固相微萃取技术的理论及其用于评估沉积物孔隙水中疏水性有机污染物生物可给性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以一系列疏水性有机污染物(hydrophobic organic chemicals,HOCs)为目标化合物,建立了两种HOCs在非极性的聚二甲基硅氧烷(poly(dimethyl)siloxane,PDMS)固相微萃取(solid phase microextraction,SPME)涂层与水之间的分配系数(K_(fw))的测量方法,研究了强疏水性有机污染物在PDMS涂层上的吸附行为,并从理论和实验两方面验证了利用SPME评估沉积物孔隙水中HOCs生物可给性的可行性。主要内容包括:
     建立了静态SPME结合液-液萃取(liquid-liquid extraction,LLE)测定一系列疏水性程度不同的多氯联苯(polychlorinated biphenyls,PCBs)的K_(fw)值的方法,为了确保LLE方法能够准确地测量水相中待测物的量,本方法采用与目标物一对一的~(13)C-标记的PCB的对应体作为回收率指示物。随后为了验证上述方法所测K_(fw)值的准确性,又建立了~(14)C放射性同位素结合静态SPME技术测定HOCs的K_(fw)值的方法,并研究了目标物在各介质中(如水,SPME涂层及玻璃壁等)的分配。
     两种方法所测K_(fw)值与文献报道值具有较好的一致性。结果表明,涂层厚度只是对高氯取代的PCBs的K_(fw)值有显著影响,而试样体积对K_(fw)值则没有显著影响。~(14)C放射性同位素方法测得的目标物在SPME萃取前后的总回收率(80%-120%)明显优于静态SPME结合LLE的方法所测值(53%-106%)。
     在PCBs的log K_(ow)大于约7-7.5之后,所测log K_(fw)与log K_(ow)之间呈现出非线性关系。造成这种现象的原因可能是由于PDMS涂层与辛醇之间物理结构的差别所引起的。同样,该理论也适用于解释log BCF与log K_(ow)之间的非线性关系。
     为了确定满足SPME用于评估沉积物孔隙水中HOCs生物可给性的条件,首先从理论上对决定相关参数的条件进行了探讨。然后利用~(14)C放射性同位素技术结合动态SPME,从实验上验证了该理论模型的正确性,并发现介质对SPME的测量没有干扰。另外,还成功地开发出了一种基于SPME原理的原位沉积物孔隙水中HOCs的采样器。
The theory for sorption of very hydrophobic organic chemicals (VHOCs) into poly(dimethyl)siloxane (PDMS) coated solid-phase microextraction (SPME) fiber and the feasibility for application of SPME in assessing the bioaccessibility of hydrophobic organic chemicals (HOCs) in sediment porewater have yet to be fully examined. The purpose of this study was to address these two issues. The main results are summarized as follows:
     A static SPME procedure combined with liquid-liquid extraction (LLE) was used to determine the PDMS-water partition coefficients (K_(fw)) for polychlorinated biphenyls with different hydrophobicities. The accuracy for the measurements of analyte concentrations in the aqueous phase was ensured with a one-to-one recovery correction strategy employing one ~(13)C-labeled PCB counterpart as a surrogate standard for each native PCB congener. To verify the accuracy of K_(fw) values measured with the above procedure, a ~(14)C-radioactivity approach combined with the static SPME procedure was also successfully developed to determine the K_(fw) values of several ~(14)C-labeled HOCs and analyze the relative distribution among various matrix, including water, glassware/stir, and SPME coating.
     The measured log K_(fw) values using the two methods mentioned above were consistent with those reported in the literature. The effects of coating thickness were significant only on heavily chlorinated biphenyls, and sample sizes had no significant effect on the measured K_(fw) for any targhet analytes. The total recoveries before and after SPME of using the ~(14)C-radioactivity technique (80%-120%) were better than those using native HOCs combined with the LLE procedure (53%-106%).
     A nonlinear relationship between log K_(fw) and log K_(ow) was found for PCB congeners representing all isomeric homologs with the cut-off occurring at log K_(ow) > -7-7.5, which was attributed to the difference between the structures of PDMS coating and octanol. This explanation can also be used to describe the physical origin of the nonlinear relationship between log BCF (bioconcentration factor) and log K_(ow).
     Two governing equations were derived to predict what experimental parameters are appropriate to satisfy the conditions for the application of SPME in assessing the bioaccessibility of HOCs in sediment. To verify the ultimate utility of this modeling framework, sediment spiked with several ~(14)C-labeled HOCs combined with disposable PDMS-coated SPME fibers was applied to verify the consistency between the theoretical predications and experimental results. The results indicated that the theoretical predications can be used effectively to guide future experiment designs, and no matrix effect was found in the measurement of SPME. Finally, an in situ sampler based on SPME was successfully developed to examine the feasibility of assessing the bioaccessibility of HOCs in sediment porewater.
引文
[1] 周珊,赵立文,马腾蛟和黄骏雄,2006。固相微萃取(SPME)技术基本理论及应用进展。现代科学仪器,2,86-90。
    [2] 张莘民,2001。固相微萃取技术在我国环境化学分析中的应用。环境污染治理技术与设备,2,57-64。
    [3] 郭丽青,陶澍,2003。不同有机质含量的土壤中DDT对小麦根系的生物有效性。生态环境,12,135-138。
    [4] Ackerman, L. K., Wilson, G. R. and Simonich, D. L., 2005. Quantitative analysis of 39 polybrorninated diphenyl ethers by isotope dilution GC/low resolution MS. Analytical Chemistry, 77, 1979-1987.
    [5] Ai, J., 1997. Headspace solid phase microextraction. Dynamics and quantitative analysis before reaching a partition equilibrium. Analytical Chemistry, 69, 3260-3266.
    [6] Arthur, C. L. and Pawliszyn, J., 1990. Solid phase microextraction with thermal desorption using fused silica optical Analytical Chemistry, 62, 2145.
    [7] Arthur, C. L., Killiam, L. M., Buchholz, K. D. and Pawliszyn, J., 1992a. Automation and optimization of solid-phase microextraction. Analytical Chemistry, 64, 1960-1966.
    [8] Arthur, C. L., Klllam, L. M., Moflagh, S., Lim, M., Potter, D. W. and Pawliszyn, J., 1992b. Analysis of substituted benzene compounds in groundwater using solid-phase microextraction. Environmental Science and Technology, 26, 979-983.
    [9] Artola-Garicano, E., Vaes, W. H. J. and Hermens, J. L. M., 2000. Validation of negligible depletion solid-phase microextraction as a tool to determine tissue/blood partition coefficients for semivolatile and nonvolatile organic chemicals. Toxicology and Applied Pharmacology, 166, 138-144
    [10] Artola-Garicano, E., Borkent, I., Hermens, J. L. M. and Vaes, W. H. J., 2003. Removal of two polycyclic musks in sewage treatment plants: Freely dissolved and total concentrations. Environmental Science and Technology, 37, 3111-3116.
    [11] Baltussen, E., Sandra, E, David, E, Janssen, H.-G. and Cramers, C., 1999. Study into the equilibrium mechanism between water and poly(dimethylsiloxane) for very apolar solutes: Adsorption or sorption? Analytical Chemistry, 71, 5213-5216.
    [12] Barron, M. G., 1990. Bioconcentration. Environmental Science and Technology, 24, 1612-1618.
    [13] Ben-Naim, A., 1987. Solvation Thermodynamics. Plenum Press, New York.
    [14] Benijts, T., Vercammen, J., Dams, R., Tuan, H. E, Lambert, W. and Sandra, E, 2001. Stir bar sorptive extraction-thermal desorption-capillary gas chromatography-mass spectrometry applied to the analysis of polychlorinated biphenyls in human sperm. Journal of Chromatography B, 755, 137-142.
    [15] Bondarenko, S., Putt, A., Kavanaugh, S., Poleika, N. and Gan, J., 2006. Time dependence of phase distribution of pyrethroid insecticides in sediment. Envrionmental Toxicology and Chemistry, 25, 3148-3154.
    [16] Bowena, A. T., Conderb, J. M. and W., L. P. T., 2006. Solid phase microextraction of aminodinitrotoluenes in tissue. Chemosphere, 63, 58-63.
    [17] Braumann, T., 1986. Determination of hydrophobic parameters by reversed-phase liquid chromatography: theory, experimental techniques, and application in studies on quanttafive structure-activity relationships Journal of Chromatography A, 373, 191.
    [18] Bremle, G, Olda, L. and Larsson, P., 1995. Uptake of PCBs in fish in a contaminated river system: Bioconcentration factors measured in the field. Environmental Science and Technology, 29, 2010-2015.
    [19] Bumpus, J. A., 1989. Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 55, 154-158.
    [20] Burgess, R. M. and Lohrnann, R., 2004. Role of black carbon in the partitioning and bioavailability of organic pollutants. (Letter to the Editor). Environmental Toxicology and Chemistry, 23, 2531-2533.
    [21] Burkhard, L. P., 2000. Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environmental Science and Technology, 34, 4663-4668.
    [22] Chin, Y.-P. and Gschwend, P. M., 1992. Partitioning of polycyclic aromatic hydrocarbons to marine porewater organic colloids. Environmental Science and Technology, 26, 1621-1626.
    [23] Chiou, C. T., Malcolm, R. L., Brinton, T. I. and Kile, D. E., 1986. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environmental Science and Technology, 20, 502-508.
    [24] Chong, S. L., Wang, D., Hayes, J. D., Wilhite, B. W. and Malik, A., 1997. Sol-gel coating technology for the preparation of solid-phase microextraction fibers of enhanced thermal stability. Analytical Chemistry, 69, 3889-3898.
    [25] Conder, J. M. and La Point, T. W., 2005. Solid-phase microextraction for predicting the bioavailability of 2,4,6-trinitritoluene and its primary transformation products in sediment and water. Environmental Toxicology and Chemistry, 24, 1059-1066.
    [26] Cornelissen, G., Breedveld, G. D., Kalaitzidis, S., Christanis, K., Kibsgaard, A. and Oen, A. M. P., 2006. Strong sorption of native PAHs to pyrogenic and unburned carbonaceous geosorbents in sediments. Environmental Science and Technology, 40, 1197-1203.
    [27] De Bruijn, J., Busser, E, Seinen, W. and Hermens, J., 1989. Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the slow-stirring" method. Environmental Toxicology and Chemistry, 8, 499-512.
    [28] Dean, J. R., Tomlinson, W. R., Makovskaya, V., Cumming, R., Hetheridge, M. and Comber, M., 1996. Solid-phase microextraction as a method for estimating the octanol-water partition coefficient. Analytical Chemistry, 68, 130-133.
    [29] der Wal, L. V., Jager, T., Fleurern, R. H. L. J., Barendregt, A., Sinnige, T. L., Van Gestel, C. A. M. and Hermens, J. L. M., 2004. Solid-phase microextraction to predict bioavailability and accumulation of organic micorpollutants in terrestrial organisms after exposure to a field-contaminated soil. Environmental Science and Technology, 38, 4842-4848.
    [30] Di Toro, M. D., Zarba, C. S., Hansen, D. J., Berry, W. J., Swartz, R. C., Cowan, C. E., Pavlou, S. P., Allen, H. E., Thomas, N. A. and Paquin, P. R., 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environmental Toxicology and Chemistry, 10, 1541-1583.
    [31] Dietz, C., Sanz, J. and Cámara, C., 2006. Recent developments in solid-phase microextraction coatings and related techniques. Journal of Chromatography A, 1103, 183-192.
    [32] Doong, R.-a. and Chang, S.-m., 2000. Determination of distribution coefficients of priority polycyclic aromatic hydrocarbons using solid-phase microextraction. Analytical Chemistry, 72, 3647-3652.
    [33] Echols, K. R., Gale, R. W., Schwartz, T. R., Huckins, J. N., Williams, L. L., Meadows, J. C., Morse, D., Petty, J. D., Orazio, C. E. and Tillitt, D. E., 2000. Comparing polychlorinated biphenyl concentrations and patterns in the Saginaw River using sediment, caged fish, and semipermeable membrane devices. Environmental Science and Technology, 34, 4095-4102.
    [34] Ehlers, G A. C. and Loibner, A. P., 2005. Linking organic pollutant (bio)availability with geosorbent properities and biominetic methodology: A review of geosorbent characterization and (bio)availability prediction. Environmental Pollution, 1-19.
    [35] Erickson, D. C., Loehr, R. C. and Neuhauser, E. F., 1993. PAHs loss during bioremendiation of manufactured gas plant site soils. Water Research, 27, 911-919.
    [36] Erickson, M. D., 1997. Analytical Chemistry of PCBs. 2nd ed., CRC Press, Boca Raton, FL, USA.
    [37] Eriksson, M., Fldt, J., Dalhammar, G. and Borg-Karlson, A.-K., 2001. Determination of hydrocarbons in old creosote contaminated soil using headsapce solid phase microextraction and GC-MS. Chemosphere, 44, 1641-1648.
    [38] Escher, B. I. and Hermens, J. L. M., 2002. Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs and mixture effects. Environmental Science and Technology, 36, 4201-4217.
    [39] Escher, B. I., Berg, M., Mühlemann, J., Schwarz, M. A. A., Hermens, J. L. M., Vaes, W. H. J. and Schwarzenbach, R. P., 2002. Determination of liposome-water partition coefficients of organic acids and bases by Solid Phase Microextraction. Analyst, 127, 42-48.
    [40] Fisk, A. T., Norstrom, R. J., Cymbalisty, C. D. and Muir, D. J., 1998. Dietary Accumulation and Deputation of Hydrophobic Organochlorines: Bioaccumulation Parametes and Their Relationship with the Octanol/Water Partition Coefficient. Environmental Toxicology and Chemistry, 17, 951-961.
    [41] Gerofke, A., Kmp, P. and McLachlan, M. S., 2005. Bioconcentration of persistent organic pollutants in four species of marine phytoplankton. Environmental Toxicology and Chemistry, 24, 2908-2917.
    [42] Góercki, T., Yu, X. and Pawliszyn, J., 1999. Theory of analyte extraction by selected porous polymer SPME fibers. Analyst, 124, 643-649.
    [43] Górecki, T. and Pawliszyn, J., 1997. Effect of sample volume on quantitative analysis by solid-phase microextraction Part 1. Theoretical considerations. Analyst, 122, 1079-1086.
    [44] Górecki, T., Khaled, A. and Pawliszyn, J., 1998. The effect of sample volume on quantitative analysis by solid phase microextraction Part 2.Experimental verification. Analyst, 123, 2819-2824.
    [45] Granmo, A., Ekelund, R., Berggren, M., Brostrom-Lunden, E. and Bergqvist, P. A., 2000. Temporal trend of organochlorine marine pollution indicated by concentrations in mussels, semipermeable membrane devices, and sediment. Environmental Science and Technology, 34, 3323-3329.
    [46] Grigg, N. J., Webster, I. T. and Ford, P. W., 1999. Pore-water convection induced by peeper emplacement in saline sediment. Limnol OCeanogr, 44, 425-430.
    [47] Haitzer, M., Hss, S., Traunspurger, W. and Steinberg, C., 1998. Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms-a review. Chemosphere, 37, 1335-1362.
    [48] Hawker, D. W. and Connell, D. W., 1988. Octanol-water partition coefficients of polychlorinated biphenyl congeners. Environmental Science and Technology, 22, 382-387.
    [49] Hawthorne, S. B., Poppendieck, D. G., Grabanski, C. B. and Loehr, R. C., 2002. Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests. 1. PAH release during water desorption and supercdtical carbon dioxide extraction. Environmental Science and Technology, 36, 4795-4803.
    [50] Hawthorne, S. B., Grabanski, C. B., Miller, D. J. and Kreitinger, J. P., 2005. Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of K_(DOC) values. Environmental Science and Technology, 39, 2795-2803.
    [51] Hawthorne, S. B., Yang, Y., Grabanski, C. B., Miller, D. J. and Lee, M. L., 2000. Response to comments on adsorption versus absorption of polychlorinated biphenyls onto solid-phase microextraction coatings. Analytical Chemistry, 72, 642-643.
    [52] Hednga, M. B. and Hermens, J. L. M., 2003. Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME). Trac-Trends in Analytical Chemistry, 22, 575-587.
    [53] Heringa, M. B., Pastor, D., Algra, J., Vaes, W. H. J. and Hermens, J. L. M., 2002. Negligible depletion solid-phase microextraction with radiolabeled analytes to study free concentrations and protein binding: An example with [~3H]estradiol. Analytical Chemistry, 74, 5993-5997.
    [54] Hoekstra, P. F., O'Hara, T. M., Teixeira, C., Backus, S., T., F. A. and C.G, M. D., 2002. Spatial trends and bioaccumulation of organochlorine pollutants in Marine zooplankton from the Alaskan and Canadian Arctic. Environmental Toxicology and Chemistry, 21, 575-583.
    [55] Huesemann, M. H., Hausmann, T. S. and Fortman, T. J., 2003. Assessment of bioavallability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils. Environmental Toxicology and Chemistry, 22, 2853-2860.
    [56] Jonker, M. T. O., Hoenderboom, A. M. and Koelmans, A. A., 2004. Effects of sedimentary sootlike materials on bioaccumulation and sorption of polychlorinated biphenyls. Environmental Toxicology and Chemistry, 23, 2563-2570.
    [57] Karickhoff, S. W., Brown, D. S. and Scott, T. A., 1979. Sorption of hydrophobic pollutants on natural sediments. Water Research, 13, 241-248.
    [58] Koelmans, A. A. and Prevo, L., 2003. Production of dissolved organic carbon in aquatic sediment suspensions. Water Research, 37, 2217-2222.
    [59] Kopinke,F.-D., Georgi, A. and Mackenzie, K., 2001. Sorption of pyrene to dissolved humic substances and related model polumers. 1. Structure-property correlation. Environmental Science and Technology, 35, 2536-2542.
    [60] Kraaij, R., Seinen, W., Tolls, J., Cornelissen, G and Belfroid, A. C., 2002. Direct evidence of sequestration in sediments affecting the bioavailability of hydrophobic organic chemicals to benthic organisms. Environmental Science and Technology, 36, 3525-3529.
    [61] Kraaij, R., Mayer, P., Busser, F. J. M., Bolscher, M. V. H., Seinen, W., Tolls, J. and Belfroid, A. C., 2003. Measured pore-water concentrations make equilibrium partitioning work-A data analysis. Environmental Science and Technology, 37, 268-274.
    [62] Kraaij, R. H., Ciarelli, S., Tolls, J., Kater, B. J. and Belfroid, A., 2001. Bioavallability of lab-contaminated and native polycyclic aromatic hydrocarbons to the amphipod Corophium olulator relates to chemical desorption. Environmental Toxicology and Chemistry, 20, 1716-1724.
    [63] Krauss, M. and Wilcke, W., 2001. Biomimetic extraction of PAHs and PCBs from soil with octadecyl-modified silica disks to predict their availability to earthworms. Environmental Science and Technology, 35, 3931-3935.
    [64] Lambropoulou, D. A., Sakkas, V. A. and Albanis, T. A., 2002. Determination of antifouling compounds in marine sediments by solid-phase microextraction coupled to gas chromatography-mass spectrometry. Journal of Chromatography A, 1010, 1-8.
    [65] Lamoureux, E. M. and Brownawell, B. J., 1999. Chemical and biological availability of sediment-sorbed hydrophobic organic contaminants. Environmental Toxicology and Chemistry, 18, 1733-1741.
    [66] Langenfeld, J. J., Hawthorne, S. B. and Miller, D. J., 1996. Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction. Analytical Chemistry, 68, 144-155.
    [67] Leboeuf, E. J. and Weber, J. W. J., 1997. A distributed reactivity model for soption by soils and sediments. 8. Sorbent organic domains: Discovery of a humic acid glass transition and an argument for a polymer-based model. Environmental Science and Technology, 31, 1697-1702.
    [68] Lee, B., 1991. Solvent reorganization contribution to the transfer thermodynamics of small nonpolar molecules. Biopolyraers, 31,993-1008.
    [69] Lee, S., Gan, J., Liu, W. and Anderson, M. A., 2003. Evaluation of K_d underestimation using solid microextraction. Environmental Science and Technology, 37, 5597-5602.
    [70] León, V. M., lvarez, B., Cobollo, M. A., Muoz, S. and Valor, I., 2003. Analysis of 35 priority semivolatile compounds in water by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. Ⅰ. Method optimisation. Journal of Chromatography A, 999, 91-101.
    [71] Leslie, H. A., Oosthoek, A. J. P., Busser, F. J. M., Kraak, M. H. S. and Hermens, J. L. M., 2002. Biomimetic solid-phase microextraction to predict body residues and toxicity of chemicals that act by narcosis. Environmental Toxicology and Chemistry, 21, 229-234.
    [72] Lord, H. and J., P., 2000. Evolution of solid-phase microextraction technology. Journal of Chromatography A, 885, 153-193.
    [73] Louch, D., Motlagh, S. and Pawliszyn, J., 1992. Dynamics of organic compound extraction from water using liquid-coated fused silica fibers. Analytical Chemistry, 64, 1187-1199.
    [74] Lu, Y. and Wang, Z., 2003. Accumulation of organochlorinated pesticides by triolein-containing semipermeable membrane device (triolein-SPMD) and rainbow trout. Water Research, 37, 2419-2425.
    [75] Lung, S.-C., Altshul, L. M., Ford, T. E. and Spengler, J. D., 2000. Coating effects on the glass adsorption of polychlorinated biphenyl (PCB) congeners. Chemosphere, 41, 1865-1871.
    [76] Luthy, R. D., Aiken, G. R., Brusseau, M. L., Cunningham, S. D., Gschwend, P. M., Pignatello, J. J., Reinhard, M., Traina, S. J., Weber, W. J., Jr. and Westall, J. C., 1997. Sequestration of hydrophobic organic contaminants by geosorbents. Environmental Science and Technology, 31, 3341-3347.
    [77] Lützbft, H.-C. H., Vaes, W. H. J., Freidig, A. P., Halling-Sorensen, B. and Hermens, J. L. M., 2000. Influence of pH and other modifying factors on the distribution behavior of 40quinolones to solid phase and humic acids studied by "negligible-depletion" SPME-HPLC. Environmental Science and Technology, 34, 4898-4994.
    [78] Mackay, D. and Paterson, S., 1991. Evaluating the multimedia fate of organic chemicals: a level Ⅲ fugacity model. Environmental Science and Technology, 25,427-436.
    [79] Mackay, D., Shiu, W. Y. and Ma, K. C., 1992. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemcals. Lewis, Chelsea, MI, USA.
    [80] MacLeod, C. J. A. and Semple, K. T., 2000. Influence of contact time on extractability and degradation of pyrene in soils Environmental Science and Technology, 34, 4952-4957.
    [81] Martos, P. A., Saraullo, A. and Pawliszyn, J., 1997. Estimation of air/coating distribution coefficients for solid phase microextraction using retention indexes from linear temperature-programmed capillary gas chromatography. Application to the sampling and analysis of total petroleum hydrocarbons in air. Analytical Chemistry, 69, 402-408.
    [82] Mayer, P., Vaes, W. H. J. and Hermens, J. L. M., 2000a. Absorption ofhydrophobic compounds into the poly(dimethylsiloxane) coating of solid-phase microextraction fibers: High partition coefficients and fluorescence microscopy images. Analytical Chemistry, 72, 459-464.
    [83] Mayer, P., Wemsing, J., Tolls, J., De Maagd, P. G.-J. and Sijm, D. T. H. M., 1999. Establishing and controlling dissolved concentrations of hydrophobic organics by partitioning form a solid phase Environmental Science and Technology, 33, 2284-2290.
    [84] Mayer, P., Vaes, W. H. J., Wijnker, F., Legierse, K. C. H., Kraaij, R. H., Tolls, J. and Hermens, J. L. M., 2000b. Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environmental Science and Technology, 34, 5177-5183.
    [85] Meylan, W. M., Howard, P. H., Boethling, R. S., Aronson, D., Printup, H. and Gouhcie, S., 1999. Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficients. Environmental Toxicology and Chemistry, 18, 664-672.
    [86] Mézin, L. C. and Hale, R. C., 2004. Combined effects of humic acids and salinity on solid-phase microextraction of DDT and chlorpyrifos, an estimator of their bioavallability. Environmental Toxicology and Chemistry, 23, 576-582.
    [87] Millward, R., Bridges, T. S., Ghosh, U., Zimmerman, J. R. and Luthy, R. G., 2005. Addition of activated carbon to sediments to reduce PCB bioaccumulation by apolychaete (Neanthes arenaceodentata) and an amphipod (Leptocheirus plumulosus). Environmental Science and Technology, 39, 2880-2887.
    [88] Musteata, F. M. and Pawliszyn, J., 2007. Bioanalytical applications of solid-phase microextraction. Trends in Analytical Chemistry, 26, 36-45.
    [89] Neff, J. M. and Burns, W. A., 1996. Estimation of polycyclic aromatic hydrocarbon concentrations in the water column based on tissue residues in mussels and salmon: An equilibrium partitioning approach. Environmental Toxicology and Chemistry, 15, 2240-2253.
    [90] Nguyen, T. H., Goss, K.-U. and Ball, W. P., 2005. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environmental Science and Technology, 39, 913-924.
    [91] berg, T., 2001. Prediction of physical properties for PCB congeners from molecular descriptors, Internet Journal of Chemistry, 14.
    [92] Oliver, B. G. and Niiml, A. J., 1983. Bioconcentration of chlorobenzenes from water by rainbow trout: Correlations with partition coefficients and environmental residues. Environmental Science and Technology, 17, 287-291.
    [93] Oliver, B. G. and Niiml, A. J., 1985. Bioconcentration factors of some halogenated organics for rainbow trout: Limitations in their use for prediction of environmental residues. Environmental Science and Technology, 19, 842-849.
    [94] Oliver, B. G. and Niiml, A. J., 1988. Trophodynamic analysis of polychlorinated biphenyl congeners and other chlorinated hydrocarbons in the Lake Ontario ecosystem. Environmental Science and Technology, 22, 388-397.
    [95] Oomen, A. G., Mayer, P. and Tolls, J., 2000. Nonequilibrium solid-phase microextraction for determination of the freely dissolved concentration of hydrophobic organic compounds: Matrix effects and limitations. Analytical Chemistry, 72, 2802-2808.
    [96] Opperhulzen, A., van der Volde, E. W., Gobas, F. A. P. C., Liem, D. A. K. and van der Steen, J. M. D., 1985. Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere, 14, 1871-1896.
    [97] Ouyang, G. and Pawliszyn, J., 2006. SPME in environmental analysis. Analytical and Bioanalytical Chemistry, 386, 1059-1073.
    [98] Parkerton, T. F., Stone, M. A. and Letinski, D. J., 2000. Assessing the aquatic toxicity of complex hydrocarbon mixtures using solid phase microextraction. Toxicology Letters, 112, 273-282.
    [99] Paschke, A. and Popp, P., 2003. Solid-phase microextraction fibre-water distribution constants of more hydrophobic organic compounds and their correlations with octanol-watrer partition coefficients. Journal of Chromatography A, 999, 35-42.
    [100] Pawliszyn, J., 1997. Solid Phase Microextraction: Theory and Practice. Wiley-VCH, New York, NY.
    [101] Pawliszyn, J. and Belardi, R. P., 1989. The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns. Water Pollution Research Journal of Canada, 24, 179-191.
    [102] PhysProp Database, Physical and chemical property data for over 25000 chemicals. Available at web site esc.syrres.com and with the EPI Suite software. Syracuse Research Corp. and U.S. EPA, 2001.
    [103] Poerschmann, J. and Kopinke, F.-D., 2001. Sorption of very hydrophobic organic compounds (VHOCs) on dissolved humic organic matter and applicaction of Flory-Huggins Concept to interpret the data. Environmental Science and Technology, 35, 1142-1148.
    [104] Poerschmann, J., Kopinke, F.-D. and Pawliszyn, J., 1997. Solid phase microextraction to study the sorption of organotin compounds onto particulate and dissolved humic organic matter. Environmental Science and Technology, 31, 3629-3636.
    [105] Poerschmann, J., Górecki, T. and Kopinke, F.-D., 2000. Sorption of very hydrophobic compounds on poly(dimethylsiloxane) and dissolved humic matter. 1: Adsorption or partitioning of VHOC on PDMS-coated solid-phase microextraction fibers-A neverending story? Environmental Science and Technology, 34, 3824-3830.
    [106] Poon, K.-F., Lam, P. K. S. and Lam, M. H. W., 1999. Determination of polychlorinated biphenyls in human blood serum by SPME. hemosphere, 39, 905-912.
    [107] Potter, D. W. and Pawliszyn, J., 1994. Rapid determination of polyaromatic hydrocarbons and polychlorinated biphenyls in water using solid-phase microextraction and GC/MS. Environmental Science and Technology, 28, 298-305.
    [108] Prager, J. C., 1998 Environmental Contaminant Reference Databook. Wiley, New York.
    [109] Prévost, M., Oliveira, I. T., Kocher, J.-P. and Wodak, S. J., 1996. Free energy of cavity formation in liquid water and hexane. Journal of Physical Chemistry, 100, 2738-2743.
    [110] Ramos, U. E., Meijer, S. N., Vaes, W. H. J., Verhaar, H. J. M. and Hermens, J. L. M., 1998. Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals. Environmental Science and Technology, 32, 3430-3435.
    [111] Semenov, S. N., Koziel, J. A. and Pawliszyn, J., 2000. Kinetics of solid-phase extraction and solid-phase microextraction in thin adsorbent layer with saturation sorption isotherm. Journal of Chromatography A, 873, 39-51.
    [112] Shurmer, B. and Pawliszyn, J., 2000. Determination of distribution constants between a liquid polymeric coating and water by solid-phase microextraction technique with a flow-through standard water system. Analytical Chemistry, 72, 3660-3664.
    [113] Sjdin, A., Jones, R. S., Lapeza, C. R., Focant, J.-E, McGahee, E. E., Ⅲ and Patterson, D. G., Jr., 2004. Semiautomated high-throughput extraction and cleanup method for the measurement of polybrominated diphenyl ethers, polybrominated biphenyls, and polychlorinated biphenyls in human serum. Analytical Chemistry, 76, 1921-1927.
    [114] Strandberg, B., Wagman, N., Bergqvist, P. A., Haglund, P. and Rappe, C., 1997. Semipermeable membrane devices as passive samplers to determine organochlorine pollutants in compost. Environmental Science and Technology, 31, 2960-2965.
    [115] Tanford, C., 1980. The Hydrophobic Effect. Formation of Micelles and Biological Membranes. 2nd ed. 2nd, Willey-Interscience, New York.
    [116] Tang, J. and Alexander, M., 1999. Mild extractability and bioavailability of polycyclic aromatic hydrocarbons in soil. Environmental Toxicology and Chemistry, 18, 2711-2714.
    [117] Tang, J., Robertson, B. K. and Alexander, M., 1999. Chemical extraction methods to estimate bioavallability of DDT, DDE, and DDD in soil. Environmental Science and Technology, 33, 4346-4351.
    [118] Ter Laak, H. L., Barendregt, A. and Hermens, J. L. M., 2006a. Freely dissolved pore water concentrations and sorption coefficients of PAHs in spiked, aged, and field-contaminated soils. Environmental Science and Technology, 40, 2184-2190.
    [119] Ter Laak, H. L., Agbo, S. O., Barendregt, A. and Hermens, J. L. M., 2006b. Freely dissolved concentrations of PAHs in soli pore water: Measurements via solid-phase microextraction and consequences for soil tests. Environmental Science and Technology, 40, 1307-1313.
    [120] Ter Laak, T. L., Durjava, M., Struijs, J. and Hermens, J. L. M., 2005. Solid phase dosing and sampling technique to determine partition coefficients of hydrophobic chemicals in complex matrixes. Environmental Science and Technology, 39, 3736-3742.
    [121] Treves, K., Shragina, L. and Rudich, Y., 2001. Measurement of octanol-air partition coefficients using solid-phase microextraction (SPME) application to hydroxy alkyl nitrates. Atmospheric Environment, 35, 5843-5854.
    [122] U.S. Environmental Protection Agency. Method 3510C: Separatory Funnel Liquid-Liquid Extraction. January 2006.
    [123] Ulrich, S., 2000. Solid-phase microextraction in biomedical analysis. Journal of Chromatography A, 902, 167-194.
    [124] Urrestarazu-Ramos, E., Meijer, S.N., Vaes, W. H. J., Verhaar, H. J. M. and Hermens, J. L. M., 1998. Using solid phase microextraction (SPME) to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals. Environmental Science and Technology, 32, 3430-3435.
    [125] Vaes, W. H. J., Ramos, E. U., Verhaar, H. J. M., Seinen, W. and Hermens, J. L. M., 1996. Measurement of the free concentration using solid-phase microextraction: Binding to protein. Analytical Chemistry, 68, 4463-4467.
    [126] Vaes, W. H. J., Mayer, P., Oomen, A. G, Hermens, J. L. M. and Tolls, J., 2000. Comments on "adsorption versus:absorption of polychlorinated biphenyls onto solid-phase microextraction coatings". Analytical Chemistry, 72, 639-641.
    [127] Vaes, W. H. J., Urrestarazu, R. E., Hamwijk, C., van Holsteijn, I., Blaauboer, B. J., Seinen, W., Verhaar, H. J. M. and Hermens, J. L. M., 1997. Solid-phase microextraction as a tool to determine membrane/water partition coefficients and bioavailable concentrations in virtro systems. Chemical Research in Toxicology, 10, 1067-1072.
    [128] Valor, J. C., Molto, D. andApraiz, G. F., 1997. Matrix effects on solid-phase microextraction of organophosphorus pesticides from water Journal of Chromatography A, 767, 195-203.
    [129] van der Velde, L., Jager, T., Fleurem, R. H. L. J., Barendregt, A., Sinnige, T. L., van Gestel, C. A. M. and Hermens, J. L. M., 2004. Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environmental Toxicology and Chemistry, 38, 4842-4848.
    [130] Verbruggen, E. M. J., Vaes, W. H. J., Parkerton, T. F. and Hermens, J. L. M., 2000. Polyacrylate-coated SPME fibers as a tool to simulate body residues and target concentrations of complex organic mixtures for estimation of baseline toxicity. Environmental Science and Technology, 34, 324-331.
    [131] Verbruggen, E. M. J., van Loon, W. M. G. M., Tonkes, M., van Duijjn, P., Seinen, W. and Hermens, J. L. M., 1999. Biomimetic extraction as a tool to identify chemicals with high bioconcentration potential: an illustration by two fragrances in sewage treatment plant effluents and surface waters. Environmental Science and Technology, 33, 801-806.
    [132] Vieth, W. R., 1985. Diffusion in and Through Polymers. Oxford University Press, New York.
    [133] Vinturella, A. E., Burgess, R. M., Coull, B. A., Thompson, K. M. and Shine, J. P., 2004. Use of passive samplers to mimic uptake of polycyclic aromatic hydrocarbons by benthic polychaetes. Environmental Science and Technology, 38, 1154-1160.
    [134] Wang, Y., Wang, C. and Wang, Z., 1998. Uptake of moderately hydrophobic chlorophenols from water by semipermeable membrane devices (SPMDs) and by goldfish (Crassius auratus) Chemosphere, 37,327-339.
    [135] Wang, Z., Wang, Y., Ma, M., Lu, Y. and Huckines, J., 2002. Use of triolein-semipermeable membrane devices to assess the bioconcentration and sediment sorption of hyddrophobic organic contaminants in the Huaihe River, China. Environmental Toxicology and Chemistry, 21, 2378-2384.
    [136] Weber Jr., W. J., Leboeuf, E. J., Young, T. M. and Huang, W., 2001. Contaminant interaction with geosorbent organic matter: insights drawn from polymer sciences. Water Research, 35, 853-868.
    [137] White, J. C., Hunter, M., Nam, K., Pignatello, J. J. and Alexander, M., 1999. Correlation between biological and physical availabilities of phenanthrene in soils and soil humic in aging experiments. Environmental Toxicology and Chemistry, 18, 1720-1727
    [138] Woods, R. W., Letinski, D. J., Febbo, E. J., Dzamba, C. L., Connelly, M. J. and Parkerton, T. F., 2007. Assessing the aquatic hazard of commercial hydrocarbon resins. Ecotoxicology and Environmental Safety, 66, 159-168.
    [139] Wu, J., Yu, X., Lord, H. and Pawliszyn, J., 2000. Solid phase microextraction of inorganic anions based on polypyrrole film. Analyst, 125, 391-394.
    [140] Yang, W., Spurlock, E, Liu, W. and Gan, J., 2006a. Inhibition of aquatic toxicity of pyrethroid insecticides by suspended sediment. Environmental Toxicology and Chemistry, 25, 1913-1919.
    [141] Yang, Y., Miller, D. J. and Hawthorne, S. B., 1998a. Solid-phase microextraction of polychlorinated biphenyls. Journal of Chromatography A, 800, 257-266.
    [142] Yang, Y., Hawthorne, S. B., Miller, D. J., Liu, Y. and Lee, M. L., 1998b. Adsorption versus absorption of polychlorinated biphenyls onto solid-phase rnicroextraction coatings. Analytical Chemistry, 70, 1866-1869.
    [143] Yang, Z.-Y., Zeng, E. Y., Wang, J.-Z. and Mai, B.-X., 2006b. A mumerical scheme to diagnose interferences in gas chromatography/mass spectrometry quantitation of coeluting isotopically labeled and unlabeled counterparts with partially overlapping ion profiles. Journal of Chromatography A, 1116, 265-271.
    [144] Yang, Z.-Y., Zeng, E. Y., Xia, H., Wang, J.-Z., Mai, B.-X. and Maruya, K. A., 2006c. Application of a static solid-phase microextraction procedure combined with liquid-liquid extraction to determine poly(dimethyl)siloxane-water partition coefficients for selected polychlorinated biphenyls. Journal of Chromatography A, 1116, 240-247.
    [145] You, J., Landrum, E F. and Lydy, M. J., 2006. Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environmental Science and Technology, 40, 6348-6353.
    [146] Zeng, E. Y. and Yu, C. C., 1996. Measurements of linear alkylbenzenes by GC/MS with interference from tetrapropylene-based alkylbenzenes: Calculation of quantitation errors using a two-component model. Environmental Science and Technology, 30, 322-328.
    [147] Zeng, E. Y. and Noblet, J. A., 2002. Theoretical considerations on the use of solid-phase microextraction with complex environmental samples. Environmental Science and Technology, 36, 3385-3392.
    [148] Zeng, E. Y., Tsukada, D. and Diehl, D. W., 2004. Development of a solid-phase microextraction-based method for sampling of persistent chlorinated hydrocarbons in an urbanized coastal environment. Environmental Science and Technology, 38, 5737-5743.
    [149] Zeng, E. Y., Tsukada, D., Noblet, J. A. and Peng, J., 2005. Determination of polydimethylsiloxane-seawater distribution coefficients for polychlorinated biphenyls and chlorinated pesticides by solid-phase microextraction and gas chromatography-mass spectrometry. Journal of Chromatography A, 1066, 165-175.
    [150] Zhang, Z. and Pawliszyn, J., 1996. Studying activity coefficients of probe solutes in selected liquid polymer coatings using solid phase microextraction. Journal of Physical Chemistry, 100, 17648-17654.
    [151] Zhang, Z., Yang, M. J. and Pawliszyn, J., 1994. Solid phase microextraction, a solvent-free altemative for sample preparation. Analytical Chemistry, 17, 844A-854A.
    [152] Zimmerman, J., R., Ghosh, U., MiUward, R. N., Bridges, T. S. and Luthy, R. G., 2004. Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments: Physicochemical test. Environmental Science and Technology, 38, 5458-5464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700