一些新型纳米材料场发射性质的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于纳米材料场发射性质的研究一直以来都是人们关注的热点。研究纳米体系的场发射性质,对理论上研究场发射机理,应用上设计场发射器件具有双重意义。同时对材料自旋极化的场发射研究不论是在核物理还是凝聚态物理中都有重要的应用。另一个方面,密度泛函理论作为被广泛应用理论,是研究纳米材料电子性质和场发射性质的最佳工具。本文内容主要涉及利用密度泛函理论研究新型纳米材料包括新型纳米条带和纳米管的场发射性质。
     第一章介绍了场发射基本知识、一种自洽的场发射电流计算方法、石墨烯和纳米管研究进展、密度泛函理论基础四个方面。场发射指的是材料内电子穿过经典禁区隧穿到真空的过程,我们介绍了场发射的定义,意义以及基本理论和场发射电流计算方法。此外我们还介绍了石墨烯和纳米管的研究进展和密度泛函理论。密度泛函理论认为对于一个多粒子系统只要确定了基态的电子密度函数,就可以由此推导出体系的任何性质。
     第二章主要介绍边缘修饰的石墨烯纳米条带结构在横向电场和纵向电场下的自旋极化场发射性质。锯齿状石墨烯纳米条带是半导体,费米能附近有两个能量简并的边缘电子态,分别被自旋向上通道和自旋向下通道所占据。在条带的上下边缘通过不同的化学基团修饰可以使得一个自旋通道变成金属性而另一个自旋通道保持半导体从而使得整个体系转变成半金属。费米能级附近的半金属很可能是很好的自旋极化场发射源。所以我们研究其自旋极化的场发射性质。我们发现在合适的外电场下,可以获得高度自旋极化的场发射电流或者自旋极化率受电场调制很好的场发射电流。
     第三章我们研究纯净的硼氮纳米管和其在封装纳原子情况下的场发射性质。硼氮纳米管的导带中存在近自由电子态,在掺杂碱金属原子之后,近自由电子态会下降到费米能级以下形成一个杂化态而被电子占据。硼氮管中的近自由电子态被证实对横向外电场有很好的响应同时这些近自由电子态被预测具备很好的场发射特性。我们对硼氮纳米管施加横向电场计算其场发射电流,发现在外电场下近自由电子态表现出很好的场发射效用。我们认为近自由电子态比较活跃的性质和空间的弥散性是其良好场发射特性的主要原因。
Field emission properties of nano-materials have always attracted larger numbers of researching interests. Studying the emission properties of nano-materials is very helpful for people to understand the mechanism of current emissions in theory and to design new electronic devices in practice. And the spin polarized field emission is also very useful in condensed matter physics and nuclear physics. On the other hand, the density functional theory (the DFT), as a theory that was used widely and successfully in condensed matter physics and quantum chemistry, would be the best tool to calculate the electronic structures and field emission properties of nano-systems. In this dissertation, we mainly apply the density functional theory to calculate the field emission and spin polarized field emission from some new type of nano-materials, including some nano-ribbons and nano-tubes.
     In the first chapter, we introduce the basic idea of field emission and a kind of self-consistent method for calculating the emission currents used in this article. Also we give a brief introduction of graphene and nanotubes as well as the basic idea of the density functional theory. The concept of field emission is the process that electrons in an atom overcome a potential barrier and tunnel into the vacuum. We introduce the basic idea of field emission, including the definition, the usefulness and the basic theory of field emission including some methods for calculating the emission currents. Then we introduce graphene and nanotubes in brief. At last, we sketch the framework of the density functional theory. The DFT tells that we would know any properties of a many body system so long as we know the electron density of a system at ground state.
     In chapter 2, we mainly discuss the spin polarized field emission properties of edge decorated graphene nano-ribbon in lateral and longitudinal electric field, respectively. Zigzag edge graphene nano-ribbon is semiconductor with two degenerate electronic edge states near the Fermi level occupied by different spin channel each other. When decorated by different chemical group on each edge, one spin channel would be metallic while the other keeps the same and the whole system becomes spin selective. Spin polarization near the Fermi level may be excellent spin polarized electron emission sources. So we study the spin polarization of field emission of these systems. We got highly spin polarized emission currents in some electric field and we find that we can easily control the emission spin polarization just by changing the electric field in some situation. The spin abruption of the electronic structure can prove the results we discussed above.
     In chapter 3, we study the field emission properties of pure boron-nitride nanotube and boron-nitride nanotube encapsulated with natrium atoms. There are nearly free electron states existing in the conduction band of boron-nitride nanotube. And these states would fall into the Fermi level to form a hybridized state and be occupied by electrons by doping or aikali atom ornament. It is well known that the nearly free electron states existing in the boron-nitride nanotube have a good response with a lateral electric field and would be ideal electron transport channels for emission. We calculate the emission currents and confirm that the NFE states are more active than the bound states and have the distribution feature of dispersion, as a result of which, the NFE states have a pretty performance of field emissions.
引文
[1] J.W.Gadzuk, E.W.Plummer, Field Emission Energy Distribution, Reviews of Modern Physics,45,3,1973.
    [2] R. H. Fowler and L. Nordheim, Proc. R. Soc. A 119, 173 (1928).
    [3] See, e.g., C. D. Ehrlich and E. W. Plummer, Phys. Rev. B 18,3767 ,1978.
    [4]. Y. Gohda and S. Watanabe, J. Phys.: Condens. Matter 16, 4685(2004).
    [5]. J. N. Chazalviel and Y. Yafet, Phys. Rev. B 15, 2,(1977).
    [6]. Oded Hod, Vernica Barone, Juan E. Peralta, and Gustavo E. Scuseria, Nano Lett. 7 (8), 2295-2299(2007).
    [7]. R. Ramprasad, L. R. C. Fonseca, and Paul von Allmen, Phys.Rev. B 62, 5216 (2000). properties of nanoscale graphite ribbon arrays, Phys. Rev. B 72, 035449(2005).
    [8]. Masaaki Araidai,Yasuhiro Nakamura,Kazuyuki Watanabe, Field emission mechanisms of
    [9]. Seungwu Han, M. H. Lee, and Jisoon Ihm, Dynamical simulation of field emission in nanostructures, Phys. Rev. B 65, 085405(2002).
    [10]. Y. Gohda, Y. Nakamura, K. Watanabe, and S. Watanabe, Phys. Rev. Lett. 85, 1750 (2000).
    [11]. Ch. Adessi and M. Devel, Phys. Rev. B 62 ,R13314, (2000).
    [12]. Bin Li, T. C. Leung,C. T. Chan. First-Principles Calculations of Field Emission from Nano-Structures, Journal of Computational and Theoretical Nanoscience 3, 1-8(2006).
    [13]. S. F. Huang, T. C. Leung, Bin Li, C. T. Chan. First-principles study of field-emission properties of nanoscale graphite ribbon arrays, Phys. Rev. B 72, 035449(2005).
    [14] A. K. Geim and K. S. Novoselov. Nature Mater., 6(3):183–191, 2007. ISSN 1476-1122.
    [15] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Scinece, 306:666, 2004.
    [16] C. Berger, Z. Song, T. Li, et al. J. Phys. Chem. B, 108:19912, 2004.
    [17] Xiaoyin Yang, Xi Dou, Ali Rouhanipour, Linjie Zhi, Hans Joachim Rader, and Klaus Mullen. J. Am. Chem. Soc., 130(13):4216–4217, 2008.
    [18] Xiaolin Li, Xinran Wang, Li Zhang, et al. Science, 319:1229, 2008.
    [19] Y. Pan, N. Jiang, J.T. Sun, D. X. Shi, Feng Liu, and H-J Gao. arXiv, pages Condense– matter:0709.2858, 2007.
    [20] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. Rev. Mod. Phys., 81(1):109–54, 2009.
    [21]黄昆、韩汝琦.固体物理学,高等教育出版社,北京,1985.
    [22]胡双林,中国科学技术大学博士学位论文,(2009).
    [23]. A. G. Rinzler, J. H. Hafner, P. Nikolaev, P. Nordlander, D. T. Colbert, R. E. Smalley , L. Lou, S. G. Kim, D. Tománek, Unraveling Nanotubes: Field Emission from an Atomic Wire, science 269,1550(1995).
    [24]. K. Tada,K. Watanabe. Ab Initio Study of Field Emission from Graphitic Ribbons, Phys. Rev. Lett. 88, 127601(2002).
    [25] S. Iijima and T. Ichihashi. Nature (London), 363:603, 1993.
    [26] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers.Nature (London), 363:605, 1993.
    [27] S. Iijima. Nature (London), 354:56, 1991.
    [28]阚二军,中国科学技术大学博士学位论文,(2008).
    [29]阎守胜.固体物理基础,北京大学出版社,北京,2003.
    [30] S. D. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer. Science, 280:1744, 1998.
    [31] W. J. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park. Nature (London), 411:865, 2001.
    [32] X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen. Euro. Phys. Lett., 28(5):335–340, 1994.
    [33] A. Rubio, J. L. Corkill, and M. L. Cohen. Phys. Rev. B, 49(7):5081–5084, 1994.
    [34] N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl. Science, 269(5226):966–967, 1995.
    [35] A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard. Phys. Rev. Lett., 76(25): 4737–4740, 1996.
    [36] R. Czerw, S. Webster, D. L. Carroll, S. M. C. Vieira, P. R. Birkett, C. A. Rego, and S. Roth. Appl. Phys. Lett., 83(8):1617–1619, 2003.
    [37] M. Ishigami, J. D. Sau, S. Aloni, M. L. Cohen, and A. Zettl. Phys. Rev. Lett., 94(5):056804, 2005.
    [38] E. Bengu and L. D. Marks. Phys. Rev. Lett., 86(11):2385–2387, 2001.
    [39] H. J. Xiang, J. L. Yang, J. G. Hou, and Q. S. Zhu. Phys. Rev. B, 68(3):035427, 2003.
    [40] M. Menon and D. Srivastava. Chem. Phys. Lett., 307(5-6):407–412, 1999.
    [41] R. S. Lee, J. Gavillet, M. L. de la Chapelle, A. Loiseau, J. L. Cochon, D. Pigache, J. Thibault, and F. Willaime. Phys. Rev. B, 6412(12):121405, 2001.
    [42] J. Cumings and A. Zettl. Solid State Communications, 129(10):661–664, 2004.
    [43] M. Radosavljevic, J. Appenzeller, V. Derycke, R. Martel, P. Avouris, A. Loiseau, J. L. Cochon, and D. Pigache. Appl. Phys. Lett., 82(23):4131–4133, 2003.
    [44] K. H. Khoo, M. S. C. Mazzoni, and Steven G. Louie. Phys. Rev. B, 69(20):R201401–4, 2004.
    [45] Y. Chen, J. Zou, S. J. Campbell, and G. Le Caer. Applied Physics Letters, 84(13):2430–2432,2004
    [46] W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270,1179 (1995).
    [47] P.G. Collins and A. Zettl, Appl. Phys. Lett. 69, 1969(1996).
    [48] Q. H.Wang, T. D. Corrigan, J.Y. Dai, R. P. H. Chang, and A. R. Krauss, Appl. Phys. Lett. 70, 3308 (1997).
    [49] Y. Saito, S. Uemura, and K. Hamaguchi, Jpn. J. Appl.Phys., Pt. 2 37, L346 (1998).
    [50] J.M. Bonard, J. P. Salvetat, T. Stockli, W. A. de Heer,L. Forro, and A. Chatelain, Appl. Phys. Lett. 73, 918(1998).
    [51] W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin,Appl. Phys. Lett. 75, 873 (1999).
    [52] A.M. Rao, D. Jacques, R. C. Haddon,W. Zhu, C. Bower,and S. Jin, Appl. Phys. Lett. 76, 3813 (2000).
    [53] H. Murakami, M. Hirakawa, C. Tanaka, andH. Yamakawa, Appl. Phys. Lett. 76, 1776 (2000).
    [54] Alper Buldum and Jian Ping Lu, Phys. Rev. lett. 91, 236801(2002)
    [55]曾谨言.量子力学.科学出版社,北京, 2000.
    [56]徐光宪、黎乐明,量子化学-基本原子和从头计算法,科学出版社,1985.
    [57] Majumdar C. K. Walter K. Nobel Prize in Chemistry in 1998, Current Science 76, 1451,1999.
    [58] J. J. P. Stewart. J. Comp. Chem., 10:209, 1989.
    [59] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart. J. Am. Chem. Soc., 107: 3092, 1985.
    [60] R. McWeeny. Methods of Molecular Quantum Mechanics. Academic Press, London, 1989.
    [61] J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch. J. Chem. Phys., 108:8218, 1998.
    [62] Christopher J. Cramer. Essentials of Computational Chemistry. John Wiley & Sons, Ltd., Chichester, 2002.
    [63] R. N. Diron. Molecular Phys., 12:83, 1967.
    [64] C. Moller and M. S. Plesset. Phys. Rev., 46:618, 1934.
    [65] J. A. Pople, D. P. Santry, and G. A. Segal. J. Chem. Phys., 43:S129, 1965.
    [66] R. J. Hoffmann. J. Chem. Phys., 39:1397, 1963.
    [67] H. G. K¨ummel.”a biography of the coupled cluster method”. In R. F. Bishop, T. Brandes, K. A. Gernoth, N. R. Walet, and Y. Xian, editors, Recent progress in manu-body theories, pages 334–348. World Scientific, Singapore, 2002.
    [68] J. A. Pople, D. L. Beveridge, and P. A. Dobosh. J. Chem. Phys., 47:2026, 1967.
    [69] P. Hohenberg and W. Kohn. Phys. Rev., 136:B864–871, 1964.
    [70] W. Kohn. Rev. Mod. Phys., 71:1253, 1999.
    [71] R. G. Parr and W. Yang. Annu. Rev. Phys. Chem., 46:701, 1995.
    [72]谢希德、陆栋.固体能带理论.复旦大学出版社,上海, 1998.
    [73]肖慎修、王崇愚、陈天朗.密度泛函理论的离散变分方法在化学和材料物理学中的应用.科学出版社,北京, 1998.
    [74] H. Thomas. Proc. Camb. phil. Soc., 23:542, 1927.
    [75] E. Fermi. Accad. Naz. Lincei., 7:602, 1927.
    [76] P. A. M. Dirac. Rend. Phil. Roy. Soc., 26:376–385, 1930.
    [77] W. Kohn and L. J. Sham. Phys. Rev., 140:A1133–1138, 1965.
    [78] A. D. Becke. Phys. Rev. A, 38:3098–3100, 1988.
    [79] J. P. Perdew and Y. Wang. Phys. Rev. B, 45:13244–13249, 1992.
    [80] Chengteh Lee, Weitao Yang, and Robert G. Parr. Phys. Rev. B, 37(2):785–789, 1988.
    [81] J. P. Perdew and K. Burke. Int. J. Quant. Chem., 57:767–808, 1996.
    [82] John P. Perdew. Phys. Rev. B, 33(12):8822–8824, 1986.
    [83] F. Sim, A. St-Amant, I. Papsi, and D. R. Salahub. J. Am. Chem. Soc., 46:13599, 1992.
    [84] T. Asada and K. Terakura. Phys. Rev. B, 46:13599, 1992.
    [85] L. F. Yuan, J. L. Yang, K. Deng, and Q. S. Zhu. J. Phys. Chem. A, 104:6666, 2000.
    [86] L. F. Yuan, J. L. Yang, Q. X. Li, and Q. S. Zhu. Phys. Rev. B, 65:035415, 2002.
    [87] G. Kresse and D. Joubert. Phys. Rev. B, 59(3):1758–1775, 1999.
    [88] G. Kresse and J. Hafner. Phys. Rev. B, 49:14251, 1994.
    [89] G. Kresse and J. Furthm¨uller. Comput. Mater. Sci., 6:15, 1996.
    [90] G. Kresse and J. Hafner. J. Phys.: Condens. Matter., 6:8245, 1994.
    [91] G. Kresse and J. Furthm¨uller. Phys. Rev. B, 54:11169, 1996.
    [92] G. Kresse and J. Hafner. Phys. Rev. B, 47:R558, 1993.
    [1]. A. G. Rinzler, J. H. Hafner, P. Nikolaev, P. Nordlander, D. T. Colbert, R. E. Smalley , L. Lou, S. G. Kim, D. Tománek, Unraveling Nanotubes: Field Emission from an Atomic Wire, science 269,1550(1995).
    [2]. Shoushan Fan, et al. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties, science 283, 512 (1999).
    [3]. Seungwu Han, M. H. Lee, and Jisoon Ihm, Dynamical simulation of field emission in nanostructures, Phys. Rev. B 65, 085405(2002).
    [4]. Ch. Adessi and M. Devel, Phys. Rev. B 62 ,R13314, (2000).
    [5]. R. Ramprasad, L. R. C. Fonseca, and Paul von Allmen, Phys.Rev. B 62, 5216 (2000).
    [6]. Y. Gohda, Y. Nakamura, K. Watanabe, and S. Watanabe, Phys. Rev. Lett. 85, 1750 (2000).
    [7]. Y. Gohda and S. Watanabe, J. Phys.: Condens. Matter 16, 4685(2004).
    [8]. K. Tada,K. Watanabe. Ab Initio Study of Field Emission from Graphitic Ribbons, Phys. Rev. Lett. 88, 127601(2002).
    [9]. Masaaki Araidai,Yasuhiro Nakamura,Kazuyuki Watanabe, Field emission mechanisms of graphitic nanostructures, Phys. Rev. B 70, 245410(2004).
    [10]. S. F. Huang, T. C. Leung, Bin Li, C. T. Chan. First-principles study of field-emission properties of nanoscale graphite ribbon arrays, Phys. Rev. B 72, 035449(2005).
    [11]. Bin Li, T. C. Leung,C. T. Chan. First-Principles Calculations of Field Emission from Nano-Structures, Journal of Computational and Theoretical Nanoscience 3, 1-8(2006).
    [12]. Bin Li, T. C. Leung,C. T. Chan. Highly Spin-Polarized Field Emissions Induced by Quantum Size Effects in Ultrathin Films of Fe on W(001),Phys. Rev. Lett. 97, 087201 (2006).
    [13]. T. Ohwaki, D. Wortmann, H. Ishida, S. Blügel, and K. Terakura, Phys. Rev. B 73, 235424 (2006).
    [14]. J. N. Chazalviel and Y. Yafet, Phys. Rev. B 15, 2,(1977).
    [15]. Er-jun Kan,Zhenyu Li,Jinlong Yang,J.G.Hou. Half-Metallicity in Edge-Modified Zigzag Graphene Nanoribbons, J. AM. CHEM. SOC. 2008, 130, 4224-4225.
    [16]. Er-Jun Kan,Zhenyu Li,Jinlong Yang,J. G. Hou. Will zigzag graphene nanoribbon turn to half metal under electric field? Appl. Phys. Lett. 91, 243116 (2007).
    [17]. Oded Hod, Vernica Barone, Juan E. Peralta, and Gustavo E. Scuseria, Nano Lett. 7 (8), 2295-2299(2007).
    [18] G. Kresse and D. Joubert. Phys. Rev. B, 59(3):1758–1775, 1999.
    [19]. Kresse, G. Hafner, J. Phys. Rev. B 47, 558(1993).
    [20]. Blochl, P. E. Phys. Rev. B 50, 17953(1994).
    [21]. Kresse, G. Joubert, D. Phys. Rev. B 59, 1758(1996).
    [22]. Perdew, J. P. Chevary, J. A.; Vosko, S. H., Jackson, K. A.; Pederson, M. R.; Singh, D. J. Fiolhais, C.Phys. Rev. B 46, 6671(1992).
    [1]. S. F. Huang,T. C. Leung,Bin Li,C. T. Chan, Phys. Rev. B 72, 035449(2005).
    [2]. Bin Li,T. C. Leung,C. T. Chan, Journal of Computational and Theoretical Nanoscience 3, 1-8(2006).
    [3]. Masaaki Araidai,Yasuhiro Nakamura,Kazuyuki Watanabe, Phys. Rev. B 70, 245410(2004).
    [4]. K. Tada,K. Watanabe, Phys. Rev. Lett. 88, 127601(2002).
    [5]. Shuanglin Hu, A dissertation for doctor’s degree, 57-78(2009).
    [6]. Binghai Yan, Changwon Park, Jisoon Ihm, Gang Zhou, Wenhui Duan, and Noejung Park, J. AM. CHEM. SOC. 130, 17012-17015(2008).
    [7]. C.Q. Qu, L. Qiao, C. Wang, S.S. Yu, W.T. Zheng, Y.Z. Fu, Q. Jiang, Solid State Communications 146, 399–402(2008).
    [8]. Vincent Meunier, Christopher Roland, and J. Bernholc, Marco Buongiorno Nardelli, Appl. Phys. Lett. 81, 46 (2002).
    [9]. J.-C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia,N. L. Rupesinghe, W. K. Hsu, N. Grobert, H. Terrones, and G. A. J. Amaratunga, Nano Letters, 2 (11), 1191–1195(2002).
    [10]. Guihua Chen, Zhibing Li et al, J. Phys. Chem. C, 111, 4939-4945(2007).
    [11]. Golberg, D. Bando, Y. Kurashima, K. Sato, T. Scripta Mater, 44, 1561(2001).
    [12]. Chen, Y. Zou, J. Campbel, S. J.; Caer, G. L, Appl. Phys. Lett. 84, 2430(2004).
    [13]. Kresse, G. Hafner, J. Phys. Rev. B 47, 558(1993).
    [14]. Blochl, P. E. Phys. Rev. B 50, 17953(1994).
    [15]. Kresse, G. Joubert, D. Phys. Rev. B 59, 1758(1996).
    [16]. Perdew, J. P. Chevary, J. A.; Vosko, S. H., Jackson, K. A.; Pederson, M. R.; Singh, D. J. Fiolhais, C.Phys. Rev. B 46, 6671(1992).
    [17]. A. G. Rinzler, J. H. Hafner, P. Nikolaev, P. Nordlander, D. T. Colbert, R. E. Smalley , L. Lou, S. G. Kim, D. Tománek, science 269,1550(1995).
    [18]. Shoushan Fan, et al, science 283, 512 (1999).
    [19]. J. Cumings, A Zettl, Solid State Commun 129 ,661(2004).
    [20]. Rubio, A. Corkill, J. L. Cohen, M. L. Phys. Rev. B, 49,5081(1994).
    [21]. Blase, X. Rubio, A. Louie, S. G. Cohen, M. L. Europhys.Lett., 28, 335(1994).
    [22] R. H. Fowler and L. Nordheim, Proc. R. Soc. A 119, 173(1928).
    [23] See, e.g., C. D. Ehrlich and E.W. Plummer, Phys. Rev. B 18, 3767 (1978)
    [24] Bin Li, T. C. Leung, C. T. Chan, Phys. Rev. Lett. 97, 087201 (2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700