KCI和forskolin诱导的神经元CCK、PPT、PDYN表达协同上调及其与PACAP、BDNF相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经元内垂体腺苷酸环化酶激活多肽(Pituitary adenylate cyclase-activating polypeptide, PACAP)基因表达可被Ca2+内流及细胞内cAMP信号增强协同升高,参与调节突触可塑性及情感调控等多种生理功能。脑源性神经营养因子(Brain-derived neurotrophic factor, BDNF)表达受PACAP调节,在促进神经元存活、分化及突触可塑性方面起重要作用。强啡肽原(Prodynorphin, PDYN)基因、胆囊收缩素(Cholecystok inin,CCK)基因、前速激肽原(Preprotachykinin, PPT)基因编码的蛋白也参与中枢神经系统多种功能的调控过程。研究发现,KC1与腺苷酸环化酶激活剂forskolin共同作用协同升高PACAP基因表达,升高BDNF基因表达水平但无协同作用。然而,PACAP及BDNF作为内源性物质,与PDYN、CCK、PPT基因表达之间是否相互影响,以及如何相互影响,还不是很清楚。为此,本文研究了Ca2+内流及细胞内cAMP信号增强引起的神经元内基因表达变化及PDYN、CCK、PPT与PACAP、BDNF相互影响。在发现PACAP诱导PDYN表达的基础上,着重探讨了其潜在的作用机制。
     本文采用KC1与腺苷酸环化酶激活剂forskolin共同作用于原代培养的大鼠皮层神经元,分别引起神经元去极化进而诱导Ca2+内流及细胞内cAMP信号增强,通过基因芯片技术、定量RT-PCR方法检测大鼠皮层神经元内PDYN基因、CCK基因及PPT基因的表达水平;并进一步采用定量RT-PCR及细胞免疫荧光技术研究了PACAP对PDYN、 BDNF等基因表达的影响与机制。
     研究发现,KCl与forskolin升高包括PDYN、CCK、PPT基因在内的62种基因至其基础表达水平3倍以上;协同升高神经元内PDYN、CCK、PPTmRNA水平;PPT基因的主要表达产物P物质通过非NK1受体增加BDNF基因表达,此作用受谷氨酸NMDA受体调节;PACAP引起细胞内PDYN mRNA及其活性蛋白产物dynorphin A表达增加,BDNF则抑制PDYN mRNA表达。进一步对PACAP诱导PDYN mRNA表达的作用机制进行探讨,发现PACAP对PDYN mRNA表达的诱导作用具有时间和剂量依赖性;PACAP增加PDYN mRNA表达作用强于肠血管活性多肽(Vasoactive intestinal polypeptide, VIP),提示PACAP主要通过PAC1受体引起PDYN mRNA表达增加:forsko lin可诱导PDYNmRNA表达,而PKC的激活剂TPA则未显示增加PDYN mRNA表达的作用,同时PKA抑制剂H89能完全阻断PACAP引起的PDYN mRNA表达增加,提示PACAP通过PAC1/PKA途径发挥对PDYN mRNA表达的影响;蛋白质合成抑制剂CHX进一步升高PACAP诱导的PDYN mRNA表达,提示PACAP直接引起PDYN mRNA表达而无需新蛋白质合成,PACAP诱导的蛋白质表达可能进一步抑制PDYN mRNA表达;NMDA受体拮抗剂APV可抑制PACAP诱导的BDNF, c-fos mRNA表达,但对PACAP诱导的PDYN mRNA表达无影响,提示NMDA受体不参与PACAP对PDYN mRNA表达的诱导作用。
     本研究首次发现去极化与腺苷酸环化酶激活协同升高原代培养大鼠皮层神经元内PDYN、CCK、PPT mRNA表达,SP通过非NK1受体途径引起BDNF mRNA表达增加;首次发现PACAP主要由其特异性PAC1受体介导、通过PKA信号通路直接引起PDYN基因表达增加,提示PACAP是内源性PDYN基因表达上游调节物。鉴于PACAP与PDYN在中枢神经系统表达部位的一致性,以及两者都参与伤害性感受及精神障碍疾病的调节过程,PACAP诱导的PDYN基因表达可能参与上述疾病过程,本文的研究结果为进一步探索相关疾病发生及治疗提供一定的理论基础。
Pituitary adenylate cyclase-activating polypeptide (PACAP) was found to be synergistically increased by calcium influx and increased content of cAMP in neurons, and is involved in the regulation of synaptic plasticity and thereby related to the control of emotion and other central nervous system (CNS) function. Brain-derived neurotrophic factor (BDNF) expression is increased by PACAP in neurons, and plays an important role in neuronal survival, differentiation and synaptic plasticity. Proteins encoded by the genes of prodynorphin (PDYN), cholecystokinin (CCK), and preprotachykinin (PPT) are reported to be involved in variety of CNS function, and are likewise related to the development or pathology of affective disorders such as anxiety or depression. It was found that KC1and forskolin, an adenylate cyclase activator, synergistically increased PACAP mRNA expression, and increase BDNF gene expression in a non-synergistical manner. However, it is still unclear whether PACAP and BDNF, as endogenous regulators, interact with PDYN, CCK, and PPT gene. And if there is an interaction, how does it go? Therefore, the present study investigated genes expression induced by calcium influx and increased cAMP content in neurons, as well as interactions of PDYN, CCK, and PPT gene expression with PACAP or BDNF. And further study was done to investigate the underlying mechanism after our discovery of PACAP-induced PDYN expression.
     Primary cultured rat cortical neurons were employed to investigate mRNA expressiooninduced by KC1and/or forskolin, which result in a calcium influx and increased content of cAMP, by techniques of genechip and quantitative RT-PCR. And further study on the effect and mechanism of PACAP-induced PDYN or BDNF mRNA expression was performed by immuno fluorescence and quantitative RT-PCR. It was found that KC1and forskolin synergistically upregulated mRNA expression of PDYN, CCK, and PPT in neurons. Substance P, the biological active product of PPT, increased the expression of BDNF mRNA via a non-NK1receptor mediated pathway. However, this effect is regulated by NMDA receptor. PDYN mRNA expression and its bioactive protein product, dynorphin A, were significantly increased by the treatment of PACAP, while PDYN mRNA expression was decreased by that of BDNF. a further study on the mechanism of PACAP-induced PDYN mRNA expression was performed. It was found that PACAP increased PDYN mRNA expression in a dose-and time-dependent manner. PACAP had much more of an effect than vasoactive intestinal polypeptide (VIP) on PDYN mRNA expression, suggesting a major role of PAC1receptor in PACAP-induced PDYN mRNA expression. PDYN mRNA expression was increased by forskolin, activator of adenylate cyclase, but not TPA, a potent activator of PKC. Meanwhile, the increase in PDYN mRNA expression induced by PACAP was completely inhibited by pretreatment with H89, an inhibitor of PKA, indicating that PACAP-induced Pdyn mRNA expression is dependent on a PACAP/PAC1/PKA pathway. Furthermore, it was found that PACAP-induced Pdyn mRNA expression was actually enhanced by cycloheximide (CHX), an inhibitor of-protein synthesis, indicating thatt de novo protein synthesis is not necessary for the PACAP-induced PDYN mRNA expression. The PACAP-induced BDNF and c-fos mRNA expression was inhibited by APV whereas the expression of PDYN mRNA induced by PACAP was not affected in the presence of APV, indicating no involvement of NMDA-R activation in the PACAP-induced Pdyn mRNA expression.
     For the first time we found that depolarization and adenylate cyclase activation synergistically increase PDYN, CCK, and PPT mRNA expression in primary cultured rat cortical neurons; SP induced BDNF expression via a non-NK1receptor mediated, but NMDA receptor mediated pathway; PACAP directly induced PDYN mRNA expression via a PAC1/PKA mediated pathway, indicating that PACAP is an endogenous upstream regulator for inducing PDYN mRNA expression. Considering the distribution and biological activities of PACAP and dynorphins in CNS, it is highly possible that a cascade of PACAP-induced gene expression, including the expression of PDYN, could be involved in regulating not only nociception but also a variety of neuronal functions and diseases in the central nervous system.
引文
Baber NS, Dourish CT, Hill DR. The role of CCK caerulein, and CCK antagonists in nociception. Pain.1989 Dec;39(3):307-28.
    Baby S, Nguyen M, Tran D, Raffa RB. Substance P antagonists:the next breakthrough in treating depression? J ClinPharm Ther. 1999 Dec;24(6):461-9.
    Barco A, Patterson SL, Alarcon JM, Gromova P, Mata-Roig M, Morozov A, Kandel ER. Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron.2005 Oct 6;48(1):123-37.
    Beinfeld MC, Meyer DK, Eskay RL, Jensen RT, Brownstein MJ. The distribution of cholecystokinin immunoreactivity in the central nervous system of the rat as determined by radio immunoassay. Brain Res.1981 May 11;212(1):51-7.
    Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell.1994 Oct 7;79(1):59-68.
    Calin-Jageman IE, Wang J, Bannon MJ. Regulation of the preprotachykinin-I gene promoter through a protein kinase A-dependent, cyclic AMP response element-binding protein-independent mechanism. J Neurochem.2006 Apr;97(1)255-64.
    Campbell BM, Walker PD. Striatal preprotachykinin mRNA levels are regulated by stimulatory agents and dopamine D1 receptor manipulation in rodent organotypic slice cultures. Brain Res.2001 Jan 5;888(1)26-33.
    Cao YQ, Mantyh PW, Carlson EJ, Gillespie AM, Epstein CJ, Basbaum AI. Primary afferent tachykinins are required to experience moderate to intense pain. Nature.1998 Mar 26;392(6674):390-4.
    Carlezon WA Jr, Beguin C, DiNieri JA, Baumann MH, Richards MR, Todtenkopf MS, Rothman RB, Ma Z, Lee DY, Cohen BM. Depressive-like effects of the kappa-opioid receptor agonist salvinorin A on behavior and neurochemistry in rats. J Pharmacol Exp Ther. 2006 Jan;316(1):440-7.
    Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci. 2005 Aug;28(8):436-45.
    Carter MS, Krause JE. Structure, expression, and some regulatory mechanisms of the rat preprotachykinin gene encoding substance P, neurokinin A, neuropeptide K, and neuropeptide gamma. J Neurosci.1990 Jul; 10(7)2203-14.
    Chen AC, Shirayama Y, Shin KH, Neve RL, Duman RS. Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. Biol Psychiatry.2001 May 1;49(9):753-62.
    Chen Y, Chen C, Liu-Chen LY. Dynorphin peptides differentially regulate the human kappa opioid receptor. Life Sci.2007 Mar 20;80(15):1439-48.
    Cheng HY, Pitcher GM, Laviolette SR, Whishaw IQ, Tong KI, Kockeritz LK, Wada T, Joza NA, Crackower M, Goncalves J, Sarosi I, Woodgett JR, Oliveira-dos-Santos AJ, Ikura M, van der Kooy D, Salter MW, Penninger JM. DREAM is a critical transcriptional repressor for pain modulation. Cell.2002 Jan 11;108(1):31-43.
    Crawley JN, Corwin RL. Biological actions ofcholecystokinin. Peptides.1994;15(4):731-55.
    Crawley JN. Cholecystokinin-dopamine interactions. Trends Pharmacol Sci. 1991 Jun;12(6):232-6.
    Crespi F, Corsi M, Reggiani A, Ratti E, Gaviraghi G. Involvement ofcholecystokinin within craving for cocaine:role of cholecystokinin receptor ligands. Expert OpinInvestig Drugs. 2000 Oct;9(10):2249-58.
    Dauge V, Lena I. CCK in anxiety and cognitive processes. Neurosci Biobehav Rev.1998 Oct;22(6):815-25.
    Deavall DG, Raychowdhury R, Dockray GJ, Dimaline R. Control of CCK gene transcription by PACAP in STC-1 cells. Am J Physiol Gastrointest Liver Physio L 2000 Sep;279(3):G605-12.
    Degen L, Matzinger D, Drewe J, Beglinger C. The effect of cholecystokinin in controlling appetite and food intake in humans. Peptides.2001 Aug;22(8):1265-9.
    Deschenes RJ, Lorenz LJ, Haun RS, Roos BA, Collier KJ, Dixon JE. Cloning and sequence analysis of a cDN A encoding rat preprocholecystokinin. Proc Natl Acad Sci U S A.1984 Feb;81(3):726-30.
    Deutsch PJ, Jameson JL, Habener JF. Cyclic AMP responsiveness of human gonadotropin-alpha gene transcription is directed by a repeated 18-base pair enhancer. Alpha-promoter receptivity to the enhancer confers cell-preferential expression. J Biol Chem.1987 Sep 5;262(25):12169-74.
    Dickson L, Finlayson K. VPAC and PAC receptors:From ligands to function. Pharmacol Ther. 2009 Mar;121(3):294-316.
    Douglass J, McKinzie AA, Pollock KM. Identification of multiple DNA elements regulating basal and protein kinase A-induced transcriptional expression of the rat prodynorphin gene. Mol Endocrinol.1994 Mar;8(3)333-44.
    Drake CT, Milner TA, Patterson SL. Ultrastructural localization of full-length trkB immuno reactivity in rat hippocampus suggests multiple roles in modulating activity-dependent synaptic plasticity. J Neurosci. 1999 Sep 15; 19(18):8009-26.
    Eigyo M, Katsuura G, Shintaku H, Shinohara S, Katoh A, Shiomi T, Matsushita A. Systemic administration of a cholecystokinin analogue, ceruletide, protects against ischemia-induced neurodegeneration in gerbils. Eur J Pharmacol.1992 Apr 22;214(2-3):149-58.
    Fehder WP, Sachs J, Uvaydova M, Douglas SD. Substance P as an immune modulator of anxiety. Neuroimmunomodulation.1997 Jan-Feb;4(1):42-8.
    Felicio LF, Mazzini BK, Cacheiro RG, Cruz TN, Florio JC, Nasello AG. Stimulation of either cholecystokinin receptor subtype reduces while antagonists potentiate or sensitize a morphine-induced excitatory response. Peptides.2001 Aug;22(8):1299-304
    Fischli W, Goldstein A, Hunkapiller MW, Hood LE. Isolation and amino acid sequence analysis of a 4,000-dalton dynorphin from porcine pituitary. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5435-7.
    Friedman J, Schneider BS, Powell D. Differential expression of the mouse cholecystokinin gene during brain and gut development. Proc Natl Acad Sci U S A.1985 Sep;82(17):5593-7.
    Fukuchi M, Tabuchi A, Tsuda M. Activity-dependent transcriptional activation and mRNA stabilization for cumulative expression of pituitary adenylate cyclase-activating polypeptide mRNA controlled by calcium and cAMP signals in neurons. J Biol Chem. 2004 Nov 12;279(46):47856-65.
    Fukuchi M, Tabuchi A, Tsuda M. Transcriptional regulation of neuronal genes and its effect on neural functions:cumulative mRNA expression of PACAP and BDNF genes controlled by calcium and cAMP signals in neurons. J Pharmacol Sci.2005 Jul;98(3)212-8.
    Ghosh A, Carnahan J, Greenberg ME. Requirement for BDNF in activity-dependent survival of cortical neurons. Science.1994 Mar 18;263(5153):1618-23.
    Ghosh A, Ginty DD, Bading H, Greenberg ME. Calcium regulation of gene expression in neuronal cells. JNeurobiol. 1994 Mar;25(3):294-303.
    Ginty DD. Calcium regulation of gene expression:isn't that spatial? Neuron.1997 Feb;18(2):183-6.
    Goldstein A, Fischli W, Lowney LI, Hunkapiller M, Hood L. Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci U S A.1981 Nov;78 (11):7219-23.
    Goldstein A, Ghazarossian VE. Immunoreactive dynorphin in pituitary and brain. Proc Natl Acad Sci U S A.1980 Oct;77(10):6207-10.
    Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L. Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci U S A.1979 Dec;76(12):6666-70.
    Griebel G. Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders? Pharmacol Ther.1999 Apr;82(1):1-61.
    Griebel G. Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders? Pharmacol Ther.1999 Apr;82(1):1-61.
    Han JS, Xie CW. Dynorphin:potent analgesic effect in spinal cord of the rat. Sci Sin B.1984 Feb;27(2):169-77.
    Hansen TV, Rehfeld JF, Nielsen FC. Mitogen-activated protein kinase and protein kinase A signaling pathways stimulate cholecystokinin transcription via activation of cyclic adenosine 3',5'-monophosphate response element-binding protein. Mol Endocrinol.1999 Mar;13(3):466-75.
    Hashimoto H, Ishihara T, Shigemoto R, Mori K, Nagata S. Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron. 1993 Aug;11(2):333-42.
    Hashimoto R, Hashimoto H, ShintaniN, Chiba S, Hattori S, Okada T, Nakajima M, Tanaka K, Kawagishi N, Nemoto K, Mori T, Ohnishi T, Noguchi H, Hori H, Suzuki T, Iwata N, OzakiN, Nakabayashi T, Saitoh O, Kosuga A, Tatsumi M, Kamijima K, Weinberger DR, Kunugi H, Baba A. Pituitary adenylate cyclase-activating polypeptide is associated with schizophrenia. Mol Psychiatry.2007 Nov;12(11):1026-32.
    Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED, Knapp PE, Scheff SW, Singh IN, Vissel B, Woods AS, Yakovleva T, Shippenberg TS. Pathobiology of dynorphins in trauma and disease. Front Biosci.2005 Jan 1;10216-35.
    Helke CJ, Krause JE, Mantyh PW, Couture R, Bannon MJ. Diversity in mammalian tachykinin peptidergic neurons:multiple peptides, receptors, and regulatory mechanisms. FASEB J.1990 Apr 1;4(6):1606-15.
    Ho WZ, Kaufman D, Uvaydova M, Douglas SD. Substance P augments interleukin-10 and tumor necrosis factor-alpha release by human cord blood monocytes and macrophages. J Neuroimmunol.1996 Dec;71(1-2):73-80.
    Iadarola MJ, Brady LS, Draisci G, Dubner R. Enhancement of dynorphin gene expression in spinal cord following experimental inflammation:stimulus specificity, behavioral parameters and opioid receptor binding. Pain.1988 Dec;35(3)313-26.
    Impey S, Mark M, Villacres EC, Poser S, Chavkin C, Storm DR. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron.1996 May;16(5):973-82.
    Impey S, Obrietan K, Wong ST, Poser S, Yano S, Wayman G, Deloulme JC, Chan G, Storm DR. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear trans location. Neuron.1998 Oct;21(4):869-83.
    Impey S, Wayman G, Wu Z, Storm DR. Type I adenylyl cyclase functions as a coincidence detector for control of cyclic AMP response element-mediated transcription:synergistic regulation of transcription by Ca2+ and isoproterenol. Mol Cell Biol.1994 Dec;14(12):8272-81.
    Jongsma H, Danielsen N, Sundler F, Kanje M. Alteration of PACAP distribution and PACAP receptor binding in the rat sensory nervous system following sciatic nerve transection. Brain Res.2000 Jan 24;853(2):186-96.
    Jongsma H, Pettersson LM, Zhang Yz, Reimer MK, Kanje M, Waldenstrom A, Sundler F, Danielsen N. Markedly reduced chronic nociceptive response in mice lacking the PAC1 receptor. Neuroreport.2001 Jul20;12(10)2215-9.
    Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S. Cloning and sequence analysis of cDNA for porcine beta-neo-endorphin/dynorphin precursor. Nature.1982 Jul 15;298(5871)245-9.
    Kangawa K, Matsuo H. Alpha-Neo-endorphin:a "big" Leu-enkephalin with potent opiate activity from porcine hypothalami. Biochem Biophys Res Commun 1979 Jan 15;86(1):153-60.
    Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol.2000 Jun; 10(3):381-91.
    Katsuura G, Shinohara S, Shintaku H, Eigyo M, Matsushita A. Protective effect of CCK-8 and ceruletide on glutamate-induced neuronal cell death in rat neuron cultures:possible involvement of CCK-B receptors. Neurosci Lett.1991 Nov 11;132(2):159-62.
    Kilpatrick DL, Wahlstrom A, Lahm HW, Blacher R, Udenfriend S. Rimorphin, a unique, naturally occurring [Leu]enkephalin-containing peptide found in association with dynorphin and alpha-neo-endorphin. Proc Natl Acad Sci U S A.1982 Nov;79(21):6480-3.
    Kincy-Cain T, Bost KL. Substance P-induced IL-12 production by murine macrophages. J Immunol.1997 Mar 1;158(5)2334-9.
    Klueppelberg UG, Molero X, Barrett RW, Miller LJ. Biochemical characterization of the cholecystokinin receptor on CHP212 human neuroblastoma cells. Mol Pharmacol.1990 Aug;38(2):159-63.
    Koch JM, Hinze-Selch D, Stingele K, Huchzermeier C, Goder R, Seeck-Hirschner M, Aldenhoff JB. Changes in CREB phosphorylation and BDNF plasma levels during psychotherapy of depression. Psychother Psychosom.2009;78(3):187-92.
    Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Liu G, Snavely D, Wyatt-Knowles E, Hale JJ, Mills SG, MacCoss M, Swain CJ, Harrison T, Hill RG, Hefti F, Scolnick EM, Cascieri MA, Chicchi GG, Sadowski S, Williams AR, Hewson L, Smith D, Carlson EJ, Hargreaves RJ, Rupniak NM. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science.1998 Sep 11;281(5383):1640-5.
    Kumar GK, Prabhakar NR. Tachykinins in the control of breathing by hypoxia:pre-and post-genomic era. Respir Physiol Neurobiol. 2003 May 30;135(2-3):145-54.
    Kuzmin A, Madjid N, Terenius L, Ogren SO, Bakalkin G. Big dynorphin, a prodynorphin-derived peptide produces NMDA receptor-mediated effects on memory, anxiolytic-like and loco mo tor behavior in mice. Neuropsyc hop harmaco logy.2006 Sep;31(9):1928-37.
    Laughlin TM, Vanderah TW, Lashbrook J, Nichols ML, Ossipov M, Porreca F, Wilcox GL. Spirally administered dynorphin A produces long-lasting allodynia:involvement of NMDA but not opioid receptors. Pain.1997 Aug;72(1-2):253-60.
    Laurenzi MA, Persson MA, Dalsgaard CJ, Haegerstrand A. The neuropeptide substance P stimulates production of interleukin 1 in human blood monocytes:activated cells are preferentially influenced by the neuropeptide. Scand J Immunol. 1990 Apr;31(4):529-33.
    Lessmann V, Gottmann K, Malcangio M. Neurotrophin secretion:current facts and future prospects. ProgNeurobiol.2003 Apr;69(5)341-74.
    Logsdon CD. Glucocorticoids increase cholecystokinin receptors and amylase secretion in pancreatic acinar AR42J cells. J Biol Chem.1986 Feb 15;261 (5)2096-101.
    Lotz M, Vaughan JH, Carson DA. Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science.1988 Sep 2;241(4870):1218-21.
    Macdonald DS, Weerapura M, Beazely MA, Martin L, Czerwinski W, Roder JC, Orser BA, MacDonald JF. Modulation of NMDA receptors by pituitary adenylate cyclase activating peptide in CA1 neurons requires G alpha q, protein kinase C, and activation of Src. J Neurosci.2005 Dec 7;25(49):11374-84.
    Malberg JE, Blendy JA. Antidepressant action:to the nucleus and beyond. Trends Pharmacol Sci. 2005 Dec;26(12):631-8.
    Marriott I, Mason MJ, Elhofy A, Bost KL. Substance P activates NF-kappa B independent of elevations in intracellular calcium in murine macrophages and dendritic cells. J Neuroimmunol.2000 Jan 24; 102(2):163-71.
    Marriott I. The role of tachykinins in central nervous system inflammatory responses. Front Biosci.2004 Sep 1;9:2153-65.
    Martin JL, Gasser D, Magistretti PJ. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide potentiate c-fos expression induced by glutamate in cultured cortical neurons. J Neurochem.1995 Jul;65(1):1-9.
    Martin JL, Gasser D, Magistretti PJ. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide potentiate c-fos expression induced by glutamate in cultured cortical neurons. J Neurochem.1995 Jul;65(1):1-9.
    McLaughlin JP, Marton-Popovici M, Chavkin C. Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci. 2003 Jul 2;23(13):5674-83.
    McMurray CT, Pollock KM, Douglass J. Cellular and molecular analysis of opioid peptide gene expression. NIDARes Monogr.1992;126:113-31.
    Merchenthaler I, Maderdrut JL, Cianchetta P, Shughrue P, Bronstein D. In situ hybridization histochemical localization of prodynorphin messenger RNA in the central nervous system of the rat. J Comp Neurol. 1997 Jul 28;384(2):211-32.
    Messersmith DJ, Gu J, Dubner R, Douglass J, Iadarola MJ. Basal and inducible transcriptional activity of an upstream AP-1/CRE element (DYNCRE3) in the prodynorphin promoter. Mol Cell Neurosci.1994 Jun;5(3):238-45.
    Minamino N, Kangawa K, Chino N, Sakakibara S, Matsuo H. Beta-neo-endorphin, a new hypothalamic "big" Leu-enkephalin of porcine origin:its purification and the complete amino acid sequence. Biochem Biophys Res Commun.1981 Apr 15;99(3):864-70.
    Minamino N, Kangawa K, Fukuda A, Matsuo H, Iagarashi M. A new opioid octapeptide related to dynorphin from porcine hypothalamus. Biochem Biophys Res Commun.1980 Aug 29;95(4):1475-81.
    Minamino N, Masuda H, Kangawa K, Matsuo H. Regional distribution of neuromedin K and neuromedin L in rat brain and spinal cord. Biochem Biophys Res Commun.1984 Nov 14;124(3):731-8.
    Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun.1989 Oct 16; 164(1):567-74.
    Moran TH. Cholecystokinin and satiety:current perspectives. Nutrition.2000 Oct;16(10):858-65.
    Morozov A, Muzzio IA, Bourtchouladze R, Van-Strien N, Lapidus K, Yin D, Winder DG, Adams JP, Sweatt JD, Kandel ER. Rapl couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron. 2003 Jul 17;39(2)309-25.
    Morrison CF, McAllister J, Dobson SP, Mulderry PK, Quinn JP. An activator element within the preprotachykinin-A promoter. Mol Cell Neurosci.1994 Apr;5(2):165-75.
    Nakao K, Suda M, Sakamoto M, Yoshimasa T, Morii N, Ikeda Y, Yanaihara C, Yanaihara N, Numa S, Imura H. Leumorphin is a novel endogenous opioid peptide derived from preproenkephalin B. Biochem Biophys Res Commun.1983 Dec 28;117(3):695-701.
    Naqvi T, Haq W, Mathur KB. Structure-activity relationship studies of dynorphin A and related peptides. Peptides.1998;19(7):1277-92.
    Naranjo JR, Mellstrom B, Achaval M, Sassone-Corsi P. Molecular pathways of pain: Fos/Jun-mediated activation of a noncanonical AP-1 site in the prodynorphin gene. Neuron.1991 Apr;6(4):607-17.
    Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron.2002 Mar 28;34(1):13-25.
    Newton SS, Thome J, Wallace TL, Shirayama Y, Schlesinger L, Sakai N, Chen J, Neve R, Nestler EJ, Duman RS. Inhibition of cAMP response element-bind ing protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J Neurosci. 2002 Dec 15;22(24):10883-90.
    Nicot A, Otto T, Brabet P, Dicicco-Bloom EM. Altered social behavior in pituitary adenylate cyclase-activating polypeptide type I receptor-deficient mice. J Neurosci.2004 Oct 6;24(40):8786-95.
    Noble F, Roques BP. CCK-B receptor:chemistry, molecular biology, biochemistry and pharmacology. ProgNeurobiol.1999 Jul;58(4)349-79.
    Noble F, Wank SA, Crawley JN, Bradwejn J, Seroogy KB, Hamon M, Roques BP. International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol Rev.1999 Dec;51(4):745-81.
    Patapoutian A, Reichardt LF. Trk receptors:mediators of neurotrophin action. Curr Opin Neurobiol.2001 Jun;11(3)272-80.
    Pellegri G, Magistretti PJ, Martin JL. VIP and PACAP potentiate the action of glutamate on BDNF expression in mouse cortical neurones. Eur J Neurosci. 1998 Jan; 10(1)272-80.
    Pennefather JN, Lecci A, Candenas ML, Patak E, Pinto FM, Maggi CA. Tachykinins and tachykinin receptors:a growing family. Life Sci. 2004 Feb 6;74(12):1445-63.
    Quartara L, Maggi CA. The tachykinin NK1 receptor. Part Ⅱ:Distribution and pathophysiological roles. Neuropeptides.1998 Feb;32(1):1-49.
    Radulovic J, Tronson NC. Protein synthesis inhibitors, gene superinduction and memory:too little or too much protein? Neurobiol Learn Mem.2008 Mar;89(3)212-8.
    Rameshwar P. Substance P:a regulatory neuropeptide for hematopoiesis and immune functions. Clin Immunol Immunopathol.1997 Nov;85(2):129-33.
    Rehfeld JF. Cholecystokinin and panic disorder--three unsettled questions. Regul Pept.2000 Sep 25;93(1-3):79-83.
    Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, Norrholm SD, Kilaru V, Smith AK, Myers AJ, Ramirez M, Engel A, Hammack SE, Toufexis D, Braas KM, Binder EB, May V. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature.2011 Feb 24;470(7335):492-7.
    Ribeiro-da-Silva A, Hokfelt T. Neuroanatomical localisation of Substance P in the CNS and sensory neurons. Neuropeptides.2000 Oct;34(5):256-71.
    Ritter RC, Covasa M, Matson CA. Cholecystokinin:proofs and prospects for involvement in control of food intake and body weight. Neuropeptides.1999 Oct;33(5):387-99.
    Ruda MA, Iadarola MJ, Cohen LV, Young WS 3rd. In situ hybridization histochemistry and immunocytochemistry reveal an increase in spinal dynorphin biosynthesis in a rat model of peripheral inflammation and hyperalgesia. Proc Natl Acad Sci U S A.1988 Jan;85(2):622-6.
    Rupniak NM, Kramer MS. Discovery of the antidepressant and anti-emetic efficacy of substance Preceptor (NK1) antagonists. Trends Pharmacol Sci.1999 Dec;20(12):485-90.
    Sandor K, Bolcskei K, McDougall JJ, Schuelert N, Reglodi D, Elekes K, Petho G, Pinter E, Szolcsanyi J, Helyes Z. Divergent peripheral effects of pituitary adenylate cyclase-activating polypeptide-38 on nociception in rats and mice. Pain.2009 Jan;141(1-2):143-50.
    Saria A. The tachykinin NK1 receptor in the brain:pharmacology and putative functions. Eur J Pharmacol.1999 Jun 30;375(1-3):51-60.
    Schwarzer C.30 years of dynorphins--new insights on their functions in neuropsychiatric diseases. Pharmacol Ther.2009 Sep;123(3):353-70.
    Sheng M, McFadden G, Greenberg ME. Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron.1990 Apr;4(4)571-82.
    Shirayama Y, Ishida H, Iwata M, Hazama GI, Kawahara R, Duman RS. Stress increases dynorphin immunoreactivity in limbic brain regions and dynorphin antagonism produces antidepressant-like effects. J Neurochem.2004 Sep;90(5):1258-68.
    Shlik J, Vasar E, Bradwejn J. Cholecystokinin and psychiatric disorders. CNS Drugs 1997;8:134-152.
    Szelenyi Z. Cholecystokinin and thermoregulation--a minireview. Peptides.2001 Aug;22(8):1245-50.
    Tanganelli S, Fuxe K, Antonelli T, O'Connor WT, Ferraro L. Cholecystokinin/dopamine/GABA interactions in the nucleus accumbens:biochemical and functional correlates. Peptides.2001 Aug;22(8):1229-34.
    Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron. 1998 Apr;20(4):709-26.
    Thoenen H. Neurotrophins and neuronal plasticity. Science.1995 Oct 27;270(5236)593-8.
    Vanderah TW, Laughlin T, Lashbrook JM, Nichols ML, Wilcox GL, Osspov MH, Malan TP Jr, Porreca F. Single intrathecal injections of dynorphin A or des-Tyr-dynorphins produce long-lasting allodynia in rats:blockade by MK-801 but not naloxone. Pain.1996 Dec;68 (2-3) 275-81.
    Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BK, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors:20 years after the discovery. Pharmacol Rev.2009 Sep;61(3):283-357.
    Vossler MR, Yao H, York RD, Pan MG, Rim CS, Stork PJ. cAMP activates MAP kinase and Elk-1 through a B-Raf-and Rapl-dependent pathway. Cell.1997 Apr 4;89(1):73-82.
    Walker PD, Andrade R, Quinn JP, Bannon MJ. Real-time analysis of preprotachykinin promoter activity in single cortical neurons. J Neurochem.2000 Aug;75(2):882-5.
    Wank SA. Cholecystokinin receptors. Am J Physiol. 1995 Nov;269(5 Pt 1):G628-46.
    Wank SA. G protein-coupled receptors in gastrointestinal physiology. I. CCK receptors:an exemplary family. Am J Physiol.1998 Apr;274(4 Pt 1):G607-13.
    Wiesenfeid-Hallin Z, Xu XJ. The role of cholecystokinin in nociception, neuropathic pain and opiate tolerance. Regul Pept.1996 Aug 27;65(1):23-8.
    Yaka R, He DY, Phamluong K, Ron D. Pituitary adenylate cyclase-activating polypeptide (PACAP(1-38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. J Biol Chem.2003 Mar 14;278(11):9630-8.
    Yasuda M, Fukuchi M, Tabuchi A, Kawahara M, Tsuneki H, Azuma Y, Chiba Y, Tsuda M. Robust stimulation of TrkB induces delayed increases in BDNF and Ark mRNA expression in cultured rat cortical neurons via distinct mechanisms. J Neurochem.2007 Oct;103(2):626-36.
    Yasui M, Kawasaki K. CCKB receptor activation protects CA1 neurons from ischemia-induced dysfunction in stroke-prone spontaneously hypertensive rats hippocampal slices. Neurosci Lett.1995 May 19;191(1-2)99-102.
    Yin JC, Wallach JS, Del Vecchio M, Wilder EL, Zhou H, Quinn WG, Tully T. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell.1994 Oct 7;79(1):49-58.
    Zhang RX, Lao L, Qiao JT, Ruda MA. Effects of aging on hyperalgesia and spinal dynorphin expression in rats with peripheral inflammation. Brain Res.2004 Feb 27;999(1):135-41.
    Zhang RX, Liu B, Lao L, Qiao JT, Ruda MA. Spinal preprodynorphin mRNA expression in neonatal rats following peripheral inflammation. Brain Res.2005 Mar 21;1038(2):238-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700