聚乙二醇吸收氮氧化物原理及氧气间接氧化含金氰化尾渣技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝酸生产和使用行业会产生高浓度氮氧化物,氮氧化物对环境的危害不可小视。氮氧化物本身具有很强的氧化性,通过合适方法将其作为氧化剂加以利用,既可以减少污染又可将其作为一种资源。
     氰化尾渣中含金量约2.2g/t,对其进行适当的预处理,氧化去除掉包裹在金颗粒外围的黄铁矿,使金颗粒裸露出来,有利于进一步氰化提金。并且氰化尾渣中含有大量有价金属,可以采用适当的方法提取氰化尾渣中的有价金属,达到资源有效利用的目的。
     本课题在三相循环流化床中催化氧化高硫高砷难选冶金精矿和氰化尾渣原有研究的基础上,提出在氧气存在条件下使用聚乙二醇300(PEG-300)吸收NO2,并用吸收产物PEG·NO2预处理含金氰化尾渣。由于NO2吸收过程中O2是必不可少的,足量的O2使得NOx全部转化为NO2,PEG·NO2在氧化氰化尾渣时,NO:的氧化性起作用,整个过程相当于用O2间接氧化氰化尾渣。采用合适的方法回收PEG,实现PEG的重复使用。通过紫外可见光谱分析和红外光谱分析PEG吸收NO2的机理,发现PEG吸收NO2经历三个阶段:首先NO2以游离态吸附于PEG液膜外部,进而,NO2进入PEG液膜以内与PEG分子形成亚硝酸酯,随之,亚硝酸酯结构逐渐变为非常稳定的硝酸酯结构。
     实验研究发现PEG-300与水混合时,即便仅有少量PEG存在,相比仅用水吸收NO2,吸收效率高很多。文献资料和实验结果都表明,高于60℃时水很难吸收NO2,而加入少量PEG以后,即使是60℃时依然可以很好的吸收NO2。
     PEG吸收NO2得产物PEG·NO2, PEG·NO2稳定且具有温和的氧化性。PEG·NO2作为氧化剂预处理含金氰化尾渣,考察了搅拌速率、反应温度、反应时间、氧化剂用量对预处理效果的影响。实验发现,当矿浆浓度为100g/L,搅拌速率为150r/min,反应温度为70℃,反应时间为1.5h,氧化剂用量为110mL时,氰化尾渣中铁的浸出率达到92%。此反应条件所得氧化渣进行二次电子扫描和X射线面扫描分析,发现PEG·NO2预处理之后得到的氧化渣硫和铁含量明显降低,表明黄铁矿的晶体结构被破坏,已经被氧化去除。
     委托中原黄金冶炼厂对在上述条件所得样品做氰化提金实验,在液固比5:K、pH=9-10、NaCN用量:2.0-3.0g/L、氰化时间为24h的实验条件下进行氰化提金实验,氰化尾渣提金率从66.44%提高到99.25%。可见该工艺有效提高氰化提金率。
     收集预处理之后的酸浸液,用1:1氨水调节其pH,将酸浸液中金属离子以氢氧化物沉淀形式去除。将酸浸液pH调至6.8,常温条件下搅拌反应30min,离心过滤,此时得到的上清液含金属量最少。将上清液采用减压蒸馏去除掉水分,即回收得到PEG。用回收得到的PEG进行NO2吸收实验。实验表明:回收所得PEG同样可以高效的吸收NO2。用吸收产物预处理氰化尾渣,发现在同样的条件下,回收PEG吸收NO2所得产物同样可以高效率的氧化预处理氰化尾渣。
     最后,提出并设计PEG吸收NO2及其产物预处理含金氰化尾渣的工艺方案,并对该方案进行技术、环保、经济可行性分析,有利于拓宽氰化尾渣综合回收的思路。
During the industrial production process and application of nitric acid,it will generate high concentrations of nitrogen oxides, and nitrogen oxides are harmful to environment which can not be discounted. Nitrogen oxide itself is a very strong oxidiative material. It has great potential to utilize this oxidant to reduce pollution by appropriate method.
     Cyanide tailings contain about 2.2g of gold per ton. Pretreatment of cyanide tailings is benefit to gold extraction. The cyanide tailings contain a large number of valuable metals.To effective utilization of resources, it's important to extract the valuable metals in cyanide residues by appropriate method.
     With access to a large number of literatures and previous works on this project, we have proposed to use PEG-300 to absorb NO2 in the presence of oxygen. The products PEG-NO2 are used to pretreat cyanide gold tailings, appropriate method was used to recover and reuse PEG. We have studied the mechanism of PEG absorption of NO2 by UV-visible spectroscopy and infrared spectroscopy. The results demonstrated that there are three stages in the process of adsorption of NO2:first, the free state NO2 was adsorbed on the PEG film surface; Then, NO2 passed through the film and formed nitrous acid ester with PEG; Finally, the structure gradually changed to a very stable structure, nitric acid ester.
     Experimental study showed that the adsorption efficiency was much higher when using the mixture of PEG-300 and water, only if a little PEG was present, compared with using water without PEGLiterature and experimental results both showed that NO2 was difficult to assimilate by water when the temperature was above 60℃. But adding a little PEG, even it is 60℃, it still have high adsorption efficiency to NO2.
     NO2 was absorbed by PEG, and formed PEG-NO2, which was stable and has a mild oxidation. In the pretreatment of gold cyanide residues using PEG-NO2 as oxidants, the effects of experimental parameters have discussed. Various operation parameters were investigated, such as stirring rate, reaction temperature, reaction time and oxidant dosage. The results showed that when the concentration of slurry was 100 g/L, stirring rate was 150 r/min, the reaction temperature was 70℃, reaction time was 1.5 h, and oxidant dosage was 110 mL, the cyanide leaching of iron tailings up to 92%. Through second electronic scanning and X-ray surface scanning, it is showed that after pretreatment the sulfur and iron content was greatly decreased, and the relevance of iron and sulfur was lower compared with cyanide tailings. It was indicated that the pyrite crystal structure was destroyed and oxidized.We request Zhongyuan Gold Smelter to do experiments of cyanide gold, under the condition of the liquid-solid ratio 5:1,pH=9-10, NaCN dosage:2.0-3.0 g/L, cyanide time for 24h,gold extraction rate increased from 66.44%to 99.25%, indicating that this technology can effectively improve the rate of cyanide gold extraction.
     The acid filtrate was collected, and we adjust its pH using ammonia with volume ratio 1/1 to remove metal ions in the form of hydroxide precipitation. The pH of acid filtrate was adjusted to 6.8, and stirring for 30 min under room temperature.After centrifugation, the supernatant which obtains the least amount of metal was vacuum distillation to recycle PEG. The experimental results showed that recovered PEG can also be used to adsorb of NO2 with high efficiency. We found that, in the same conditions, the absorption product can also be highly efficient oxidation of cyanide tailings.
     Finally, we design the program that uses product of PEG absorption NO2 to pretreatment gold cyanide tailings. The program of technical, environmental, economic feasibility analysis will help to broaden the ideas of comprehensive recovery of cyanide tailings.
引文
[1]吴晓青.我国大气氮氧化物污染控制现状存在的问题与对策建议[J].中国科技产业,2009,(8):13-16.
    [2]何小荣,周锦.高浓度氮氧化物的测定方法[J].石油化工应用,2009,28(1):90-92.
    [3]曹忠宇.含氮氧化物(NOx)工业废气治理.石油化工环境保护,1999,(1):47-51.
    [4]熊振湖,费学宁,池勇志等.大气污染防治技术及工程应用.北京:机械工业出版社,2003.7:218-222.
    [5]Bradford M., Grover R., Paul P. Controlling NOx emissions part 1, Chemical Engineering Progress,2002,98(3):38-46.
    [6]高冠帅.我国氮氧化物综合治理概述[J].科协论坛(下半月),2009,(2):120.
    [7]吴忠标.大气污染控制技术.北京:化学工业出版社,2002,244-245.
    [8]郭玉峰.硝酸工业装置尾气中氮氧化物的治理方法.气体净化,2008,8:148-149.
    [9]林丽晖.韶关冶炼厂银电解氮氧化物治理实践[J].有色金属,2005,57(1):82-83.
    [10]曹美藻.碳基型催化剂治理咖啡因车间高浓度NOx废气的应用试验[J].环境污染与防治,1988,(6):26-27.
    [11]陈杰,金龙哲,杨佩昌.利用无泵水幕废气净化器治理高浓度NOx的工程实践[J].环境污染治理技术与设备,2004,5(1):85-87.
    [12]张敏,韩海波.草酸市场及生产技术现状[J].贵州化工,1999,(3):23-27.
    [13]阮复吕,范娟,黄国水.各种草酸生产工艺的对比及我国草酸工业的现状[J].广东化工,1997,(5):14-17.
    [14]梁耀开,邓毛程.甘蔗渣制取草酸工艺试验研究[J].甘蔗糖业,2009,(5):47-50.
    [15]吴晓青.我国大气氮氧化物污染控制对策.环境保护,2009,(2):9-11.
    [16]童志权.工业废气净化与利用[M].北京:化学工业出版社,2001.
    [17]郭印诚,林文漪,周力行.煤粉燃烧过程中NOx生成的数值模拟[J].燃烧科学与技术,1998,4(1):18-22.
    [18]Fenimore C P.Formation of Nitric Oxide from Fuel Nitrogen in Ethylent
    Flames[J].Combustion and Flame,1972,19(2):289-296.
    [19]熊蔚立,黄伟.火电厂氮氧化物(NOx)的危害和防治.湖南电力,2002,22(2):61-62.
    [20]李鹏,刘有智,李裕,康荣灿,刁金祥,焦纬洲.超重力技术治理火炸药行业氮氧化物的初步研究[J].环境污染与防治,2007,(7):545-551.
    [21]ECONOM IDISN V, DONOVAN A. Comparison ofT iO2 based oxide catalysts for the selective catalytic reduction of NO:effect of aging the vanadium precursor solution [J]. Applied Catalys is B:Environmental 1999,23:123-134.
    [22]LONG R Q, YANG R T. Selective catalytic reduction of NO with ammonia overV2O5 doped 2 pillared clay catalysts[J]. Applied Catalysis B:Environmental 2000,24:13-21.
    [23]WANG J, HEH. Selective catalytic reduction of NOx with C3H6 over an Ag/Al2O3 catalyst with a small quantity of noble metal[J]. Catalyst is Today,2004,93/95:783-789.
    [24]KESHAVARAJA A, SHEX, Flytzani-Stephanopoulosm. Selective catalytic reduction of NO with methane over Ag-alumina catalysts[J]. Applied Catalyst is B:Environmental 2000,27: 1-9.
    [25]Xiao Chunlu, Da iel Rothstein, Richard Madet, et al. Pressure swing adsorption for a system with a langmuirisotherm [J]. Separation Science and Technology,1988,23, (4/5):281-291.
    [26]唐鉴,李贵贤,董宇航,赵方平.吸附脱除氮氧化物的研究进展.石化技术与应用,2009,27(4):370-374.
    [27]DM ITRI B LUKYANOV, LOMBARDO E A. Selective Catalytic Reduction(SCR) of NO with methane over CoZSM-5 and HZSM-5 Zeolites:on the role of free radicals and competitive oxidation reactions [J]. Journal of Catalyst is,1996,163:447-456.
    [28]CasapuM, Grunwaldt J D, M aciejewskiM, et al. Comparative study of structural properties and NOx storage-reduction behavior of P t/Ba/CeO2 and Pt/Ba/Al2O3 [J]. Applied Catalysis: Environmental,2008,78(4):288-300.
    [29]彭浩,张晓云.我国氮氧化物治理技术的现状和研究进展[J].广东化工,2009,36(12):83-85.
    [30]祝天熙.硝酸尾气治理方法探讨.陕西化工,1997(9):8-10.
    [31]Robert W Hemquist. SCR Tackles NOx and ammonia despite high NOx dust and SOx loading, Chem.Res.,2001,108(2):95-99.
    [32]劳善根,王凯雄.日本燃煤烟气中NOx处理技术[J].广州环境科学,2000,15(2):5-8.
    [33]郁华星.选择性催化还原法在NOx废气处理中的应用[J].上海化工,2002,(15):30-31.
    [34]杜雅丽.选择性催化还原法脱硝控制系统论述[J].山西电力,2009,(152):121-125.
    [35]任俊革,谭欣,赵林.Ti02光催化转化NOx的研究进展[J].天津理工学院学报,2003,19(4):3-17.
    [36]粱基照.含NOx烟气的净化技术[J].广州环境科学,2000,15(4):5-8.
    [37]管一明,张伯溪,关越.选择性非催化还原法烟气脱氮氧化物工艺[J].电力环境保护,2006,22(4):15-19.
    [38]祝百东.SNCR烟气脱硝技术的实验研究[D].硕士论文,哈尔滨工业大学,2006.
    [39]顾永祥等.氢氧化钠水溶液吸收氧化氮传质—反应过程.高校化学工程学报,1990,4(2):157.
    [40]张玉和.氮氧化物气体的治理.化工环保,1985,5(2):121.
    [41]吴无恙等.喷射吸收治理NOx、SO2、HC1废气.流体工程,1988:46.
    [42]荣桂安,林志祥.纯碱液喷射吸收高浓度NO和NO2混合气体的研究.化学反应工程与工艺,1990,6(3):74-82.
    [43]周轲.利用废氨水预处理尾气中NOx的探讨.中氮肥,1990,6:79-81.
    [44]Smadani G. Mierobes nosh on NOx in flue gas.Chem.Eng,1993,100(10):25.
    [45]柳清华.简述选择性催化还原法(SCR)烟气脱硝技术[J].锅炉制造,2008,(3):42-43.
    [46]王海强,吴忠标.烟气氮氧化物脱除技术的特点分析.能源工程,2004(3):27-30.
    [47]黄毅.生物法净化工业废气的研究进展[J].重庆文理学院学报(自然科学版),2009,28 (1):77-84.
    [48]郭斌,马一太,任爱玲,王晓辉.生物法净化含NOx尾气的研究[J].环境工程,2003,21(2):37-39.
    [49]BarnesJM, Apel W A. Barrett K B. Removal of nitrogen oxides from gas streams using biofiltration. J.Hazard.Mater.1995,41:315-326.
    [50]Apel W A. Biofilter for removal of nitrogen oxides from contaminated gas under aerobic conditions.USPatent5795751,1998-04-18.
    [51]蒋文举,毕列锋,李旭东.生物法废气脱硝研究.环境科学,1999,20(3):34-37.
    [52]PiacentiniM, MaciejewskiM, Baiker A. NOxstorage-reduction behavior of Pt- Ba/MO2(MO2 =SiO2, CeO2, ZrO2) catalysts[J]. Applied Catalysis B:Environmental,2007,72 (11):105-117.
    [53]PIO FORZATTI. Present status and perpectives in de-NOx SCR catalysis[J]. Applied Catalysis A:General,2001,222:221-236.
    [54]杨省身.用草酸尾气中的氮氧化物制浓硝酸[J].兰化科技,1997,15(3):161-165.
    [55]用氢型丝光沸石回收环己醇氧化中氮氧化物的试验报告[J].上海化工,1975,(1):10-14.
    [56]王劲寒,王少华,邵英贵.二元酸装置氮氧化物废气的转化回收[J].化工生产与术,2008,15(5):53-55.
    [57]张青枝,鲁富贵,华国雄,杨玉杰,张深松.硝酸氧化环己醇制备己二酸过程中NOx废气的治理和回收利用[J].河南师范大学学报(自然科学版),1994,22(3):41-43.
    [58]吴忠标,唐念,刘越,盛重义,王海强.利用氯化钠治理烟气氮氧化物并回收亚硝酸盐的系统[Z].CN101428195:2009.
    [59]何小荣,吴海霞,伍家卫,杨兴锴.硝基苯生产中高浓度NOx尾气的处理方法研究[J].兰州石化职业技术学院学报,2008,8(4):5-8.
    [60]硝酸氧化淀粉水解液制备草酸过程中NOx的回收利用[J].精细化工,2008,8(4):5-8.
    [61]Ma L F, Tong Z Q, Li Q W. Removal of NOx from flue gas with aqueous solutions of ferrouschelates[J]. Techniques and Equipment for Environmental Pollution Control,2004,5(8): 67-71.
    [62]Sada E, Kumazawa H. Chemical reaction accompanying absorption of NO in aqueous mixed solutions of Fe2+EDTA and Na2SO3 [J].Ind Eng Chem Fundam,1984,23:60-64.
    [63]Sada E, Kumazawa H. A kinetic study of absorption of NO into aqueous solutions of Na2SO3 with added Fe2+EDTA [J].Ind Eng Chem Fundam,1986,25:386-390.
    [64]Litt lejohn D, Chang S G. Reaction of ferrous chelat nitrosyl complexes with sulfite and bisulfite ions [J]. Ind Eng Chem Res,1990,29:10-14.
    [65]Chang S G, Litt lejohn D. Use of ferrous chelates of SH2containing amino acids and peptides for the removal of NOx and SO2 from flue gas[J].Ind Eng Chem Res,1988,27: 2156-2161.
    [66]马乐凡,童志权,张俊丰.液相络合2铁粉还原2酸吸收回收法脱除烟气中NOx的机理研究[J].环境科学学报,2005,25(5):637-642.
    [67]Zhang Shensong et al. Studies of TBP-NOx-A new oxidizing agent prepared from nitrogen oxides. Chinese Chem. Lett.,1992,3(11):877.
    [68]张青枝,范学森,张深松,张新迎.PEG对NO2的吸收及其吸收产物的氧化性能[J].环境科学,1998,1:76-79.
    [69]严瑞渲,鲍其鼐.聚乙二醇(上)广州化工,1984(3):43-50.
    [70]严瑞渲,鲍其鼐.聚乙二醇(下)广州化工,1984(4):27-35.
    [71]汪多仁.聚乙二醇的应用与合成进展[J].化学工业与工程技术,2000,21(5):21-23.
    [72]陈庆春,邓慧宇,马燕明.聚乙二醇在新材料制备中的作用及其机理.日用化学工业,2002,32(5):35-37.
    [73]范学森,张新迎,张深松PEG-NO2对醚的氧化性能研究[J].化学通报,2000,10:39-40.
    [74]张力先.氰化提金 艺的最新进展[J].黄金学报,2001,3(2):124-129.
    [75]高俊峰,李晓波.我国氰化尾渣的利用现状[J].矿业工程,2005,3(4):38.
    [76]JL,I DabrowskiB, Miller JD,etal. The influence of Pyrite Pre-oxi-dation on gold recovery by cyanidation[J]. Minerals Engineering,2006,(19):883-895.
    [77]杨振兴.难处理金矿石选冶技术现状及发展方向[J].黄金,2002,23(7):31-35.
    [78]DescostesM, VitorgeP, Beaucaire C. Pyrite dissolution in acidicmedia[J].Geochimica Cosmochimica Acta,2004,68(22):4559-4569.
    [79]朱磊,康广凤,李淑芬,楚宪锋,吴向阳.氰化尾渣多元素资源化回收技术研究[J].环境科技,2010,23(2):5-11.
    [80]郑哗,冯国臣,邹积贞.大水清金矿氰化尾渣综合回收利用研究[J],黄金,1998,1:43.
    [81]梁冠杰.河南某氰化尾渣中有价金属的综合回收[J].矿产综合利用,2001,(3):35-37.
    [82]林海,营小东.氰化尾渣的综合利用.矿产综合利用[J],1998,(4):4-6.
    [83]伍冯肇.金精矿氰化尾渣回收铜的研究与实践[J].有色金属,2002(1):17-19.
    [84]张国刚,赵志新,高金昌.金精矿氰化尾渣回收铜的生产实践[J].黄金,2001,22(3):37-39.
    [85]薛光,于永江.加压氧化-氰化浸出法从氰化尾渣中回收金[J].矿产综合利用,2004(6):47-48.
    [86]邝金才.氰化尾渣综合回收有价元素初探[J].黄金科学技术,2003,11(4):17-21.
    [87]石同吉.氰化尾渣综合回收有价金属的研究与实践[J].金属矿山,2002(3):39-41.
    [88]林海,菅小东.氰化尾渣的综合利用[J].矿产综合利用,1999(4):4-6.
    [89]何柱生.提金废渣的综合利用[J].宝鸡文理学院报(白然科学版),1995(2):40-44.
    [90]林海.氰化尾渣回收铜、金、银的研究[J].矿产保护与利用,1998(4):44-6.
    [91]楚宪峰,朱磊,吴向阳等.氰化尾渣资源化应用的清洁生产技术研究[J].环境科学研究,2008,21(6):72-75.
    [92]姬冲.氰化尾渣提金及制备铁红的研究[D].硕士论文,山东科技大学,2005.
    [93]Sparrow GJ Woodcock J T, Cyanide and other Lixiviant Leaching systems for Gold with some Practical Applications [J].Mineral Processing and Extractive Metallurgy Review,1995, (14):193-47.
    [94]谷晋川,刘亚川.难浸金金矿微波预处理研究[J].有色金属,2003,55(2):55-56.
    [95]崔永霞,沈艳.难处理金矿石提炼技术研究进展[J].黄金科学技术,2007,15(3):53-56.
    [96]李育林,伍赠玲等.高硫高砷金精矿细菌氧化-氰化浸金实验研究[J].湿法冶金,2005,24(2):73-76.
    [97]杨遇春.用生物氧化法处理难浸金矿[J].现代化工,1997,(1):36-38
    [98]P·C·范阿斯维根,宋峻,黎孜.用生物氧化法改进难选金矿石的处理[J].国外金属矿选矿,2000,(6):10-16.
    [99]Simmons GL. Mineral and Metallurgical Processing[M].1994,286-289.
    [100]郭凯琴等.过氧化氢氧化预处理高硫高砷难选金精矿的试验研究[J].矿冶工程,2008,28(6):37-40.
    [101]翟毅杰.臭氧催化氧化预处理氰化尾渣的研究[D].硕士论文,东华大学,2010.
    [102]G. Van Weet, K.J.Fair, V.H.Aprahamian,2nd International gold conference,1988,11, Canada.
    [103]G. Van Weet, K.J.Fair, J.C.Schneider,88th Annual General Meeting of CIM.,1986,5, Canada.
    [104]Morris J. Beattie, Graham Balderson. International gold conference,1998, Austrialia.
    [105]鄢祖喜.在三相流化床中NOx全循环催化氧化预处理氰化尾渣的试验研究[D].硕十论文,东华大学,2010.
    [106]高俊峰,李晓波.我国氰化尾渣的利用现状[J].矿业工程,2005,3(4):38-39.
    [107]王正熙.聚合物红外光谱分析与鉴定[M].成都:四川大学出版社,1989.
    [108]Francis M, Mirabella J R. Appl. Spectrosc. Rev,1985,21:45.
    [109]W.G. Whitman, The Two-Film Theory of absorption, Chem. Met.Eng.1923(29):147-149.
    [110]P. V. Danckwerts. Significance of Liquid-Film Coefficients in Gas Absorption. lnd. Eng. Chem.,1951,43 (6):1460-1467.
    [111]王宇婷,高霞,张深松.NO2氧化合成丙酸乙酯[J].化学试剂.2006,28(9):559-560,562.
    [112]姜信真,化学反应工程学简明教程.西安:西北大学出版社,1987.
    [113]闫永娟,亚硝酸乙酯再生反应工艺及动力学研究[D].硕十论文,天津大学,2008.
    [114]张力先.氰化提金工艺的最新进展[J].黄金学报,2001,3(2):124-129.
    [115]邝金才,姚香.国内金精矿氰化提金技术现状[J].有色矿冶,2003,19(2):16-21
    [116]石同吉.氰化提金技术发展现状评述[J].黄金科学技术,2001,9(6):22-28.
    [117]朱利凯.关于液相催化法的洗塔水中回收聚乙二醇(PEG-400)溶剂的探讨[J].石油与天然气化工,1980,(1):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700