尺寸效应和掺杂效应对纳米AWO_4(A=Mn、Cd、Ca、Zn)结构及性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料结构和物理化学性质与其晶粒尺寸和晶粒表面状态密切相关。晶粒尺寸的变化会带来晶格结构和物理化学性质相应的改变,从而使纳米材料表现出常规体相粉末所没有的特殊性能。此外掺杂效应可改变晶格内部结构,从而改变材料的性质,因此研究材料的尺寸效应及掺杂效应具有重要的科学意义。ABO4型氧化物是一类重要的化合物,在闪烁体材料、多铁材料、激光基质材料和显示设备等领域具有广泛应用。本文选取ABO4类二元氧化中具有普遍代表性的钨酸盐(AWO4)作为研究对象,以“尺寸效应和掺杂效应对纳米AWO4(A=Mn、Cd、Ca、Zn)结构及性质的影响”为题,研究纳米颗粒尺寸效应、掺杂对化合物的相结构及性质的影响,通过粒度控制和掺杂实现对其晶格结构的调变和性能优化。主要结果如下:(1)MnWO4纳米晶的生长动力学控制及其纳米结构调控。采用水热法成功合成了尺寸为8-29 nm的MnWO4纳米晶,并确定在反应时间t和反应温度T条件下的颗粒尺寸D的生长动力学方程为。系统的结构表征和分析表明晶粒尺寸的减小导致纳米MnWO4晶格膨胀,晶格对称性降低,能带变宽。与块体MnWO4不同,纳米尺寸下MnWO4红外和拉曼光谱出现新的振动模式,分别位于913和930 cm-1,其峰强度随着晶粒尺寸的减小而增大,这一现场主要与纳米晶粒表面畸变层有关。我们通过核壳模型拟合计算出MnWO4纳米颗粒的表面畸变层厚度约为1.8 nm,相当于三个MnWO4晶胞厚度。
     (2)CdWO4纳米晶的粒度调控与光催化性能优化。以柠檬酸为络合剂通过调节反应温度合成了一系列不同晶粒尺寸和结晶度的CdWO4纳米晶。X射线粉末衍射、透射电镜、红外光谱、紫外漫散射光谱、荧光发射光谱和BET比表面积测试等系统表征和分析表明随着反应温度由160℃升高至220℃纳米CdWO4的晶粒尺寸从11 nm增大为21 nm。随着晶粒尺寸的减小CdWO4晶格体积膨胀,晶格对称性降低,能带变宽,红外Au振动模式红移。254 nm紫外光催化降解甲基橙测试结果显示21 nm CdWO4光催化活性为11 nm CdWO4纳米晶的三倍以上。上述结果表明通过调控CdWO4纳米晶结晶度和晶粒尺寸可达到优化其光催化性能的目的,同时此合成方法也可推广至其它半导体光催化剂体系。
     (3)Ca1-xZnxWO4纳米晶的合成及Zn掺杂效应对CaWO4能带、发光及导电性能的影响。以有机小分子柠檬酸为络合剂在室温下由共沉淀法制备了一系列Ca1-xZnxWO4纳米晶。ICP元素测试结果表明Zn含量在0-0.104之间。系统的结构表征及数据分析表明随着Zn掺杂含量的增加纳米Ca1-xZnxWO4的晶格体积收缩,紫外吸收边红移,荧光发射强度降低,导电性能增强。初步估计Zn在CaWO4中的固溶线为10%左右。
The lattice structure and physi-chemical properties of nanomaterials are closely related to their particle size and surface modification. Indeed, properties are always different from the bulk when the physical dimension comes down to nanoscale. ABO4 type materials had a great application in many areas, such as phosphors, laser crystals, catalysis, and multiferroic materials. In this thesis, we conducted a detailed study of size and doping effect on lattice structure and properties of AWO4 (A=Mn, Cd, Ca, Zn) nanoparictls. The main results can be summarized as follows:
     (1) Using citric acid as the capping agent, MnWO4 nanocrystals were prepared to show particle sizes ranging from 8 to 29 nm under hydrothermal conditions. The grain-growth kinetics for MnWO4 nanoparticles was determined to quantitatively follow the equation, where D is the particle size at given reaction time,t, and reaction temperature, T. Systematic sample characterization using combined techniques of X-ray diffraction, transmission electron microscope, selected area electron diffraction, Barret-Emmett-Teller technique, Fourier transformed infrared spectra, UV-visible diffuse reflectance spectra, and Raman spectra indicates that particle size reduction led to an apparent lattice expansion, which is followed by lowering of lattice symmetry and band-gap broadening. Different from the bulk counterparts, new vibration modes were observed in both Infrared and Raman spectra at about 913 cm-1 and 930 cm-1, respectively, which intensified monotonously with particle size reduction, leading to a picture that MnWO4 nanoparticles were terminated by a surface disordered layers. All these size-dependent physical properties were closely related to the surface disorder and the relevant absorbates.
     (2) CdWO4 nanocrystals with controlled particle size and crystallinity were successfully synthesized via a simple hydro thermal method using citric acid as the capping agent. By systematic sample characterization using X-ray powder diffraction, transmission electron microscope, selected area electron diffraction, Barret-Emmett-Teller technique, Fourier transformed infrared spectra, UV-visible diffuse reflectance spectra, and photoluminescence spectra, all as-prepared CdWO4 samples were demonstrated to crystallize in a pure-phase of monoclinic wolframite structure. With varying the reaction temperature from 160 to 220℃, particle size was controlled to grow from 11 to 21 nm. With particle size reduction, CdWO4 nanostructure showed a lattice expansion, as is followed by a surprisingly lowered lattice symmetry, band gap broadening, and redshift of Au vibration mode. Photocatalytic activity of CdWO4 nanocrystals was examined by monitoring the degradation of methyl orange dye in an aqueous solution under UV radiation of 254 nm. High crystallinity CdWO4 nanostructures with relatively small particle size showed an optimum photocatalytic performance. Consequently, systematic control over semiconductor nanostructures is proved to be useful, in some cases likely general, in achieving the advanced photocatalytic properties for technological uses.
     (3) Ca1-xZnxWO4 nanocrystals were prepared at room temperature by co-precipitation method using citric acid as a capping agent. As prepared samples have a scheelite structure, and the average sizes of spherical-like particles were about 6nm. With increasing the zinc content, the lattice volume of Ca1-xZnxWO4 nanocrystals decreased, and band edge shift from 4.99 eV for x=0 to 3.98 eV for x=0.104. IR spectra revealed that nanocrystals surfaces were hydration and also caped with citric acid. The photo luminescence spectra show that emission intensity was decreased dramatically with increasing of zinc content. Impedance spectroscropy of Ca1-xZnxWO4 nanocrystals shows that the resistivity of the samples decreased with increasing of zinc content. The Solid solution limit of znic in CaWO4 was estimated to be around 10%.
引文
[1]Gleiter H., Marquardt P., Nanocrystalline structures-an approach to new materials [J], Z. Metallk.,1984,75(4):263-267.
    [2]Gleiter H., Nanocrystalline materials [J], Prog. Mater. Sci.,1989,33(4):223-315.
    [3]曹茂盛,关长斌,徐甲强,纳米材料导论,哈尔滨工业大学出版社,2001.
    [4]Brus L. E., Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state [J], J. Chem. Phys.,1984,80(9): 4403-4409.
    [5]Rossetti R, Ellison J. L., Gibson J. M. et al., Zero-dimensional "excitons" in semiconductor clusters [J], IEEE J. Quantum Electron.,1986,22(9):1909-1914.
    [6]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    [7]刘吉平,郝向阳,纳米科学与技术,科学出版社,2002.
    [8]Reed M. A., Frensley W. R, Matyi R J. et al., Realization of a three-terminal resonant tunneling device:The bipolar quantum resonant tunneling transistor [J], Appl Phys. Lett.1989, 54(11):1034-1036.
    [9]杨剑,滕凤恩,纳米材料综述[J],材料导报,1997,11(2):6-10.
    [10]赵廷凯,柳永宁,朱杰武,纳米材料概述[J],功能材料,2004,35:2678-2675.
    [11]Roduner E., Nanoscopic Materials:Size-dependent phenomena. The Royal Society of Chemistry, Cambridge,2006.
    [12]Jortner J., Cluster size effect [J], Z. Phys. D:At., Mol. Clusters,1992,24(3):247-275.
    [13]Kohn A., Weigend F., Ahlrichs R, Theoretical study on clusters of magnesium [J], Phys. Chem. Chem. Phys.,2001,3(5):711-719.
    [14]Roduner E., Size matters:why nanomaterials are different [J], Chem. Soc. Rev.,2006,35(7), 583-592.
    [15]Grassian V. H., When Size Really Matters:Size-Dependent Properties and Surface Chemistry of Metal and Metal Oxide Nanoparticles in Gas and Liquid Phase Environments [J], J. Phys. Chem. C,2008,112(47):18303-18313.
    [16]Pettibone J. M., Cwiertny D. M., Scherer M., Adsorption of organic acids on TiO2 nanoparticles:Effects of pH, nanoparticle size, and nanoparticle aggregation [J], Langmuir; 2008, 24(13):6659-6667.
    [17]Piletska E. V, Piletsky S. A., Size Matters:Influence of the Size of Nanoparticles on Their Interactions with Ligands Immobilized on the Solid Surface [J], Langmuir,2010,26(6):3783-3785.
    [18]Goldstein N., Echer C. M., Alivisatos A. P., Melting in semiconductor nanocrystals [J], Science, 1992,256(5062):1425-1427.
    [19]Christenson H. K., Confinement effects on freezing and melting [J], J. Phys.-Condes. Matter, 2001,13(11):R95-R133.
    [20]Zhang Z., Li J. C., Jiang Q., Modeling for size-dependent and dimension-dependent melting of nanocrystals [J], J. Phys. D-Appl. Phys.,2000,33(20):2653-2656.
    [21]Shi F. G, Size-dependent thermal vibrations and melting in nanocrystals [J], J. Mater. Res., 1994,9(5):1307-1313.
    [22]Shao J. L., Yang C., Zhu X. L. et al., Melting and Freezing of Au Nanoparticles Confined in Armchair Single-Walled Carbon Nanotubes [J], J. Phys. Chem. C,2010,114(7):2896-2902.
    [23]Ouyang G, Zhu Z. M., Zhu W. G et al., Size Dependent Debye Temperature and Total Mean Square Relative Atomic Displacement in Nanosolids under High Pressure and High Temperature [J], J. Phys. Chem. C,2010,114(4):1805-1808.
    [24]Lu L., Sui M. L., Lu K., Superplastic extensibility of nanocrystalline copper at room temperature [J], Science,2000,287(5457):1463-1466.
    [25]Gerberich W. W., Mook W. M., Perrey C. R. et al., Superhard silicon nanospheres [J], J. Mech. Phys. Solids,2003,51 (6):979-992.
    [26]Chen C. Q., Shi Y, Zhang Y. S. et al., Size dependence of Young's modulus in ZnO nanowires [J], Phys. Rev. Lett.,2006,96(7):075505.
    [27]Veprek S., Electronic and mechanical properties of nanocrystalline composites when approaching molecular size [J], Thin Solid Films,1997,297(1-2):145-153.
    [28]Veprek S., Reiprich S., A concept for the design of novel superhard coatings [J], Thin Solid Films,1995,268(1-2):64-71.
    [29]Zhao M., Li J. C, Jiang Q., Hall-Petch relationship in nanometer size range [J], J. Alloy. Compd.,2003,361(1-2):160-164.
    [30]Huang J. Y, Chen S., Wang Z. Q. et al., Superplastic carbon nanotubes-Conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes [J], Nature,2006, 439(7074):281-281.
    [31]Lu L., Li L. P., Wang X. J. et al., Understanding of the finite size effects on lattice vibrations and electronic transitions of nano alpha-Fe2O3 [J], J. Phys. Chem. B,2005,109(36):17151-17156.
    [32]Rath C., Sahu K. K., Kukarni S. D. et al., Microstructure-dependent coercivity in monodispersed hematite particles [J],Appl. Phys. Lett.,1999,75(26):4171-4173.
    [33]Li G. S., Smith R. L., Inomata H. et al., Preparation and magnetization of hematite nanocrystals with amorphous iron oxide layers by hydrothermal conditions [J], Mater. Res. Bull.,2002,37(5): 949-955.
    [34]Nuli Y, Zeng R., Zhang P. et al., Controlled synthesis of alpha-Fe2O3 nanostructures and their size-dependent electrochemical properties for lithium-ion batteries [J], J. Power Sources,2008, 184(2):456-461.
    [35]Jain T. A., Fung K. Z., Hsiao S. et al., Effects of BaO-SiO2 glass particle size on the micro structures and dielectric properties of Mn-doped Ba(Ti, Zr)O3 ceramics [J], J. Eur. Ceram. Soc.,2010,30(6):1469-1476.
    [36]Zhang R. J., Chen Y. M., Lu W. J. et al., Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix [J],Appl. Phys. Lett.,2009,95(16):161109.
    [37]Sanoj M. A., Reshmi C. P., Varma M. R., Finite Size Effect on the Sinterability and Dielectric Properties of ZnNb2O6-ZBS Glass Composites [J], J. Am. Ceram. Soc.,2009,92(11):2648-2653.
    [38]Luo W., Zhu L. L., Zheng X. J., Grain Size Effect on Electrical Conductivity and Giant Magneto resistance of Bulk Magnetic Polycrystals [J], Chin. Phys. Lett.,2009,26(11):117502.
    [39]Vasiliev R. B., Rumyantseva M. N., Dorofeev S. G, Crystallite size effect on the conductivity of the ultradisperse ceramics of SnO2 and In2O3 [J], Mendeleev Commun.,2004,4:167-169.
    [40]Yoffe A. D., Semiconductor quantum dots and related systems:electronic, optical, luminescence and related properties of low dimensional systems [J], Adv. Phys.,2001,50(1):1-208.
    [41]van Buuren T., Dinh L. N., Chase L. L. et al., Changes in the electronic properties of Si nanocrystals as a function of particle size [J], Phys. Rev. Lett.,1998,80(17):3803-3806.
    [42]Chen X. S., Zhao J. J., Wang G H. et al., The effect of size distributions of Si nanoc lusters on photo luminescence from ensembles of Si nanoclusters [J], Phys. Lett. A,1996,212(5):285-289.
    [43]Pan L. K., Sun C. Q., Tay B. K. et al., Photo luminescence of Si nanosolids near the lower end of the size limit [J], J. Phys. Chem. B,2002,106(45):11725-11727.
    [44]Sun C. Q., Li S., Tay B. K. et al., Upper limit of blue shift in the photo luminescence of CdSe and CdS nanosolids [J], Acta Mater.,2002,50(18):4687-4693.
    [45]Sun C. Q., Pan L. K., Fu Y. Q. et al., Size dependence of the 2p-level shift of nanosolid silicon [J], J. Phys. Chem. B,2002,107(22):5113-5115.
    [46]Geng B. Y, Liu X. W., Du Q. B. et al., Size-dependent blue luminescent US nanocrystals synthesized through a single-source molecular precursor route [J], Mater. Res. Bull.,2008,43(5): 1093-1098.
    [47]Fery-Forgues S., Ibanez A., Dubertret B., Luminescent micro-and nanocrystals:What is changing with size [J], Actual Chim.,2008,317:42-46.
    [48]Okamura M., Ebina K., Akimoto S. et al., Luminescent properties of US nanoclusters dispersed in solution-Effects of size and surface termination [J], J. Photochem. Photobiol. A-Chem.,2006,178(2-3):156-161.
    [49]Wei Z. G, Sun L. D., Liao C. S. et al., Size dependence of luminescent properties for hexagonal YBO3:Eu nanocrystals in the vacuum ultraviolet region [J], J. Appl. Phys.,2003,93(12): 9783-9788.
    [50]Rao C. N. R., Kulkarni G U., Thomas P. J. et al., Size-dependent chemistry:Properties of nanocrystals [J], Chem.-Eur. J.,2002,8(1):29-35.
    [51]Sun C. Q., Gong H. Q., Hing P. et al., Behind the quantum confinement and surface passivation of nanoclusters [J], Surf. Rev. Lett.,1999,6(2):171-176.
    [52]Horch S., Lorensen H. T., Helveg S. et al., Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen [J], Nature,1999,398(6723):134-136.
    [53]Tan O. K., Zhu W., Yan Q. et al., Size effect and gas sensing characteristics of nanocrystalline xSnO2-(1-x)alpha-Fe2O3 ethanol sensors [J], Sens. Actuator B-Chem.,2000,65(1-3):361-365.
    [54]Senna M., How reactivity of solid changes when particle size decreases to nanometer regime? [J],Ann. Chim.-Sci. Mat.,2009,34(6):365-376.
    [55]Sakamoto M., Tachikawa T., Fujitsuka M. et al., Photochemical reactivity of gold clusters: dependence on size and spin multiplicity [J], Langmuir,2009,25(24):13888-13893.
    [56]Liu J., Aruguete D. M., Murayama M. et al., Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PbS) [J], Environ. Sci. Technol.,2009, 43(21):8178-8183.
    [57]Bargar J. R, Bernier-Latmani R., Giammar D. E.et al., Structure, composition, size and reactivity of biogenic nano-uraninite [J], Geochim. Cosmochim. Acta,2009,73(13):A87-A87.
    [58]Madden A. S., Hochella M. F., Significance of particle size distributions for size-dependent hematite nanomineral reactivity [J], Geochim. Cosmochim. Acta,2008,72(12):A583-A583.
    [59]Dudin P., Barinov A., Gregoratti L. et al., MgO-supported rhodium particles and films:Size, morphology, and reactivity [J], J. Phys. Chem. C,2008,112(24):9040-9044.
    [60]Koci K., Obalova L., Matejova L. et al., Effect of TiO2 particle size on the photocatalytic reduction of CO2 [J],Appl. Catal. B-Environ.,2009,89(3-4):494-502.
    [61]Faure N., Borel C., Couchaud M. et al., Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd(WO4)2 [J],Appl. Phys. B-Lasers Opt.,1996,63(6): 593-598.
    [62]Angloher G, Bucci C., Cozzini C. et al., Cresst-Ⅱ:dark matter search with scintillating absorbers [J], Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip.,2004, 520(1-3):108-111.
    [63]Errandonea D., Manjon F. J., Pressure effects on the structural and electronic properties of ABX4 scintillating crystals [J], Prog. Mater. Sci.,2008,53(4):711-773.
    [64]Senyshyn A., Kraus H., Mikhailik V. B. et al., Lattice dynamics and thermal properties of CaWO4 [J], Phys. Rev., B 2004,70(21):214306.
    [65]Errandonea D., Manjon F. J., Garro N. et al., Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4 [J], Phys. Rev. B,2008,70(21):054116.
    [66]Lopez-Moreno S., Romero A. H., Rodriguez-Hernandez P. et al., Ab initio calculations of the wolframite MnWO4 under high pressure [J], High Pressure Res.,2009,29(4):578-581.
    [67]Ogisu K., Takanabe K., Lu D. L. et al., CdS Nanoparticles Exhibiting Quantum Size Effect by Dispersion on TiO2:Photocatalytic H2 Evolution and Photoelectrochemical Measurements [J], Bull. Chem. Soc. Jpn.,2009,82(4):528-535.
    [1]Grassian V. H., When Size Really Matters:Size-Dependent Properties and Surface Chemistry of Metal and Metal Oxide Nanoparticles in Gas and Liquid Phase Environments [J], J. Phys. Chem. C, 2008,112(47):18303-18313.
    [2]Su Y. G, Li G S., Xue Y. F. et al., Tunable physical properties of CaWO4 nanocrystals via particle size control [J], J. Phys. Chem. C,2007,111(18):6684-6689.
    [3]Liu Q., Su Y. G, Yu H. S. et al., YPO4 nanocrystals:preparation and size-induced lattice symmetry enhancement [J], J. Rare Earths,2008,26(4):495-500.
    [4]Chen W., Qi D. C., Gao X. Y. et al., Surface transfer doping of semiconductors, Prog. Surf. Sci., 2009,84(9-10):279-321.
    [5]Dieguez A., Romano-Rodriguez A., Vila A. et al., The complete Raman spectrum of nanometric SnO2 particles [J], J. Appl. Phys.,2001,90(3):1550-1557.
    [6]Ogisu K., Takanabe K., Lu D. L. et al., CdS Nanoparticles Exhibiting Quantum Size Effect by Dispersion on TiO2:Photocatalytic H2 Evolution and Photoelectrochemical Measurements [J], Bull. Chem. Soc. Jpn.,2009,82(4):528-535.
    [7]Gu Y, Kuskovsky I. L., Yin M. et al., Quantum confinement in ZnO nanorods [J], Appl. Phys. Lett.,2004,85(17):3833-3835.
    [8]Fonoberov V. A., Balandin A. A., Origin of ultraviolet photo luminescence in ZnO quantum dots: Confined excitons versus surface-bound impurity exciton complexes [J], Appl. Phys. Lett.,2004, 85(24):5971-5973.
    [9]Qiu X. Q., Li L. P., Fu X. Z. et al., Size-induced variations in lattice dimension, photo luminescence, and photocatalytic activity of ZnO nanorods [J], J. Nanosci. Nanotechnol., 2008,8(3):1301-1306.
    [10]Li L. P., Qiu X. Q., Li G S., Correlation between size-induced lattice variations and yellow emission shift in ZnO nanostructures [J],Appl. Phys. Lett.,2005,87(12):124101.
    [11]Li G. S., Boerio-Goates J., Woodfield B. F. et al., Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals [J], Appl. Phys. Lett.,2004,85(11):2059-2061.
    [12]Li G S., Li L. P., Boerio-Goates J. et al., High purity anatase TiO2 nanocrystals:Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry [J], J. Am. Chem. Soc.,2005,127(24):8659-8666.
    [13]Lu L., Li L. P., Wang X. J. et al., Understanding of the finite size effects on lattice vibrations and electronic transitions of nano alpha-Fe2O3 [J],J. Phys.Chem. B,2005,109(36):17151-17156.
    [14]Li L. P., Su Y. G, Li G S., Size-induced symmetric enhancement and its relevance to photo luminescence of scheelite CaWO4 nanocrystals [J],Appl. Phys. Lett.,2007,90(5):054105.
    [15]Tong W. M., Li L. P., Hu W. B. et al., Systematic Control of Monoclinic CdWO4 Nanophase for Optimum Photocatalytic Activity [J], J. Phys. Chem. C,2010,114(3):1512-1519.
    [16]Qu W. M., Wlodarski W., Meyer J. U., Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4 [J], Sens. Actuator B-Chem.,2000,64(1-3):76-82.
    [17]Qu W. M., Meyer J. U., Thick-film humidity sensor based on porous MnW04 material [J], Meas. Sci. Technol.,1997,8(6):593-600.
    [18]Dellwo U., Keller P., Meyer J. U., Fabrication and analysis of a thick-film humidity sensor based on MnWO4 [J], Sens. Actuator A-Phys.,1997,61(1-3):298-302.
    [19]Heyer O., Hollmann N., Klassen I. et al., A new multiferroic material:MnWO4 [J], J. Phys.-Condes. Matter 2006,18(39):L471-L475.
    [20]Martin L., Crane S. P., Chu Y. H. et al, Multiferroics and magnetoelectrics:thin films and nanostructures [J], J. Phys.-Condes. Matter,2008,20(43):434220.
    [21]Picozzi S., Ederer C., First principles studies of multiferroic materials [J], J. Phys.-Condes. Matter,2009,21(30):303201.
    [22]Prellier W., Singh M. P., Murugavel P., The single-phase multiferroic oxides:from bulk to thin film [J], J. Phys.-Condes. Matter,2005,17(30):R803-R832.
    [23]Thongtem S., Wannapop S., Thongtem T., Characterization of MnW04 with flower-like clusters produced using spray pyrolysis [J], Trans. Nonferrous Met. Soc. China,2009,19: S100-S104.
    [24]Thongtem S., Wannapop S., Phuruangrat A. et al., Cyclic microwave-assisted spray synthesis of nanostructured MnWO4 [J], Mater. Lett.,2009,63(11):833-836.
    [25]Zhou Y. X., Zhang Q., Gong J. Y. et al., Surfactant-assisted hydrothermal synthesis and magnetic properties of urchin-like MnW04 microspheres [J], J. Phys. Chem. C,2008, 112(35):13383-13389.
    [26]Zhou H. J., Yiu Y, Aronson M. C. et al., Ambient template synthesis of multiferroic MnWO4 nanowires and nanowire arrays [J], J. Solid State Chem.,2008,181(7):1539-1545.
    [27]Zhang L., Lu C. Z., Wang Y S.et al., Hydrothermal synthesis and characterization of MnW04 nanoplates and their ionic conductivity [J], Mater. Chem. Phys.,2007,103(2-3):433-436.
    [28]Xing Y, Song S. Y, Feng J. et al., Microemulsion-mediated solvothermal synthesis and photoluminescent property of 3D flowerlike MnWO4 micro/nanocomposite structure [J], Solid State Sci.,2008,10(10):1299-1304.
    [29]Chen S. J., Chen X. T., Xue Z. L. et al., Morphology control of MnWO4 nanocrystals by a solvothermal route [J], J. Mater. Chem.,2003,13(5):1132-1135.
    [30]He H. Y, Huang J. F., Cao L. Y. et al., Photodegradation of methyl orange aqueous on MnWO4 powder under different light resources and initial pH [J], Desalination,2010,252(1-3):66-70.
    [31]Hu W. B., Nie X. L., Mi Y. Z., Controlled synthesis and structure characterization of nanostructured MnWO4 [J], Mater. Charact.,2010,61(1):85-89.
    [32]Zhang R H., Chen L. L., Ren Y. Z. et al., Brewing MnW04 microspheres on the eggshell membrane at room temperature [J], Russ. J. Inorg. Chem.,2009,54(8):1189-1192.
    [33]Lei S. J., Tang K. B., Fang Z. et al., Synthesis of MnWO4 nanofibres by a surfactant-assisted complexation-precipitation approach and control of morphology [J], Nanotechnology,2005,16(10): 2407-2411.
    [34]Li G. S., Li L. P., Boerio-Goates J. et al., Grain-growth kinetics of rutile TiO2 nanocrystals under hydrothermal conditions [J], J. Mater. Res.,2003,18(11):2664-2669.
    [35]Errandonea D., Manjon F. J., Somayazulu M. et al., Effects of pressure on the local atomic structure of CaWO4 and YLiF4:mechanism of the scheelite-to-wolframite and scheelite-to-fergusonite transitions [J], J. Solid State Chem.,2004,177(4-5):1087-1097.
    [36]Achary S. N., Patwe S. J., Mathews M. D. et al., High temperature crystal chemistry and thermal expansion of synthetic powellite (CaMoO4):A high temperature X-ray diffraction (HT-XRD) study [J], J. Phys. Chem. Solids,2006,67(4):774-781.
    [37]Ayyub P., Palkar V. R., Chattopadhyas S. et al., Effect of crystal size reduction on lattice symmetry and cooperative properties [J], Phys. Rev. B,1995,51(9):6135-6138.
    [38]Errandonea D., Manjon F. J., Garro N. et al., Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4 [J], Phys. Rev. B,2008,78(5):054116.
    [39]Lopez-Moreno S., Romero A. H., Rodriguez-Hernandez P. et al., Ab initio calculations of the wolframite MnW04 under high pressure [J], High Pressure Res.,2009,29(4):578-581.
    [40]Lacomba-Perales R., Errandonea D., Martinez-Garcia D. et al., Phase transitions in wolframite-type CdWO4 at high pressure studied by Raman spectroscopy and density-functional theory [J], Phys. Rev. B,2009,79(9):095105.
    [41]Hu W. B., Li L. P., Li G S. et al., Synthesis of Titanate-Based Nanotubes for One-Dimensionally Confined Electrical Properties [J], J. Phys. Chem. C,2009,113(39): 16996-17001.
    [42]Qiu X. Q., Li L. P., Zheng J. et al., Origin of the enhanced photocatalytic activities of semiconductors:A case study of ZnO doped with Mg2+[J], J. Phys. Chem. C,2008,112(32): 12242-12248.
    [43]Hoang L. H., Hien N. T. M., Choi W. S. et al., Temperature-dependent Raman scattering study of multiferroic MnWO4 [J], J. Raman Spectrosc.,2009, DOI:10.1002/jrs.2542.
    [44]Daturi M., Busca G., Borel M. M. et al., Vibrational and XRD study of the system CdWO4-CdMoO4 [J], J. Phys. Chem. B,1997,101(22):4358-4369.
    [45]Iliev M. N., Gospodinov M. M., Litvinchuk A. P., Raman spectroscopy of MnWO4 [J], Phys. Rev. B,2009,80(21):212302.
    [46]Gouadec G., Colomban P., Raman Spectroscopy of nanomaterials:How spectra relate to disorder, particle size and mechanical properties [J], Prog. Cryst. Growth Charact. Mater.,2007, 53(1):1-56.
    [47]Fan H. M., Zou B. S., Liu Y. L. et al., Size effect on the electron-phonon coupling in CuO nanocrystals [J], Nanotechnology,2006,17(4):1099-1103.
    [48]Havel M., Baron D., Mazerolles L. et al., Phonon confinement in SiC nanocrystals: Comparison of the size determination using transmission electron microscopy and Raman spectroscopy [J],Appl. Spectrosc.,2007,61(8):855-859.
    [49]Gouadec G., Colomban P., Raman spectroscopy of nanostructures and nanosized materials [J], J. Raman Spectrosc.,2007,38(6):598-603.
    [50]Nogami A., Suzuki T., Katsufuji T., Second Harmonic Generation from Multiferroic MnW04 [J], J. Phys. Soc. Jpn.,2008,77(11):115001.
    [51]Ejima T., Banse T., Takatsuka H. et al., Microscopic optical and photoelectron measurements of MWO4 (M= Mn, Fe, andNi) [J], J. Lumines.,2006,119:59-63.
    [52]Huxter V. M., Mirkovic T., Nair P. S. et al., Demonstration of bulk semiconductor optical properties in processable Ag2S and EuS nanocrystalline systems [J], Adv. Mater.,2008,20(12): 2439-2443.
    [53]Hu W. B., Li L. P., Li G. S. et al., High-Quality Brookite TiO2 Flowers:Synthesis, Characterization, and Dielectric Performance [J], Cryst. Growth Des.,2009,9(8):3676-3682.
    [54]Parhi P., Karthik T. N., Manivannan V., Synthesis and characterization of metal tungstates by novel solid-state metathetic approach [J], J. Alloy. Compd.,2008,465(1-2):380-386.
    [1]Matthews R. W., Photooxidative degradation of colored organics in water using supported catalysts-TiO2 on sand [J], Water Res.,1991,25(10):1169-1176.
    [2]Sharma A., Rao P., Mathur R. P. et al., Photocatalytic reactions of xylidine ponceau on semiconducting zinc oxide powder [J], J. Photochem. Photobiol. A-Chem.,1995,86(1-3):197-200.
    [3]Sakthivel S., Neppolian B., Shankar M. V. et al., Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2 [J], Sol. Energy Mater. Sol. Cells,2003, 77(1):65-82.
    [4]Linsebigler A. L., Lu G. Q., Yates J. T., Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results [J], Chem. Rev.,1995,95(3):735-758.
    [5]Thompson T. L., Yates J. T., Surface science studies of the photoactivation of TiO2-new photochemical processes [J], Chem. Rev.,2006,106(10):4428-4453.
    [6]Pardeshi S. K., Patil A. B., Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method [J], J. Mol. Catal. A-Chem.,2009,308(1-2):32-40.
    [7]Ikeda S., Sugiyama N., Murakami S. et al., Quantitative analysis of defective sites in titanium(IV) oxide photocatalyst powders [J],Phys. Chem. Chem. Phys.,2003,5(4):778-783.
    [8]Amano F., Yamakata A., Nogami K. et al., Visible Light Responsive Pristine Metal Oxide Photocatalyst:Enhancement of Activity by Crystallization under Hydro thermal Treatment [J], J. Am. Chem. Soc.,2008,130(52):17650-17651.
    [9]Fujishima A., Honda K., Electrochemical Photolysis of Water at a Semiconductor Electrode [J], Nature,1972,238(5358):37-38.
    [10]Sopyan I., Watanabe M., Murasawa S. et al., An efficient TiO2 thin-film photocatalyst: Photocatalytic properties in gas-phase acetaldehyde degradation [J], J. Photochem. Photobiol. A-Chem.,1996,98(1-2):79-86.
    [11]Roselin L. S., Rajarajeswari G R, Selvin R. et al., Sunlight/ZnO-mediated photocatalytic degradation of reactive red 22 using thin film flat bed flow photoreactor [J], Sol. Energy,2002, 73(4):281-285.
    [12]Height M. J., Pratsinis S. E., Mekasuwandumrong O. et al., Ag-ZnO catalysts for UV-photodegradation of methylene blue [J],Appl. Catal. B-Environ.,2006,63(3-4):305-312.
    [13]Ohtani B., Bowman R. M., Colombo D. P. et al., Femtosecond diffuse reflectance spectroscopy of aqueous Titanium(IV) oxide suspension:Correlation of electron-hole recombination kinetics with photocatalytic activity [J], Chem. Lett.,1998,7:579-580.
    [14]Dodd A., McKinley A., Saunders M. et al., Mechanochemical synthesis of nanocrystalline SnO2-ZnO photocatalysts [J], Nanotechnology,2006,17(3):692-698.
    [15]Yang J. L., An S. J., Park W. I. et al., Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition [J], Adv. Mater,2004,16(18):1661-1664.
    [16]Cao L. X., Spiess F. J., Huang A. M. et al., Heterogeneous photocatalytic oxidation of 1-butene on SnO2 and TiO2 films [J], J. Phys. Chem. B,1999,103(15):2912-2917.
    [17]Li L. P., Liu J. J., Su Y. G. et al., Surface doping for photocatalytic purposes:relations between particle size, surface modifications, and photoactivity of SnO2:Zn2+ nanocrystals [J], Nanotechnology,2009,20(15):155706.
    [18]Su Y. G., Li G S., Xue Y. F. et al., Tunable physical properties of CaWO4 nanocrystals via particle size control [J], J. Phys. Chem. C,2007,111(18):6684-6689.
    [19]Ye D., Li D. Z., Zhang W. J. et al., A New Photocatalyst CdWO4 Prepared with a Hydrothermal Method [J], J. Phys. Chem. C,2008,112(44):17351-17356.
    [20]Wang Y. G, Ma J. F., Tao H. T. et al., Low-temperature synthesis of CdWO4 nanorods via a hydrothermal method [J], Ceram. Int.,2007,33(6):1125-1128.
    [21]Liao H. W., Wang Y. F., Liu X. M. et al., Hydrothermal preparation and characterization of luminescent CdWO4 nanorods [J], Chem. Mater.,2000,12 (10):2819-2821.
    [22]Wang Y. G, Ma J. F., Tao J. T. et al., Hydrothermal synthesis and characterization of CdWO4 nanorods [J], J. Am. Ceram. Soc.,2006,89(9):2980-2982.
    [23]Chen D., Shen G Z., Tang K. B. et al., Low-temperature synthesis of metal tungstates nanocrystallites in ethylene glycol [J], Mater. Res. Bull.,2003,38(14):1783-1789.
    [24]Li L. P., Su Y. G., Li G. S., Size-induced symmetric enhancement and its relevance to photo luminescence of scheelite CaWO4 nanocrystals [J],Appl. Phys. Lett.,2009,90(5):054105.
    [25]Liu Q., Su Y. G, Yu H. S. et al., YPO4 nanocrystals:preparation and size-induced lattice symmetry enhancement [J], J. Rare Earths,2008,26(4):495-500.
    [26]Li G S., Boerio-Goates J., Woodfield B. F. et al., Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals [J],Appl. Phys. Lett.,2004,85(11):2059-2061.
    [27]Li L. P., Qiu X. Q., Li G S., Correlation between size-induced lattice variations and yellow emission shift in ZnO nanostructures [J],Appl. Phys. Lett.,2005,87(12):142101.
    [28]Lu L., Li L. P., Wang X. J. et al., Understanding of the finite size effects on lattice vibrations and electronic transitions of nano alpha-Fe2O3 [J], J. Phys. Chem. B,2005,109(36):17151-17156.
    [29]Ayyub P., Palkar V. R, Chattopadhyay S. et al., Effect of crystal size reduction on lattice symmetry and cooperative properties [J], Phys. Rev. B,1995,51(9):6135-6138.
    [30]Manjon F. J., Errandonea D., Lopez-Solano J. et al., Negative pressures in CaWO4 nanocrystals [J],J. Appl. Phys.,2009,105(9),094321.
    [31]Lacomba-Perales R, Errandonea D., Martinez-Garcia D. et al., Phase transitions in wolframite-type CdWO4 at high pressure studied by Raman spectroscopy and density-functional theory [J], Phys. Rev. B,2009,79(9):094105.
    [32]Lacomba-Perales R., Martinez-Garcia D., Errandonea D. et al., High-pressure and high-temperature X-ray diffraction studies of scheelite BaWO4 [J], High Pressure Res.,2009,29(1): 76-82.
    [33]Errandonea D., Manjon F. J., Garro N. et al., Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4 [J]. Phys. Rev. B,2008,78(5):054116.
    [34]Errandonea D., Manjon F. J., Pressure effects on the structural and electronic properties of ABX4 scintillating crystals [J], Prog. Mater. Sci.,2008,53(4):711-773.
    [35]Gregg S. J., Sing K. S. W., Adsorption, Surface Area and Porosity,2nd ed, Academic Press: London,1982, P4.
    [36]Sing K. S. W., Everett D. H., Haul R A. W. et al., Reporting physisorption data for gas/solid
    systems with special reference to the determination of surface area and porosity (Recommendations 1984) [J].Pure Appl. Chem.,1985,57(4):603-619.
    [37]Qiu X. Q., Li L. P., Zheng J. et al., Origin of the enhanced photocatalytic activities of semiconductors:A case study of ZnO doped with Mg2+[J], J. Phys. Chem. C,2008,112(32): 12242-12248.
    [38]Hu W. B., Li L. P., Li G S. et al., Synthesis of Titanate-Based Nanotubes for One-Dimensionally Confined Electrical Properties [J], J. Phys. Chem. C,2009,113(39): 16996-17001.
    [39]Li G S., Li L. P., Boerio-Goates J. et al., High purity anatase TiO2 nanocrystals:Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry [J], J. Am. Chem. Soc.,2005,127(24):8659-8666.
    [40]Gabrusenoks J., Veispals A., von Czarnowski A. et al., Infrared and Raman spectroscopy of WO3 and CdWO4 [J]. Electrochim. Acta,2001,46(13-14):2229-2231.
    [41]Daturi M., Busca G, Borel M. M. et al., Vibrational and XRD study of the system CdWO4-CdMoO4 [J], J. Phys. Chem. B,1997,101(22):4358-4369.
    [42]Kim K. H., Gu J. Y, Choi H. S. et al., Frequency shifts of the internal phonon modes in La0.7Ca0.3Mn03 [J],Phys. Rev. Lett.,1996,77(9):1877-1880.
    [43]Mikhailik V. B., Kraus H., Miller G et al., Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations [J], J. Appl. Phys.,2005,97(8):083523.
    [44]Vielhauer S., Babin V., De Grazia M. et al., Self-quenching effects of excitons in CaWO4 under high density XUV free electron laser excitation [J], Phys. Solid State,2008,50(9): 1789-1794.
    [45]Fedorov N., Nagirnyi V, Vasil'ev A. et al., Use of luminescent materials for the metrology of intense UVX bundles of ultrashort impulsions [J], J. Phys. Ⅳ,2006,138:251-257.
    [46]Huxter V. M., Mirkovic T., Nair P. S. et al., Demonstration of bulk semiconductor optical properties in processable Ag2S and EuS nanocrystalline systems [J], Adv. Mater.,2008,20(12): 2439-2443.
    [47]Kortuem G., Reflectance Spectroscopy:Principles, Methods, Applications, Springer-Verlag: Berlin, Germany,1969.
    [48]Hu W. B., Li L. P., Li G S. et al., High-Quality Brookite TiO2 Flowers:Synthesis, Characterization, and Dielectric Performance [J], Cryst. Growth Des.,2009,9(8):3676-3682.
    [49]Chen W., Qi D. C., Gao X. Y. et al. Surface transfer doping of semiconductors [J], Prog. Surf. Sci.,2009,84(9-10):279-321.
    [50]Rzhevskaya O. V, Spasskii D. A., Kolobanov V. N. et al., Optical and luminescence properties of CdWO4 and CdWO4:Mo single crystals [J], Opt. Spectrosc.,2008,104(3):366-373.
    [51]Luo Y. S., Zhang W. D., Dai X. J. et al., Facile Synthesis and Luminescent Properties of Novel Flowerlike BaMoO4 Nanostructures by a Simple Hydrothermal Route [J], J. Phys. Chem. C,2009, 113(12):4856-4861.
    [52]Nakazaki Y, Fujita K., Tanaka K. et al., Effect of microscopic structure and porosity on the photoluminescence properties of silica gels [J], J. Phys. Chem. C,2008,112(29):10878-10882.
    [53]Sun F., Guo Y. P., Song W. B. et al, Morphological control of Cu2O micro-nanostructure film by electrodeposition [J], J. Cryst. Growth,2007,304(2):425-429.
    [54]Wang D. B., Song C. X., Hue Z. S., Shape-controlled synthesis of ZnO architectures [J], Cryst. Res. Technol.,2008,43(1):55-60.
    [55]Kwak M. G, Park J. H., Shon S. H., Synthesis and properties of luminescent Y2O3:Eu (15-25 wt%) nanocrystals [J], Solid State Commun.,2004,130(3-4):199-201.
    [56]Dong F. Q., Wu Q. S., Synthesis of homogeneous bunched lead molybdate nanobelts in large scale via vertical SLM system at room temperature [J], Appl. Phys. A-Mater. Sci. Process.,2008, 91(1):161-165.
    [57]Wang Y, Zhang R. Q., Frauenheim T. et al., Atomistic Simulations of Self-Trapped Exciton Formation in Silicon Nanostructures:The Transition from Quantum Dots to Nanowires [J], J. Phys. Chem. C,2009,113(30):12935-12938.
    [58]Califano M., Bester G, Zunger A., Prediction of a shape-induced enhancement in the hole relaxation in nanocrystals [J], Nano Lett.,2003,3(9):1197-1202.
    [59]Yu M., Lin J., Fang J., Silica spheres coated with YVO4:Eu3+ layers via sol-gel process:A simple method to obtain spherical core-shell phosphors [J], Chem. Mat.,2005,17(7):1783-1791.
    [60]Pang M. L., Lin J., Yu M., Fabrication and luminescent properties of rare earths-doped Gd2(WO4)3 thin film phosphors by Pechini sol-gel process [J], J. Solid State Chem.,2004,177(7): 2237-2241.
    [61]Yu M., Lin J., Fu J. et al., Sol-gel synthesis and photo luminescent properties of LaPO4:A (A= Eu3+, Ce3+, Tb3+)nanocrystalline thin films [J],J. Mater. Chem.,2003,13(6):1413-1419.
    [62]Yu M., Lin J., Wang Z. et al., Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A= Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography [J], Chem. Mat., 2002,14(5):2224-2231.
    [63]Yu M., Lin J., Zhou Y H. et al., Sol-gel deposition and luminescent properties of oxyapatite Ca2(Y,Gd)8(SiO4)6O2 phosphor films doped with rare earth and lead ions [J], J. Mater. Chem., 2002,12(1):86-91.
    [64]Lin J., Sanger D. U., Mennig M. et al., Sol-gel deposition and characterization of Mn2+-doped silicate phosphor films [J]. Thin Solid Films,2000,360(1-2):39-45.
    [65]Haas Y, Stein G, Quenching of the fluorescence of rare earth ions by high energy vibrations of solvent molecules:calculations of Franck-Condon factors from spectral data [J], Chem. Phys. Lett., 1972,15(1):12-16.
    [66]Di W. H., Wang X. J., Chen B. J. et al., Effect of OH- on the luminescent efficiency and lifetime of Tb3+ doped yttrium orthophosphate synthesized by solution precipitation [J], J. Phys. Chem. B,2005,109(27):13154-13158.
    [67]Konishi M., Isobe T., Senna M., Enhancement of photo luminescence of ZnS:Mn nanocrystals by hybridizing with polymerized acrylic acid [J], J. Lumines.,2001,93(1):1-8.
    [68]Cao L. X., Spiess F. J., Huang A. M. et al., Heterogeneous photocatalytic oxidation of 1-butene on SnO2 and TiO2 films [J], J. Phys. Chem. B,1999,103(15):2912-2917.
    [69]Li D., Haneda H., Morphologies of zinc oxide particles and their effects on photocatalysis [J], Chemosphere,2003,51(2):129-137.
    [70]Mclaren A., Valdes-Solis T., Li G Q. et al., Shape and Size Effects of ZnO Nanocrystals on Photocatalytic Activity [J], J. Am. Chem. Soc.,2009,131(35):12540-12541.
    [71]Carp O., Huisman C. L., Reller A., Photoinduced reactivity of titanium dioxide [J], Prog. Solid State Chem.,2004,32(1-2):33-177.
    [72]Ohko Y, Fujishima A., Hashimoto K., Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst [J], J. Phys. Chem. B,1998,102(10):1724-1729.
    [73]Gu D. E., Lu Y, Yang B. C. et al., Facile preparation of micro-mesoporous carbon-doped TiO2 photo catalysts with anatase crystalline walls under template-free condition [J], Chem. Commun., 2008,21:2453-2455.
    [74]Soni S. S., Henderson M. J., Bardeau J. F. et al., Visible-light photocata lysis in titania-based mesoporous thin films [J],Adv. Mater.,2008,20(8):1493-1498.
    [75]Song X. F., Gao L., Fabrication of hollow hybrid microspheres coated with silica/titania via sol-gel process and enhanced photocatalytic activities [J], J. Phys. Chem. C,2007,111(23): 8180-8187.
    [76]Zhang Z. B., Wang C. C., Zakaria R. et al., Role of particle size in nanocrystalline TiO2-based photocatalysts [J], J. Phys. Chem. B,1998,102(52):10871-10878.
    [1]Saito N., Sonoyama N., Sakata T., Analysis of the excitation and emission spectra of tungstates and molybdate [J], Bull. Chem. Soc. Jpn.,1996,69(8):2191-2194.
    [2]Yu S. H., Antonietti M., Colfen H. et al., Synthesis of very thin 1D and 2D CdWO4 nanoparticles with improved fluorescence behavior by polymer-controlled crystallization [J], Angew. Chem.-Int. Edit.,2002,41(13):2356-2360.
    [3]Pode R. B., Dhoble S. J., Photoluminescence in CaWO4:Bi3+, Eu3+ material [J], Phys. Status Solidi B-Basic Solid State Phys.,1997,203(2):571-577.
    [4]Errandonea D., Somayazulu M., Hausermann D., Phase transitions and amorphization of CaWO4 at high pressure [J],Phys. Status Solidi B-Basic Solid State Phys.,2003,235(1):162-169.
    [5]Su Y. G, Li L. P., Li G S., Synthesis and Optimum Luminescence of CaWO4-Based Red Phosphors with Codoping of Eu3+ and Na+[J], Chem. Mat.,2008,20(19):6060-6067.
    [6]Su Y. G, Li L. P., Li G S., Self-assembly and multicolor emission of core/shell structured CaWO4:Na+/Ln3+ spheres [J], Chem. Commun.,2008,34:4004-4006.
    [7]Zhang F., Yiu Y, Aronson A. C. et al., Exploring the room-temperature synthesis and properties of multifunctional doped tungstate nanorods [J],J. Phys. Chem. C,2008,112(38):14816-14824.
    [8]Sun L. N., Cao M. H., Wang Y. H. et al., The synthesis and photoluminescent properties of calcium tungstate nanocrystals [J], J. Cryst. Growth,2006,289(1):231-235.
    [9]Cai S. H., Dang H., Li Y. Y. et al., Synthesis of CaWO4 phosphors with the hydrothermal method [J], Chem. J. Chin. Univ.-Chin.,1998,19(5):691-693.
    [10]Shan Z. C., Wang Y M., Ding H. M. et al., Structure-dependent photocatalytic activities of MWO4 (M= Ca, Sr, Ba) [J], J. Mol. Catal. A-Chem.,2009,302(1-2):54-58.
    [11]Lee J. H., Jung J. C., Borovinskaya I. P. et al., Preparation of tungsten powder by the combustion of CaWO4/Mg [J], Met. Mater.-Korea,2000,6(1):73-80.
    [12]Lou X. M., Chen D. H., Synthesis of CaWO4:Eu3+ phosphor powders via a combustion process and its optical properties [J],Mater. Lett.,2008,62(10-11):1681-1684.
    [13]Pang M. L., Lin J., Wang S. B. et al., Luminescent properties of rare-earth-doped CaWO4 phosphor films prepared by the Pechini sol-gel process [J], J. Phys.-Condes. Matter,2003,15(29): 5157-5169.
    [14]Su Y. G, Li G S., Xue Y. F. et al., Tunable physical properties of CaWO4 nanocrystals via particle size control [J], J. Phys. Chem. C,2007,111(18):6684-6689.
    [15]Lin-Vien D. et al., The handbook of IR and Raman characteristic frequencies of organic molecules, Academic Press:New York,1991; p 137.
    [16]Burcham L. J., Wachs, I. E., Vibrational analysis of the two non-equivalent, tetrahedral tungstate WO4 units in Ce2(WO4)3 and La2(WO4)3 [J], Spectroc. Acta Pt. A-Molec. Biomolec. Spectr, 1998,54(10):1355-1368.
    [17]Li C. X., Lin C. K., Liu X. M. et al., Nanostructured CaWO4, CaWO4:Eu3+ and CaWO4:Tb3+ particles:Sonochemical synthesis and luminescent properties [J], J. Nanosci. Nanotechnol.,2008, 8(3):1183-1190.
    [18]Zhang Q., Yao W. T., Chen X. Y et al., Nearly monodisperse tungstate MWO4 microspheres (M=Pb, Ca):Surfactant-assisted solution synthesis and optical properties [J], Cryst. Growth Des., 2007,7(8):1423-1431.
    [19]Golubovic A., Gajic R., Dohcevic-Mitrovic Z. et al., Nd pronounced anharmonicity in IR spectra of CaWO4 single crystals [J], Sci. Sinter.,2006,38(3):265-272.
    [20]Golubovic A., Gajic R., Dohcevic-Mitrovic Z. et al., Nd induced changes in IR spectra of CaWO4 single crystals [J], J. Alloy. Compd,2006,415(1-2):16-22.
    [21]Pontes F. M., Galhiane M. S., Santos L. S. et al., Polymeric precursor method to the synthesis of XWO4 (X= Ca and Sr) thin films-Structural, micros tructural and spectroscopic investigations [J], J. Alloy. Compd,2009,477(1-2):608-615.
    [22]Scott J. F., Dipole-Dipole Interactions in Tungstates [J], J. Chem. Phys.,1968,49(1):98-100.
    [23]Basiev T. T., Sobol A. A., Voronko Y. K. et al., Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers [J], Opt. Mater.,2000,15(3):205-216.
    [24]Mikhailik V. B., Kraus H., Miller G, Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations [J], J. Appl. Phys.,2005,97(8):083523.
    [25]Jayaraman A., Batlogg B., Vanuitert L. G, Effect of high pressure on the Raman and electronic absorption spectra of PbMoO4 and PbWO4 [J], Phys. Rev. B,1985,31(8):5423-5427.
    [25]Chen S. J., Li J., Chen X. T., Solvothermal synthesis and characterization of crystalline CaWO4 nanoparticles [J], J. Cryst. Growth,2003,253(1-4):361-365.
    [26]Li L. P., Su Y. G, Li G S., Size-induced symmetric enhancement and its relevance to photo luminescence of scheelite CaWO4 nanocrystals [J],Appl. Phys. Lett.,2007,90(5):054105.
    [27]Stouwdam J. W., Raudsepp M., van Veggel F. C. J. M., Colloidal nanoparticles of Ln3+-doped LaVO4:Energy transfer to visible-and near-infrared-emitting lanthanide ions [J], Langmuir,2005, 21(15):7003-7008.
    [28]Haas Y, Stein G, Quenching of the fluorescence of rare earth ions by high energy vibrations of solvent molecules:calculations of Franck-Condon factors from spectral data [J], Chem. Phys. Lett., 1972,15(1):12-16.
    [29]Di W. H., Wang X. J., Chen B. J. et al., Effect of OH- on the luminescent efficiency and lifetime of Tb3+ doped yttrium orthophosphate synthesized by solution precipitation [J], J. Phys.
    Chem. B,2005,109(27):13154-13158.
    [30]Konishi M., Isobe T., Senna M., Enhancement of photoluminescence of ZnS:Mn nanocrystals by hybridizing with polymerized acrylic acid J. Lumin.,2001,93(1):1-8.
    [31]Jones M., Nedeljkovic J., Ellingson R. J., Photoenhancement of luminescence in colloidal CdSe quantum dot solutions [J], J. Phys. Chem. B,2003,107(41):11346-11352.
    [32]Haile S. M., West D. L., Campbell J., The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate [J], J. Mater. Res.,1998,13(6): 1576-1595.
    [33]Barsoukov E., Macdonald J. R., Impedance spectroscopy, New Jersey:John Wiley and Sons, 2005:18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700