铁磁、肖特基金属和半导体复合纳米结构中的电子自旋过滤
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自旋电子学是一门新兴的交叉学科,其主旨是对固态系统中的自旋自由度进行有效的操作和调控,将自旋自由度和半导体工艺相结合制造新型的自旋电子器件。利用电子的自旋来制造自旋电子器件的前提条件是使半导体中的电子发生自旋极化以及半导体纳米结构中电子自旋的限域和输运。本论文将就铁磁、肖特基金属和半导体复合纳米结构中电子的自旋输运问题在理论上作较为深入、系统的研究。
     全文共五章。第一章为绪论部分,简要介绍了自旋电子学的研究领域,主要包括实验上和理论上需要解决的重大问题,目前的研究进展以及在半导体仪器方面的应用前景等。然后,介绍磁调制半导体纳米结构的制备及磁调制半导体纳米结构中电子自旋输运的研究动态。
     第二章我们研究了由Guo等人提出的自旋过滤器中,器件的结构参数(如铁磁条带的宽度和厚度,肖特基金属条带的宽度,两条带之间的间距等)对电子自旋过滤性质的影响。该自旋过滤器可以通过在半导体异质结表面上沉积纳米尺度的铁磁条带和肖特基金属条带来实现。研究表明,电子的自旋过滤特性与铁磁条带和肖特基金属条带的结构尺度及位置密切相关,因此该器件中存在量子尺寸效应。此外,我们的研究还发现,电子的自旋极化率会随着电垒高度(由施加在肖特基金属条带上的电压产生)的变化剧烈变化。因此可以通过调节施加在肖特基金属条带上的电压来调控该自旋过滤器中电子的自旋极化行为。
     第三章,在前一章的基础上研究了偏压对该自旋过滤器中电子自旋极化特性的影响。研究结果显示,偏压不仅能明显改变电子的自旋极化率而且还能使自旋极化的符号发生变化。因此可以通过调节施加在该器件上的偏压来调控该器件中电子的自旋极化率,制造一个偏压可调的电子自旋过滤器。
     第四章中,我们通过在前面的自旋过滤器上再沉积一条铁磁条带,对该自旋过滤器进行了进一步优化,提出了另一个电子自旋过滤器,同时在该器件上施加偏压,探究了偏压对该器件中电子自旋极化特性的影响。研究发现,该自旋过滤器中电子的自旋极化率与偏压密切相关。这一结果暗示人们可以通过调节施加在该器件上的偏压来改变电子的自旋极化率,这对制作偏压可调的电子自旋过滤器十分有益。
Spintronics is a multidisciplinary field whose central theme is the active manipulation of spin degrees of freedom in solid-state systems, and make useful spintronics devices using the spin degrees of freedom and semiconductor technology. The realization of the spintronics devices, a very important requirement is the realization of spin-polarized electrons into semiconductors, as well as confinement of electron spins and transport of spin-polarized electrons in semiconductor nanostructures. In this thesis, we present systematically the theoretical investigation of the spin-dependent electron transport in ferromagnetic-Schottky-stripe and semiconductor nanostructures.
     The thesis is made up of five chapters. Chapter one is an introduction, in this part, we first introduces the spintronics including major problems that need to resolve both in experiment and theory, some established results, and potential applications to electronic devices. We then introduce the preparation of magnetically modulated semiconductor nanostructures and present some published results on the electron-spin filter in this kind of nanostructures.
     In chapter two, we study the effect of structural parameters on electron-spin polarization in a spin filter proposed by Guo et al., which can be realized by depositing nanosized ferromagnetic metal stripe and Schottky normal metal stripe on the top of the semiconductor heterostructure. It is shown that the spin polarization is dependent greatly on the sizes and position of the stripes. Thus, a quantum size effect exists in this device. It is also shown that the spin polarization can be altered by adjusting the voltage applied to the Schottky normal metal stripe, and thus one can control spin-polarized electrons by adjusting this applied voltage on the Schottky normal metal stripe of the system.
     In chapter three, based on the previous chapter, we investigated the effect of the bias on the spin polarization in the same spin filter. It is shown that not only the amplitude of the spin polarization but also its sign varies with the bias. Thus, the spin filtering in this device can be controlled via the bias, giving rise to a bias-tunable spin filter.
     In chapter four, a spin filter will be realized by depositing nanosized ferromagnetic metal stripe, Schottky normal metal stripe and ferromagnetic metal stripe on the top of the semiconductor heterostructure. We study the effect of the bias on the spin-dependent transport properties of electrons in this spin filter by adding bias on this device. It is shown that the spin polarization of this spin filter is closely related to the applied bias. These interesting properties tell us that we can change the spin polarization of the electrons by altering the voltage applied to the device, and it is very valuable to make a bias-tunable electron-spin filter.
引文
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S von, Roukes M L, Chtchelkanova A Y, and Treger D M. Spintronics: a spin-based electronics vision for the future[J], Science, 2001, 294:1488-1495.
    [2] Abragam A. The Principles of Nuclear Magnetism[M], Oxford University Press, London, 1961.
    [3] Slichter C P. Principles of Magnetic Resonance[M], Springer, Berlin, 1989.
    [4] Esaki L, Stiles P, and Molnar S von. Magnetointernal Field Emission in Junctions of Magnetic Insulators[J], Phys. Rev. Lett., 1967, 19:852-854.
    [5] Moinar S von, and Methfess S. Giant Negative Magnetoresistance in Ferromagnetic Eu1?xGdxSe[J], J. Appl. phys., 1967, 38:959-964.
    [6] Kasuya T, and Yanase A. Anomalous Transport Phenomena in Eu-Chalcogenide Alloys[J], Rev. Mod. Phys., 1968, 40:684-694.
    [7] Moodera J S, Hao X, Gibson G A, and Meservey R. Spin-filter effect of ferromagnetic europium sulfide tunnel barriers[J], Phys. Rev. B, 1988, 42:8235-8243.
    [8] Moodera J S, Meservey R, and Hao X. Variation of the electron-spin polarization in EuSe tunnel junctions from zero to near 100% in a magnetic field[J], Phys. Rev. Lett., 1993, 70:853-856.
    [9] Hu G C, Guo Y, Wei J H, and Xie S J. Spin filtering through a metal /organic-ferromagnet/metal structure[J], Phys. Rev. B, 2007, 75:165321(1-6).
    [10] Lüders U, Bibes M, Bouzehouane K, Jacquet E, Contour J P, Fusil S, Bobo J F, Fontcuberta J, Barthélémy A, and Fert A. Spin filtering through ferrimagnetic NiFe2O4 tunnel barriers[J], Appl. Phys. Lett., 2006, 88:082505-082507.
    [11] Lüders U, Bibes M, Fusil S, Bouzehouane K, Jacquet E, Sommers C B, Contour J P, Bobo J F, Barthélémy A, Fert A, and Levy P M. Bias dependence of tunnel magnetoresistance in spin filtering tunnel junctions: Experiment and theory[J], Phys. Rev. B, 2007, 76:134412-134421.
    [12] Efros A L, Rashba E I, and Rosen M. Paramagnetic Ion-Doped Nanocrystal as a Voltage-Controlled Spin Filter[J], Phys. Rev. Lett., 2001, 87:206601-206604.
    [13] Gilbert M J, and Bird J P. Application of split-gate structures as tunable spin filters[J], Appl. Phys. Lett., 2007, 77:1050-1052.
    [14] PaPp G, and Peeters F M. Spin filtering in a magnetic–electric barrier structure[J], Appl. phys. Lett., 2001, 78:2184-2186.
    [15] Egues J C, Gould C, Richter G, and Molenkamp L W. Spin filtering and magnetoresistance in ballistic tunnel junctions[J], phys. Rev. B, 2001, 64:195319-195323.
    [16] Hayashi T, Tanaka M, and Asamitsu A. Tunneling magnetoresistance of a GaMnAs-based double barrier ferromagnetic tunnel junction[J], J. Appl. Phys., 2000, 87:4673-4675.
    [17] Folk J A, Potok R M, Mareus C M, and Umansky V A. Gate-Controlled Bidirectional Spin Filter Using Quantum Coherence[J],Science, 2003, 299:679-682
    [18] Sols F, Macucci M, Ravaioli U, and Hess K. On the possibility of transistor action based on quantum interference phenomena[J], Appl. Phys. Lett., 1989, 54:350-352.
    [19] Wang X F, Vasilopoulos P, and Peeters F M. Ballistic spin transport through electronic stub tuners: Spin precession, selection, and square-wave transmission[J], Appl. Phys. Lett., 2002, 80:1400-1402.
    [20] Wang X F, and Vasilopoulos P. Spin-dependent transmission of holes through periodically modulated diluted magnetic semiconductor waveguides[J], Appl. Phys. Lett., 81:1636-1638.
    [21] Kiselev A A, and Kim K W. T-shaped ballistic spin filter[J], Appl. Phys. Lett., 2001, 78:775 -777.
    [22] Cummings A W, Risk R, and Ferry D K. Electron spin filter based on Rashba spin-orbit coupling[J], Appl. Phys. Lett., 2006, 89:172115(1-3).
    [23] Feng X Y, Jiang J H, and Weng M Q. Remote-control spin filtering through a T-type structure[J], Appl. Phys. Lett., 2007, 90:142503(1-3).
    [24] Ciuti C, MeGuire J P, and Sham L J. Spin Polarization of Semiconductor Carriers by Reflection off a Ferromagnet[J], Phys. Rev. Lett., 2002, 89:156601(1-4).
    [25] Volskoboynikov A, Liu S S, and Lee C P. Spin-dependent tunneling in double-barrier semiconductor heterostructures[J], Phys. Rev. B, 1999, 59:12514-12520.
    [26] Volskoboynikov A, Liu S S, Lee C P, and Tretyak O. Spin-polarized electronic current in resonant tunneling heterostructures[J], J. Appl. Phys., 2000, 87:387-391.
    [27] Erasmo A, Silva de Andrada e and La Rocca G C. Electron-spin polarization by resonant tunneling[J], Phys. Rev. B, 1999, 59:R15583-R15585.
    [28] Chiou J W, Yueh C L, Jan J C, Tsai H M, and Pong W F. Electronic structure of the carbon nanotube tips studied by x-ray-absorption spectroscopy and scanning photoelectron microscopy[J], Appl. Phys. Lett., 2002, 81:4189-4191.
    [29] Pere? V I, Tarasenko S A, Yassievich I N, Ganichev S D, Be?kov V V, and Prettl W. Spin-dependent tunneling through a symmetric semiconductor barrier[J], Phys. Rev. B, 2003, 67:201304(1-3).
    [30] Koga T, Nitta J, Datta S, and Takayanagi H. Spin-Filter Device Based on the Rashba Effect Using a Nonmagnetic Resonant Tunneling Diode[J], Phys. Rev. Lett.,2002, 88:126601(1-4).
    [31] Recher P, Sukhorukov E V, and Loss D. Quantum Dot as Spin Filter and Spin Memory[J], Phys. Rev. Lett., 2000, 85:1962-1965.
    [32] Ransson J, Holmstr?m E, Eriksson O, and Sandalov I. Theory of spin filtering through quantum dots[J], Phys. Rev. B, 2003, 67:205310(1-6).
    [33] Deshmukh M M, and Ralph D C. Using Single Quantum States as Spin Filters to Study Spin Polarization in Ferromagnets[J], Phys. Rev. Lett.,2002, 89:266803(1-4).
    [34] Borda L, Zaránd G, Hofstetter W, Halperin B I, and Delft J von. SU(4) Fermi Liquid State and Spin Filtering in a Double Quantum Dot[J], Phys. Rev. Lett., 2003, 90:026602(1-4).
    [35] Governale M, Boese D, Zülicke U, and Schroll C. Filtering spin with tunnel-coupled electron wave guides[J], Phys. Rev. B, 2002, 65:140403(1-4).
    [36] D. Frustaglia, M. Hentschel, and K. Richter. Quantum Transport in Nonuniform Magnetic Fields: Aharonov-Bohm Ring as a Spin Switch[J], Phys. Rev. Lett., 2001, 87:256602(1-4).
    [37] Joshi S K, Sahoo D, and Jayannavar A M. Aharonov-Bohm oscillations and spin-polarized transport in a mesoscopic ring with a magnetic impurity[J], Phys. Rev. B, 2001, 64:075320(1-6).
    [38] Popp M, Frustaglia D, and Ritcher K. Spin filter effects in mesoscopic ring structures[J], Nanotechnology, 2003, 14:347-351.
    [39] Hanson R, Vandersypen L M K, Willems van Beveren L H, Elzerman J M, Vink I T, and Kouwenhoven L P. Semiconductor few-electron quantum dot operated as a bipolar spin filter[J], Phys. Rev. B, 2004, 70:241304(1-4).
    [40] Karpan V M, Giovannetti G, Khomyakov P A, Talanana M, Starikov A A, Zwierzycki M, van den Brink J, Brocks G, and Kelly P J. Graphite and Graphene as Perfect Spin Filters[J], Phys. Rev. Lett., 2007, 99:176602(1-4).
    [41] Koleini M, Paulsson M, and Brandbyge M. Efficient Organometallic Spin Filter between Single-Wall Carbon Nanotube or Graphene Electrodes[J], Phys. Rev. Lett., 2007, 98:197202(1-4).
    [42] Apel V M, Orellana P A, and Pacheco M. Fano and Dicke effects in a double Rashba-ring system[J], Nanotechnology, 2008, 19:355202(1-6).
    [43] Ohe J I, Yamamoto M, Ohtsuki T, and Nitta J. Mesoscopic Stern-Gerlach spin filter by nonuniform spin-orbit interaction[J], Phys.Rev. B, 2005, 72:041308(1-4).
    [44] Zhou J, Shi Q W, and Wu M W. Spin-dependent transport in lateral periodic magnetic modulations: Scheme for spin filters[J], Appl. Phys. Lett., 2004, 84:365-367.
    [45] Zhai F, Xu H Q, and Guo Y. Tunable spin polarization in a two-dimensional electron gas modulated by a ferromagnetic metal stripe and a Schottky metal stripe[J], Phys. Rev. B, 2004, 70:085308(1-6).
    [46]张立德,牟季美,21世纪应用物理丛书:纳米材料和纳米结构[M],科学出版社,2001.
    [47]冯端,金国钧,凝聚态物理学新论[M],上海科学技术出版社,1992.
    [48] Supriyo Datta. Electronic Transport in Mesoscopic Systems[M],世界图书出版社,1995.
    [49] Klitzing KV, Dorda G, and Pepper M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J], Phys. Rev. Lett., 1980, 45:494-497.
    [50] Tsui D C, Stormer H L, and Gossard A C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit[J], Phys. Rev. Lett., 1982, 48:1559-1562.
    [51] Van Wees H, Beenakker C W J, Williamson J G, Kouwenhoven L P, Van der Marel D, and Foxon C T. Quantized conductance of point contacts in a two-dimensional electron gas[J], Phys. Rev. Lett., 1988, 60:848-850.
    [52]游建强,半导体纳米结构及其体系中电子输运性质的研究[D],中国科学院固体物理研究所博士学位论文,1997.
    [53] Gerhardts R R, Weiss D, and Klitzing KV. Novel magnetoresistance oscillations in a periodically modulated two-dimensional electron gas[J], Phys. Rev. Lett., 1989, 62:1173 -1176; Gerhardts R R, Weiss D, and Wulf U. Magnetoresistance oscillations in a grid potential: Indication of a Hofstadter-type energy spectrum[J], Phys. Rev. B, 1991, 43:5192-5195.
    [54] Matulis A, and Peeters F M. Magnetoresistance of a two-dimensional electron gas in weakly modulated magnetic fields[J], Phys. Rev. B, 62:91-94.
    [55] Peeters F M, and Matulis A. Quantum structures created by nonhomogeneous magnetic fields[J], Phys. Rev. B, 1993, 48:15166-15174; Matulis A, Peeters F M, and Vasilopoulos P. Wave-vector-dependent tunneling through magnetic barriers[J], Phys. Rev. Lett., 72:1518 -1521.
    [56] Sim H S, Ahn K H, and Chang K J. Magnetic Edge States in a Magnetic Quantum Dot[J], Phys. Rev. Lett., 1998, 80:1501-1504; Reijniers J, Peeters F M, and Matulis A. Quantum states in a magnetic antidote[J], Phys. Rev. B,1999, 59:2817-2823.
    [57] Governale M, and Boese D. Magnetic barrier in confined two-dimensional electron gases: Nanomagnetometers and magnetic switches[J], Appl. Phys. Lett., 77:3215-3217.
    [58] Kim N, Ihm G, and Chang K J. Electronic structure of a magnetic quantum ring[J], Phys. Rev. B, 60:8767-8772.
    [59] Ibrahim I S, and Peeters F M. Two-dimensional electrons in lateral magnetic superlattices[J], Phys. Rev. B, 1995, 52:17321-17334; Krakovsky A. Electronic band structure in a periodic magnetic field[J], Phys. Rev. B, 53:8469-8472; Zeng Z Y, Zhang L D, Yan X H, and You J Q. Resonant peak splitting for ballistic conductance in magnetic superlattices[J], Phys. Rev. B, 1999, 60:1515-1518.
    [60] Carmona H A, Geim A K, Nogaret A, Main P C, Foster T J, Henini M, Beaumont S P, and Blamire M G. Two Dimensional Electrons in a Lateral Magnetic Superlattice[J], Phys. Rev. Lett., 1995, 74:3009-3012.
    [61] Ye P D, Weiss D, Gerhardts R R, Seeger M, Von Klitzing K, Eberl K, and Nickel H. Electrons in a Periodic Magnetic Field Induced by a Regular Array of micromagnets[J], Phys. Rev. Lett., 1995, 74:3013-3016.
    [62] Lawton D N, Nogaret A, Bending S J, Maude D K, Portal J C, and Henini M. Suppression of electron channelling in microscopic magnetic waveguides[J], Phys. Rev. B, 2001, 64:033312(1-4).
    [63] Kubrak V, Rahman F, Gallagher B L, Main P C, Henini M, Marrows H, and Howson M A. Magnetoresistance of a two-dimensional electron gas due to a single magnetic barrier and its use for nanomagnetometry[J], Appl. Phys. Lett., 1999, 74:2507-2509.
    [64] Majumdar A. Effects of intrinsic spin on electronic transport through magnetic barriers[J], Phys. Rev. B, 1996, 54:11911-11913.
    [65] Guo Y, Gu B L, Zeng Z, Yu J Z, and Kawazoe Y. Electron-spin polarization in magnetically modulated quantum structures[J], Phys. Rev. B, 2000, 62:2635-2639.
    [66] Lu M W, Zhang L D, and Yan X H. Spin polarization of electrons tunneling through magnetic-barrier nanostructures[J], Phys. Rev. B, 2002, 66:224412(1-8).
    [67] Zhai F, Guo Y, and Gu B L. Giant magnetoresistance effect in a magnetic-electric barrier structure[J], Phys. Rev. B, 2002, 66:125305(1-5).
    [68] Zhang G L, Lu M W, Tang Y, and Chen S Y. Giant magnetoresistance effect realized by depositing nanosized ferromagnetic and Schottky stripes on a semiconductor heterostructure[J], J. Phys. Condens. Mat., 2008, 20:335221(1-6).
    [69] Xu H Z, and Yan Q Q. Electric tunable of electron spin polarization in hybrid magnetic–electric barrier structures[J], Phys. Lett. A, 2008, 372:6216-6220.
    [70] Z?tic I, Fabian J, Sarma S D. Spintronics: Fundamentals and applications[J], Rev. Mod. Phys., 2004, 76:323-410.
    [71] Monzon F G, and Roukes M L. Spin injection and the local Hall effect in InAs quantum wells[J], J. Magn. Magn. Mater, 1998, 198:632-635.
    [72] Khodas M, Shekhter A, and Finkelstein A M. Spin Polarization of Electrons by Nonmagnetic Heterostructures: The Basics of Spin Optics[J], Phys. Rev. Lett., 2004, 92:086602(1-4).
    [73] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, and Awschalom D D. Electrical spin injection in a ferromagnetic semiconductor heterostructure[J], Nature, 1999, 402:790-792; Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A, and Molenkamp L W. Injection and detection of a spin-polarized current in a light-emitting diode[J], Nature, 1999, 402:787-790.
    [74] Schmidt G, Ferrand D, Molenkamp L W, Filip A T, and Van Wees B J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor[J], Phys. Rev. B, 2000, 62:R4790-R4793; Filip A T, Hoving B H, Jedema F J, Van Wees B J, Dutta B, and Borghs S. Experimental search for the electrical spin injection in a semiconductor[J], Phys. Rev. B, 2000, 62:9996-9999.
    [75] Papp G, Vasilopoulos P, and Peeters F M. Spin polarization in a two-dimensional electron gas modulated periodically by ferromagnetic and Schottky metal stripes[J], Phys. Rev. B, 2005, 72:115315(1-5).
    [76] Wang Y, Chen N F, Jiang Y, and Zhang X W. Ballistic electron transport in hybrid ferromagnet/two-dimensional electron gas sandwich nanostructure: Spin polarization and magnetoresistance effect[J], J. Appl. Phys., 2009, 105:013708(1-5).
    [77] Lu J D, Li Y B, Wang Y H, and Heng B J, Electron-spin polarization in a nanostructure modulated by the periodic bias[J], Physica E, 2009, 41:1315-1318.
    [78] Lu M W, Yan X H, Li C S, and Kong Y H. Electron-spin filter based on hybrid ferromagnetic and semiconductor nanosystem[J], Solid State Communications, 2007, 143:193-196.
    [79] Slobodskyy A, Gould C, Slobodskyy T, Becker C R, Schmidt G, and Molenkamp L W. Voltage-Controlled Spin Selection in a Magnetic Resonant Tunneling Diode[J], Phys. Rev. Lett., 2003, 90:246601(1-4).
    [80] Büttiker M. Four-Terminal Phase-Coherent Conductance[J], Phys. Rev. Lett., 1986, 57:1761-1764.
    [81] Kikkawa J M, Smorchkova I P, Samarth N, and Awschalom D D. Room-Temperature Spin Memory in Two-Dimensional Electron Gases[J], Science, 1997, 277:1284-1287.
    [82] Jonker B T, Park Y D, Bennett B R, Cheong H D, Kioseoglou G, and Petrou A. Robust electrical spin injection into a semiconductor heterostructure[J], Phys. Rev. B, 2000, 62:8180-8183.
    [83] Xu H Z, and okada Y. Does a magnetic barrier or a magnetic-electric barrier structure possess any spin polarization and spin filtering under zero bias[J]. Appl. Phys. Lett., 2001, 79:3119-3121; Xu H Z, and Shi Z. Strong wave-vector filtering and nearly 100% spin polarization through resonant tunneling antisymmetrical magnetic structure[J]. Appl. Phys. Lett., 2002, 81:691-693.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700