AAO模板法制备聚吡咯纳米线阵列及其敏感特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的有序微阵列体系的制备对于规模化功能器件如传感器等的研制具有重要的意义。阳极氧化铝模板(AAO)具有高度有序的阵列结构,而且制备工艺简单、易于工业化生产等特点,用氧化铝模板制备纳米材料有序阵列体系已被视为最有前途的方法之一。
     本文主要研究了采用AAO模板电化学合成聚吡咯纳米线阵列结构,将聚吡咯纳米线阵列利用半导体工艺制做成了气体传感器,用来检测氨气,并对其响应原理给出了解释。另外,本论文还探讨了聚吡咯阵列器件检测挥发性有机化合物的蒸气,初步探讨了聚吡咯纳米线阵列测试溶液中的挥发性有机物。
     论文第一章介绍了导电聚合物的发展、导电机制和应用,导电聚吡咯材料的发现和合成方法,以及在传感器方面的应用,最后介绍了挥发性有机化合物的危害及其检测方法。
     论文第二章主要研究了恒压下有序阳极氧化铝模板的制备,将氧化铝模板一面蒸金后作为工作电极,采用三电极,在不同溶剂中用电化学方法恒电位合成聚吡咯纳米线阵列结构。用扫描电子显微镜、红外光谱、XPS、XRD对水溶液中合成的聚吡咯纳米线进行了形貌、结构和结晶程度的表征和分析。
     论文第三章以聚吡咯纳米线为气敏材料,制备了阵列式气体传感器,测量了器件对氨气的响应,氨气是一种富电子气体,与聚吡咯纳米线作用后,聚吡咯结构中的空穴减少,引起电阻的变化。由于聚吡咯纳米线阵列中存在大量的气体扩散空间,而且纳米线直径较小,所以制备的传感器对气体的吸附和脱附速度快,响应和恢复时间短,灵敏度也有很大提高,而且在1.5 ppm-77 ppm范围内,氨气浓度的倒数与灵敏度的倒数成线性关系。对气体的响应机理也给出了合理的解释。
     第四章主要利用聚吡咯纳米线阵列结构的电阻变化检测了丙酮、间二甲苯挥发性有机化合物,利用电容信号的变化初步研究了聚吡咯纳米线阵列电容器对溶剂(正己烷)中邻二氯苯的检测。
     最后对论文的工作进行了总结,并对下一步工作提出了展望。
The fabrication of ordered array nano structures is important for obtaining scaled-up functional devices such as sensors devices. Anodic aluminum oxide (AAO) templates have high ordered nanochannel array structures, easy preparation technology and industrial production. It is one of the promising strategies to use AAO templates to prepare ordered array nano structures.
     In this paper, polypyrrole (PPy) nanowire arrays were synthesized in AAO templates by elecctrochemical method. The PPy nanowire arrays sensor was fabricated by semiconductor technology and was used to detecte ammonia. In addition, this paper had a study on the vapor of volatile organic compounds (VOCs), such as acetone, m-xylene, by PPy nanowires arrays. A preliminary research on detecting the o-dichlorobenzene in n-hexane by arrays was also studied
     In the first chapter, we introduced the development of the conducting polymers, their conductive mechanism and their applications. We presented the discovery of the material of PPy, its synthesis methods and its applications, sensors for example. Moreover, we generalized the harm of volatile organic compounds and detecting ways.
     Chapter 2 mainly studied the preparation of AAO templates. The highly ordered AAO templates with hexagonal pore structures were fabricated by two-step anodization under constant temperature. Meanwhile, we studied the fabrication of highly ordered PPy nanowire arrays in AAO template by electrochemical method under constant potential in different solvent. One sides of AAO was deposited a thin layer of Au and it was used to working electrode. The morphology and structure of PPy nanowire synthesized in distilled water were analyzed by a field emmission scanning electron microscope (SEM), FT-IR spectrum, and X-ray Photoelectron Spectroscopy. The crystallinity was examined by X-ray Diffraction.
     In chapter 3, the gas sensor based on vertically aligned polypyrrole nanowire arrays was fabricated and investigated. The fastness of the device was improved by deposited Au. In ambient atmosphere, we have investigated the response of the sensor to low concentrations of ammonia. Ammonia exhibited some electron rich and PPy doped with ClO4ˉwhich carries many electron holes. When ammonia was absorbed on the nanowires, it can donate electrons to the initially oxidized PPy and change the resistance of PPy. Our results indicated that PPy nanowire arrays had high sensitivity, relatively short response time and recovery time for ammonia. The reciprocal of response degree has a linear relationship with the reciprocal of gas concentration (1.5 ppm-77 ppm). The possible mechanism of the response was also discussed.
     In chapter 4, we had a preliminary study on the detection of volatile organic compounds based on the arrays structure of PPy nanowire such as acetone, m-xylene. According to the change of capacitance signal, we detect the o-dichlorobenzene in n-hexane by PPy nanowires arrays preliminary.
     At the end of this paper, a short conclusion for the work and the goal of future research were made.
引文
[1] Wang Y, Suna A, Mahler W. PbS in polymers from molecules to bulk solids [J], J. Chem. Phys, 1987, 87:7315-7322.
    [2] Lijma S. Helical microtubules of griphitic carbon [J], Nature, 1991, 354:56-58.
    [3] Melenders CA, Narayanaswamy A, Maroni VA, Siegel RW. Raman spectroscopy of nanophase TiO2 [J], J. Mater. Res., 1989, 4:1246-1250.
    [4] Gavicchi RE, Silsbee RH. Coulomb suppression of tunneling rate from small metal particles [J], Phys. Rev. Lett., 1984, 52:1453-1456.
    [5] Ball P, Garwin Li. Scanning tunneling microscopy and spectroscopy studies of nanostructured materials [J], Nature, 1992, 355:761-766.
    [6] Denton R, Mhlschegel B, Scalapino DJ. Electronic heat capacity and susceptibility of small metal particles [J], Phys. Rev. Lett., 1971, 26:707.
    [7] Ito T, Shirakawa H, Ikeda S. Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution [J], J. Polym. Sci. Polym. Lett. Ed., 1974, 12:11-20.
    [8] C. K. Chiang, Park YW. Conducting polymers-halogen doped polyacetylene [J], J. Chem. Phys.,1978, 11:5098-5104.
    [9] Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x [J], J. Chem. Soc. Chem. Commun, 1977, 578-580.
    [10] Heeger AJ, Kivelson S, Schrieffer JR, Su WP. Solitons in conducting polymers [J], Rev. Mod. Phys., 1988, 60:781-850.
    [11] Su WP, Schrieffer JR, Heeger AJ. Solitons in polyacetylene [J], Phys. Rev. Lett, 1979, 42:1698-1701.
    [12] Su WP, Schrieffer JR, Heeger AJ. Soliton excitations in polyacetylene [J], Phys. Rev. B, 1980, 22:2099-2111.
    [13] Panero S, Prosperi P, Scrosati B. Characteristics of electrochemically synthesized polymer electrodes in lithium cells-IV. Effects of the synthesis conditions on the performance of polypyrrole [J], Electrochimica Acta, 1987, 32(10): 1461468.
    [14]曹镛,导电性聚合物化学的进展,高分子通报,1998,1:25-31.
    [15] Wu Y, Xing SX, Jing SY, Zhou TL, Zhao C. Examining the use of Fe3O4 nanoparticles to enhance the NH3 sensitivity of polypyrrole films [J], Polymer Bulletin, 2007, 59:227–234.
    [16] Christine Jér?me, Robert Jér?me. Electrochemical synthesis of polypyrrole nanowires [J], Angew. Chem. Int. Ed., 1998, 37:18.
    [17] Roncali J, Garreau R, Yassar A. Effects of steric factors on the electrosynthesis and properties of conducting poly(3-alkylthiophenes) [J], J. Phys Chem, 1987, 91:6706-6714.
    [18] Angelopoulos M, Asturias GE, Eemer SP. Polyaniline: Solutions, films and oxidation state. Mol Cryst Liq Cryst [J], 1988, 160:151-163.
    [19] Lee JY, Kim DY, Kim CY. Synthesis of soluble polypyrrole of the doped state in organic solvents [J], Synth Met, 1995, 74:103.
    [20] Joo J, Lee JK, Baeck JS, Electrical, magnetic, and structural properties of chemically and electrochemically synthesized polypyrrole [J], Synth. Met., 2001, 117:45-51.
    [21] Tourillon G, Garnier F. New electrochemically generated organic conducting polymers [J], J. Electroanal. Chem., 1982, 135:173-178.
    [22] Korri-Youssoufi H, Richard C, Yassar A, A new method for the immobilisation of antibodies in conducting polymers [J], Mater. Sci. Eng. C., 2001, 15:307-310.
    [23] Diaz AF , J Bargon. Handbook of conducting polymers, Vol. 1, ed. T.A. Skotheim. New York: Marcel Dekker, 1986, 81–115.
    [24]李永芳.导电聚合物.化学进展,2002, 14. 207-211.
    [25] Salmon M, Diaz AF, Logan AJ. Chemical modification of conducting polypyrrole films [J], Molecular Crystals and Liquid Crystals, 1982, 83:265-276.
    [26] Satoh M, Kaneto K, Yoshino K. Dependences of electrical and mechanical properties of conducting polypyrrole films on conditions of electrochemical polymerization in an aqueous medium [J], Synthetic Metals, 1986, 14:289-196.
    [27] Schirmeisen M, Beck F. Electrocoating of iron and other metals with polypyrrole [J], J. Appl. Electrochem., 2005, 19:401-409.
    [28] Bull RA, Fan FF, Bard AJ. Polymer films on electrodes, 7, J. Electrochem. Soc. 1982, 129: 1009-1015.
    [29] Li Y, He G. Effect of preparation conditions on the two doping structures of polypyrrole [J], Synthetic Metals, 1998, 94:127-129
    [30]何天白,胡汉杰,功能高分子与新技术,化学工业出版社,2001.
    [31] Foulds NC, Lowe CR, Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers [J], Anal. Chem., 1988, 60:2473-2478.
    [32] Quinto M, Losito I, Palmisano F. Needle-type glucose microbiosensor based on glucose oxidase immobilised in an overoxidised polypyrrole film (an in-vitro study) [J], Fresen. J. Anal. Chem., 2000, 367:692-696.
    [33] Foulds NC, Lowe CR. Enzyme entrapment in electrically conducting polymers [J], J. Chem. Soc. Faraday Trans. I, 1986, 82:1259-1264.
    [34] Bazzaoui M, Martins JI, Machnikova E, Bazzaoui EA, Martins L. Polypyrrole films electrosynthesized on stainless steel grid from saccharinate aqueous solution and its behaviour toward acetone vapor [J], J.Eur. Polym., 2007, 43:1347-1358.
    [35] Wu RJ, Huang YC, Yu MR, Lin TH, Hung S. L. Application of m-CNTs/NaClO4/PPy to a fast response, room working temperature ethanol sensor [J], Sens. Actuators B, 2008, 134:213-218.
    [36] Hamilton S, Hepher MJ, Sommerville J, Polypyrrole material for detection and discrimination of volatile organic compounds [J], Sens. Actuators B, 2005, 107:424-432.
    [37] Jun HK, Hoh YS, Lee BS, Lee ST, Lim JO, Lee DD, Huh JS. Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions [J], Sens. Actuators B, 2003, 96:576–581.
    [38] Geng L, Zhao Y, Huang X, Wang S, Zhang S, Huang W, Wu S. The preparation and gas sensitivity study of polypyrrole/zinc oxide [J], Synth. Met., 2006, 156:1078–1082.
    [39] Kharat HJ, Kakde KP, Savale PA, Datta K, Ghosh P, Shirsat MD. Synthesis of polypyrrole films for the development of ammonia sensor [J], Polym. Adv. Technol., 2007, 18:397–402.
    [40] Jang J, Bae J. Carbon nanofiber/polypyrrole nanocable as toxic gas sensor [J], Sens. Actuators B, 2007,122:7-13.
    [41] Dall'Antonia LH, Vidotti ME, Córdoba de Torresi SI, Torresi RM, A New Sensor for Ammonia Determination Based on Polypyrrole Films Doped with Dodecylbenzenesulfonate (DBSA) Ions [J], Electroanal., 2002, 14:1577-1586.
    [42] Mabrook MF, Pearson C, Petty MC, Inkjet-printed polypyrrole thin films for vapour sensing [J], Sens. Actuators B, 2006,115:547–551.
    [43] Barisci JN, Wallace GG, Andrews MK, Partridge AC, Harris PD, Conducting polymer sensors for monitoring aromatic hydrocarbons using an electronic nose [J], Sens. Actuators B, 2002, 84:252–257.
    [44] Lu ZL, Sun ZS, Dong SJ. Study of ClO4—selective electrode based on a conducting polymer polypyrrole [J], Electroanalysis, 1989, 1:271-277.
    [45] Dong JS, Sun Z, Lu Z. A new kind of chemical sensor based on a conducting polymer film [J], J. Chem. Soc., Chem. Commun,1988, 993-995.
    [46] Okada T, Hayashi H, Hiratani K, Sugihara H, Koshizaki N. Poltmer-based cation-selective electrodes modified with naphthalenesulphonates [J], Analyst, 1991,116:923.
    [47] Dall’Acqua L, Tonin C, Peila R. Performances and properties of intrinsic conductive cellulose-polypyrrole textiles [J], Synthetic Metals, 2004, 146:213-221.
    [48] Jinyeol K, Daewon S, Yuneyoung S. Fabrication and characterization of conductive polypyrrole thin film prepared by in situ vapor-phase polymerization [J], Synth. Met., 2003, 132:309-313.
    [49]叶成,高分子科学的今天与明天,施良和,胡汉杰主编,北京:化学工业出版社,1994, 55.
    [50] Kim MS, Kim HK, Byun SW. PET fabtic/polypyrrole composite with high electrical conductivity for EMI shielding [J], Synth. Met., 2002, 126:233-239.
    [51] Peres RCD, De Paoli MA, Panero S, Scrosati B. A new electrode for a poly(pyrrole)-based rechargeable battery [J], J. Power Sources, 1992, 40:299.
    [52] Ofer D, Crooks RM, Wrighton MS. Potential dependence of the conductivity of highly oxidized polythiophenes, polypyrroles, and polyaniline: finite windows of high conductivity [J], J. Am. Chem. Soc., 1990, 112:7869.
    [53] Wang JN, Cao SR, Li Z. Human exposure to carbon monoxide and inhalable particulate in Beijing China [J], J. Biomed Environ Sci, 1998, 1:5-12.
    [54] ECA-IAQ (European Collaborative Action“Indoor Air Quality and Its Impact on Man”). Evaluation of VOC emissions from building products-solid flooring materials: Reprot No. 18. EUR 17334 EN [M]. Luxembourg: Office of Official Publications of the European Communities, 1997.
    [55]徐东群,韩克勤,张爱军,董小艳,挥发性有机化合物的监测方法研究,中国环境卫生,2003,6:60-67.
    [56]董小艳,室内空气中挥发性有机化合物的污染现状及监测和评价方法,国外医学卫生学分册,2007,34:148-153.
    [57]王海霞,仲伟华,挥发性有机化合物处理技术,化学工程师,2009,6:45-46.
    [58]李坚,电晕法处理挥发性有机物(VOCs)实验研究,西安建筑科技大学,1996,4-11.
    [59]余成洲,张贤明,张春媚,可挥发性有机化合物废气处理技术及其新进展,重庆工商大学学报(自然科学版),2009,26:35-39.
    [1] Martin CR. Template synthesis of electronically conductive polymer [J], Acc. Chem. Res., 1995, 28:61-68.
    [2] Salem AK, Searson PC, Leong KW. Multifunctional nanorods for gene delivery [J], Nature Materials, 2003, 2:668-670.
    [3] Shen CM, Zhang XG, Li HL. DC electrochemical deposition of CdSe nanorods array using porous anodic aluminum oxide template [J]. Materials Science and Engineering A, 2001, 303:19-23.
    [4] Yu BZ, Li HL. Morphology and photoluminescent properties of poly(p-phenylene) nanofibre arrays fabricated by template method [J], Materials Science and Engineering A, 2002, 325:215-220.
    [5] Lee JI, Cho SH, Park SM, Kim JK, Kim JK, Yu JW, Kim YC, Russell TP, Highly Aligned Ultrahigh Density Arrays of Conducting Polymer Nanorods using Block Copolymer Templates [J], Nano. Lett., 2008, 8:2315-2320.
    [6] Fukami K, Harraz FA, Yamauchi T, Sakka T, Ogata YH. Fine-tuning in size and surface morphology of rod-shaped polypyrrole using porous silicon as template [J], Electrochem. Commun., 2008,10:56-60.
    [7] Wang J, Dai J, Yarlagadda T, Carbon nanotube-conducting-polymer composite nanowires [J], Langmuir, 2005 21:9-12.
    [8] Liu L, Zhao Y, Jia N, Zhou Q, Zhao C, Yan M, Jiang Z. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices [J], Thin Solid Films, 2006, 503:241-245.
    [9] Liu L, Zhao C, Zhao Y, Jia N, Zhou Q, Yan M, Jiang Z. Characteristics of polypyrrole (PPy) nano-tubules made by templated ac electropolymerization [J], J. Eur. Polym., 2005, 41:2117-2121.
    [10] Li Y, Zhu Z, Jiang Z, Yan M. Cold sealing mechanism of anodic oxide films on aluminum Part I: composition and structure of cold sealed oxide films. Plating and surface finishing, 1993, Sep: 79-81.
    [11] Parthasarathy RV, Martin CR. Template-synthesized polyaniline microtubules [J], Chem. Mater., 1994, 6:1627-1632.
    [12] Jang J, Bae J. Carbon nanofiber/polypyrrole nanocable as toxic gas sensor [J], Sens. Actuators B, 2007, 122:7-13.
    [13] Kang HC, Geckeler KE. Enhanced electrical conductivity of polypyrrole prepared bychemical oxidative polymerization: effect of the preparation technique and polymer additive [J], Polymer, 2000, 41:6931–6934.
    [14] Bazzaoui M, Martins L, Bazzaoui EA, Martins JI. New electrochemical procedure for elaborating homogeneous and strongly adherent PPy films on zinc electrodes [J], J. Electroanal. Chem., 2002, 537:47-57.
    [15] Carquigny S, Sanchez JB, Berger F, B Lakard, Lallemand F. Ammonia gas sensor based on electrosynthesized polypyrrole films [J], Talanta, 2009, 78:199-206.
    [16] Cai Z, Lei J, Liang W, Menon V, Martin CR. Molecular and supermolecular origins of enhanced electronic conductivity in template-synthesized polyheterocyclic fibrils. 1. supermolecular effects [J], Chem. Materials, 1991, 3:960-967.
    [17] Jér?me C, Champagne SD, Legras R, Jér?me R. Electrochemical synthesis of conjugated polymer wires and nanotubules [J]. J. Chem. Eur., 2000, 6:3089-3093.
    [1] Jiménez-Cadena G, Riu J, Rius FX. Gas sensors based on nanostructured materials [J], Analyst, 2007, 132:1083–1099.
    [2] Korotcenkov G. Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches [J], Sens. Actuators B, 2005, 107:209-232.
    [3] Bazzaoui M, Martins JI, Machnikova E, Bazzaoui EA, Martins L. Polypyrrole films electrosynthesized on stainless steel grid from saccharinate aqueous solution and its behaviour toward acetone vapor [J], J. Eur. Polym. 2007, 43:1347-1358.
    [4] Wu RJ, Huang YC, Yu MR, Lin TH, Hung SL. Application of m-CNTs/NaClO4/PPy to a fast response, room working temperature ethanol sensor [J], Sens. Actuators B, 2008, 134:213-218.
    [5] Hamilton S, Hepher MJ, Sommerville J. Polypyrrole material for detection and discrimination of volatile organic compounds [J], Sens. Actuators B, 2005, 107:424-432.
    [6] Jun HK, Hoh YS, Lee BS, Lee ST, Lim JO, Lee DD, J Huh.S. Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions [J], Sens. Actuators B, 2003, 96:576–581.
    [7] Geng L, Zhao Y, Huang X, Wang S, Zhang S, Huang W, Wu S. The preparation and gas sensitivity study of polypyrrole/zinc oxide [J], Synth. Met., 2006, 156:1078–1082.
    [8] Bai H, Chen O, Li C, Lu C, Shi G. Electrosynthesis of polypyrrole/sulfonated polyaniline composite films and their applications for ammonia gas sensing [J], Polymer, 2007, 48:4015-4020.
    [9] Jang J, Bae J. Carbon nanofiber/polypyrrole nanocable as toxic gas sensor [J], Sens. Actuators B, 2007, 122:7-13.
    [10] Geng LN, Wang S, Zhao YQ, Li P, Zhang SM, Huang WP, Wu SH. Study of the primary sensitivity of polypyrrole/r-Fe2O3 to toxic gases [J], Materials chemistry and physics, 2006, 99:15-19.
    [11] Koul S, Chandra R, Dhawan SK. Conducting polyaniline composite: a reusable sensor material for aqueous ammonia [J], Sens. Actuators B, 2001, 75:151-159.
    [12] Sakurai Y, Jung Ho-Sup, Shimanouch T, Inoguchi T, Morita S, Kuboi R, K Natsukawa. Novel array-type gas sensors using conducting polymers, and their performance for gas identification [J], Sens. Actuators B, 2002, 83:270-275.
    [13] Zhang L, Dong SJ, The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid [J], J. Electroanal Chem, 2004, 568:189-194.
    [14] Vidotti M, Luiz H, Dall’Antonia, Susana I, Córdoba de Torresi, Bergamaski K, Nart FC.“Online”mass spectrometric detection of ammonia oxidation products generated by polypyrrole based amperometric sensors [J], Anal Chim Acta, 2003, 489:207-214.
    [15] Hwang BJ, Yang JY, Lin CW. Recognition of alcohol vapor molecules by simultaneous measurements of resistance changes on polypyrrole-based composite thin films and mass changes on a piezoelectric crystal [J], Sens Actuators B, 2001, 75:67 - 75.
    [16] Kharat HJ, Kakde KP, Savale PA, Datta K, Ghosh P, Shirsat MD. Synthesis of polypyrrole films for the development of ammonia sensor [J], Polym. Adv. Technol., 2007, 18:397–402.
    [17] Dall'Antonia LH, Vidotti ME, Córdoba de Torresi SI, Torresi RM. A New Sensor for Ammonia Determination Based on Polypyrrole Films Doped with Dodecylbenzenesulfonate (DBSA) Ions [J], Electroanal., 2002, 14:1577-1586.
    [18] Mabrook MF, Pearson C, Petty MC, Inkjet-printed polypyrrole thin films for vapour sensing [J], Sens. Actuators B, 2006, 115:547–551.
    [19] Lin CW, Liu SS, Hwang BJ. Study of the actions of BTEX compounds on polypyrrole film as a gas sensor [J], Journal of Applied Polymer Science, 2001, 82:954-961.
    [20] Brie M, Turco R. The effect of initial conducting and doping anions on gas sensitivity of conducting polypyrrole film to NH3 [J], Sens Actuators B, 1996,37:119-122.
    [21] Jiang YD, Wang T. Study on the NH3-gas sensitive properties and sensitive mechanism of polypyrrole [J], Sens Actuators B, 2000, 66”280-282.
    [22] Lin CW, Hwang BJ, Lee CR. Methanol sensors based on the conductive polymer composites from polypyrrole and poly(vinyl alcohol) [J], Mater. Chem. Phys., 1998, 55:139-144.
    [23] Hernandez SC, Chaudhuri D, Chen W, Myung NV. A. Mulchandani, Single Polypyrrole Nanowire Ammonia Gas Sensor [J], Electroanal., 2007, 19:2125-2130.
    [24] Carquigny S, Sanchez JB, Berger F, Lakard B, Lallemand F. Ammonia gas sensor based on electrosynthesized polypyrrole films [J], Talanta, 2009, 78:199-206.
    [25] Ingan?s O, Erlandsson R, Nylander C, Lundstr?m I. Proton modification of conducting polypyrrole [J], J. Phys. Chem. Solids, 1984, 45:427.
    [26] Gustafsson G, Lundstrom I, Liedberg B, Wu CR, Inganas O. The interaction between ammonia and poly(pyrrole) [J], Synth. Met., 1989, 31:163-179.
    [1]樊红梅,室内空气中总挥发性有机化合物的测定与治理方法探讨,黑龙江生态工程职业学院学报, 2009, 22:5-6.
    [2]王伯光,预浓缩-GC-MS技术研究室内空气中挥发性有机化合物,环境化学,2001, 20:606-615.
    [3]龚幸颐,白郁华,虞江平,北大园区室内挥发性有机化合物(VOCs)的研究,环境科学研究,1998, 11:52-54.
    [4] Jones AP, Indoor air quality and health [J], J. Atmos Environ, 1990, 33:28
    [5]王玲玲,运用热脱附/GC/MS分析研究室内空气中TVOC浓度及种类分布,中国环境监测,2005, 21:8-10.
    [6] Wang YL, Jiang XC, Xia YN. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions [J], J. Am. Chem. Soc., 2003, 125:16176-16177.
    [7] Gou XL, Wang GX, Yang J, Park J, Wexler D. Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons [J], J. Mater. Chem., 2008, 18:965-969.
    [8] Vomiero A, Bianchi S, Comini E, Faglia G, Ferroni M, G Sberveglieri. Controlled growth and sensing properties of InO nanowires [J], Crystal Growth & Design, 2007, 7:2501-2504.
    [9] Patil SB, Patil PP, More MA. Acetone vapour sensing characteristics of cobalt-doped SnO2 thin films [J], Sens Actuators B, 2007, 125:126-130.
    [10] Park J, Shen XP, Wang GX. Solvothermal synthesis and gas-sensing perpormance of Co3O4 hollow nanospheres [J], Sens Actuators B, 2009, 136:494-498.
    [11] Jing ZH, Zhan JH. Fabrication and gas-sensing properties of porous ZnO nanoplates [J], Adv. Mater., 2008, 20:4547-4551.
    [12] Hosono K, Matsubara I, Murayama N, Shin W, Izu N. The sensitivity of 4-ethylbenzenesulfonic acid-doped plasma polymerized polypyrrole films to volatile organic compounds [J], Thin Solid Films, 2005, 484:396-399.
    [13] Lin CW, Liu SS, Hwang BJ. Study of the actions of BTEX compounds on polypyrrole film as a gas sensor [J], Journal of Applied Polymer Science, 2001, 82:954-961.
    [14] Snow E.S, Perkins FK, Houser EJ, Badescu SC, Reinecke TL. Chemical detection with a single-walled carbon nanotube capacitor [J], Science, 2005, 307:1942-1945.
    [15] Patel SV, Mlsna TE, B Fruhberger, Klaassen E, Cemalovic S, Baselt DR. Chemicapacitive microsensors for volatile organic compound detection [J], Sens Actuators B, 2003, 96:541-553.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700