Nd3+-doped poly(methyl methacrylate) optical fiber at a ambient temperature[J]. Appl. Phys. Lett.,1998,72:407-409.
    [89]Beat R A, Jean-Maric L, Gerard M. Energy transfer luminescence of europium (III) and terbium (III) cryptates of macrobicyclic polypyridine ligands[J]. Angew. Chem. Int. Ed.,1987,26: 266-267.
    [90]刘力.稀土/高分子复合材料制备及其亚微观结构与发光、射线屏蔽及磁性能的关系研究[D].北京:北京化工大学,2004.
    [91]房喻,王辉.荧光寿命测定的现代方法与应用[J].化学通报,2001,10:631-636.
    [92]许金钩,王尊本,荧光分析法[M].2006,北京:科学出版社.
    [93]Judd B R. Optical absorption intensity of rare-earth ions[J]. Phys. Rev.,1962,127:750-761.
    [94]Ofelt G S. Intensity of crystal spectra of rare-earth ions[J]. J. Chem. Phys.,1962,37:511-520.
    [95]Carnall W T, Crosswhite H, Crosswhite H M. Energy level structure and transition probabilities of the trivalent lanthanides in LaF3[J]. Argonne National Laboratory,1977.
    [96]Malta O L, Brito H F, Menezes J F S, Silva F R G, Jr. S A, Jr. F S F, Andrade A V M D. Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate), 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model[J]. J. Luminesc.,1997,75:255-268.
    [97]Malta O L, Santos M a C D, Thompson L C, Ito N K. Intensity parameters of 4f-4f transitions in the Eu(dipivaloylmethanate)3, Lo-phenanthroline complex[J]. J. Luminesc.,1996,69:77-84.
    [98]Zhang H, Song H W, Dong B, Han L L, Pan G H, Bai X, Fan L B, Lu S Z, Zhao H F, Wang F. Electrospinning preparation and luminescence properties of europium complex/polymer composite fibers[J]. J. Phys. Chem. C,2008,112:9155-9162.
    [99]Zhang H, Song H W, Yu H Q, Li S W, Bai X, Pan G H, Dai Q L, Wang T, Li W L, Lu S Z, Ren X G, Zhao H F, Kong X G. Modified photoluminescence properties of rare-earth complex/polymer composite fibers prepared by electrospinning[J]. Appl. Phys. Lett.2007,90:103103-103105.
    [100]Zhang H, Song H W, Yu H Q, Bai X, Li S W, Pan G H, Dai Q L, Wang T, Li W L, Lu S Z, Ren X G, Zhao H F. Electrospinning preparation and photoluminescence properties of rare-earth complex/polymer composite fibers[J]. J. Phys. Chem. C,2007,111:6524-6527.
    [101]Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensional nanostructrues:Synthesis, characterization, and applications[J]. Adv. Mater.,2003,15:353-389.
    [102]Liu L, Wan Zhang, Li X L, Wu X F, Yang C, Liu Y D, He L, Lu Y L, Xu R W, Zhan X J. Preparation and luminescence properties of Sm(TTA)3Phen/NBR composites[J]. Compos. Sci. Technol.,2007,67:2199-2207.
    [103]Liu L, Lu Y L, He L, Zhang W, Yang C, Liu Y D, Zhang L Q, Jin R G Novel europium-complex/nitrile-butadience rubber composites[J]. Adv. Funct. Mater.,2005,2005:
    [104]Liu L, Zhang L Q, Zhao S H, Jin R G, Liu M L. Review on rare earth/polymer composite[J]. J. Rare. Earth.,2002,20:241-248.
    [105]Wang L H, Wang W, Zhang W G, Kang E T, Huang W. Synthesis and luminescence properties of novel eu-containing copolymers consisting of Eu(III)-acrylate-a-diketonate complex monomers and methyl methacrylate[J]. Chem. Mater.,2000,12:2212-2218.
    [106]Wen S P, Zhang X P, Hu S, Zhang L Q, Liu L. Influence of In-Situ reaction on luminescent properties of samarium complex/hydrogenated acrylonitrile-butadiene composites[J]. Polymer, 2009,50:3269-3274.
    [107]Wen S P, Zhang X P, Hu S, Zhang L Q, Liu L. Fluorescence and Judd-Ofelt analysis of rare earth complexes with Maleic Anhydride and Acrylic acid[J]. J. Rare. Earth.,2008,26:787-791.
    [108]Wen S P, Zhang X P, Hu S, Zhang L Q, Liu L. Physical dispersion state and fluorescent property of Eu-complex in the Eu-complex/Silicon rubber composites[J]. J. Rare. Earth.,2008,26: 626-632.
    [109]Fennessey S F, Farris R J. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns[J]. Polymer,2004, 45:4217-4225.
    [110]Theron S A, Zussman E, Yarin L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions[J]. Polymer,2004,45:2017-2030.
    [111]Pan H, Li L, Hu L, Cui X. Continuous aligned polymer fibers produced by a modified electrospinning method[J]. Polymer,2006,47:4901-4904.
    [112]Tripaanasuwan S, Zhong Z, Reneker D H. Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution[J]. Polymer,2007,48:5742-5746
    [113]Zhang X P, Wen S P, Hu S, Chen Q, Fong H, Zhang L, Liu L. Luminescence properties of Eu(Ⅲ) complex/polyvinylpyrrolidone electrospun composite nanofibers[J]. J. Phys. Chem. C,2010,114: 3898-3903.
    [114]Sa G F D, Malta O L, Donega C D M, Simas A M, Longo R L, Santa-Cruz P A, Jr. E F D S. Spectroscopic properties and design of highly luminescent lanthanide coordination complexes[J]. Coordination Chemistry Reviews,2000,196:165-195.
    [115]Carlos L D, Messaddeq Y, Brito H F, Ferreira R a S, Zea B V D, Ribeiro S J L. Full-color phosphors from europium(III)-based organosilicates[J]. Adv. Mater.,2000,12:594-598.
    [116]Araujo A a S, Brito H F, Malta O L, Matos J R, Teotonio E E S, Storpirtis S, Izumi C M S. Synthesis and photophysical study of highly luminescent coordination compounds of rare earth ions with thenoyltrifluoroacetonate and AZT[J]. J. Inorg. Biochem.,2002,88:87-93.
    [117]Viriyabanthorn N, Stacer R G, Sung C, Schreuder-Gibson H, Gibson P, Mead J L. Breathable butyl rubber membranes formed by electrospinning[J]. J. Adv. Mater.,2006,38:40-47.
    [118]Choi J P, Seo Y S, Chung S M, Nah C. Fabrication and characterization of electrospun polybutadiene fibers crosslinked by uv irradiation[J]. J. Appl. Polym. Sci.,2006,101:2333-2337.
    [119]Wang M, Yu J H, Kaplan D L, Rutledge G C. Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning[J]. Macromolecules,2006,39: 1102-1107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700