混合表面活性剂体系中微乳液的形成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)分别与非离子表面活性剂十二烷基聚氧乙烯(9)醚(AEO9)和辛基苯酚聚氧乙烯(10)醚(TX-100)复配体系形成的微乳液的相行为等。用“鱼状”相图法研究CTAB/AEO9/醇/油/盐水和CTAB/TX-100/醇/油/盐水溶液微乳液体系的相行为和增溶性能;并考察盐水溶液、油、温度以及醇等不同因素对该体系中阳/非离子表面活性剂以固定摩尔比条件下相行为的影响;又用拟三元相图法研究CTAB/AEO9 (TX-100) /正丁醇/正辛烷/水(或盐水)溶液微乳液体系的相行为,并利用测量电导率的方法来研究形成微乳液的结构及其结构转变;并研究了制备新型复合材料Al2(WO4)3的前驱体的方法,从而为微乳液技术制备纳米颗粒提供一定的理论基础。论文包括以下四部分:
     一、绪论
     介绍了表面活性剂复配的意义和表面活性剂复配的各种类型;概述了微乳液的结构、性质,详细介绍了微乳液的形成机理:瞬时负界面张力理论、双重膜理论、几何排列理论、R比理论;综述了微乳液的表征方法和应用。最后总结了本论文的立题依据和主要研究内容。
     二、CTAB/AEO9复配表面活性剂体系中相微乳液相行为的研究
     利用ε-β“鱼状”相图法研究了十六烷基三甲基溴化铵(CTAB)/十二烷基聚氧乙烯(9)醚(AEO9)以不同摩尔比复配体系的中相微乳液的相行为。并对CTAB/AEO9复配体系讨论了电解质浓度、助表面活性剂、油相和温度等因素对该微乳液体系增溶能力的影响。
     1.从“鱼状”相图中可以清楚地观察到,随着醇浓度的增加的相转变WinsorⅠ→Ⅲ→Ⅱ。无论是向CTAB体系中加入少量的AEO9,还是向AEO9体系中加入少量的CTAB,CTAB/AEO9/油/醇/NaCl水溶液微乳液体系的增溶性能均比原来单一表面活性剂体系形成的微乳液的增溶性能有明显增强。
     2.无机盐氯化钠的加入更加促进体系中相微乳液的形成,随着水溶液中NaCl的质量分数的增加,体系形成单相微乳液所需的醇量(εE)减小,其增溶能力的顺序:10 % > 7.5 % > 5 % > 2.5 %。
     3.随着油分子碳链长度的增加,形成中相微乳液所需的醇和表面活性剂的量大幅度增加,而形成单相微乳液能力的顺序为:正己烷>正庚烷>正辛烷。
     4.不同的温度对CTAB/AEO9微乳液体系有不同程度的影响,其所形成微乳液体系的增溶能力顺序是:40℃> 50℃> 25℃> 30℃.
     5.助表面活性剂醇的碳链越长,形成的微乳液体系的增溶能力越大。
     三、CTAB/TX-100复配表面活性剂体系中相微乳液相行为的研究
     利用ε-β“鱼状”相图法研究了十六烷基三甲基溴化铵(CTAB)/辛基苯酚聚氧乙烯(10)醚(TX-100)微乳液体系的相行为。考察了氯化钠溶液浓度(5 %,7.5 %,10 %)、不同烷烃(正己烷,正庚烷,正辛烷)、短链醇(正丁醇,正戊醇)等因素对该体系微乳液增溶性能的影响。并比较了不同因素对CTAB/AEO9和CTAB/ TX-100微乳液体系影响。
     1.阳/非离子表面活性剂复配体系比单一表面活性剂体系形成的微乳液具有更强的增溶性能;
     2.由于无机盐氯化钠的加入更加促进体系中相微乳液的形成;
     3.随着油分子碳链长度的减少和助表面活性剂分子碳链长度的增加,越有利于微乳液的相转变。
     4.通过对CTAB/AEO9和CTAB/TX-100复配体系中形成中相微乳液的比较,不同因素对两种体系的影响趋势几乎是一致,但是相同条件下,CTAB/AEO9复配体系形成的中相微乳液的增溶能力较大。
     四、用电导率法研究混合表面活性剂体系中微乳液结构
     研究了CTAB/AEO9/正丁醇/正辛烷/水或盐水体系和CTAB/TX-100/正丁醇/正辛烷/水或盐水体系的拟三元相图,讨论了微乳液单相区的微观结构,并研究了在油包水微乳区制备Al2(WO4)3前驱物的方法。
     1. CTAB/AEO9/正丁醇/正辛烷/水体系形成的微乳液单相区比CTAB/TX-100/正丁醇/正辛烷/水体系形成的微乳液单相区稍小;无机盐电解质的加入使得两个体系所形成的微乳液单相区均减小。
     2.从CTAB/AEO9 (TX-100)/正丁醇/正辛烷/水体系微乳液的电导率曲线可以识别微乳的三种微结构,即油包水、水包油及二连续型。开始体系电导率随含水量增加而呈直线上升,而后增加缓慢达到最大值,之后又随着含水量的进一步增加,电导率值开始下降。
     3.从CTAB/AEO9 (TX-100)/正丁醇/正辛烷/盐水体系的电导率曲线可以看到,在含水量较少时,电导率随盐水含量的变化趋势与在纯水体系中的变化趋势相同,随着盐水含量的增加又呈非线性增加,最后又随着盐水含量的增加而线性增大。因此,可以根据盐水体系中微乳液电导率曲线的两个折点,将整个微乳液单相区划分为W/O、B.C和O/W区。
The phase behavior for the systems of Cetyltrimethylammonium bromide (CTAB)/poly- ethyleneglycol (9) monododecyl ether (AEO9) and CTAB/Octylphenol polyoxyethylene-10- ether (Triton X-100) have been studied in this thesis. The middle-phase behavior and solubili -zation for the microemulsions systems of CTAB/AEO9/alcohols/oils/brine and CTAB/ TX-100/ alcohols/oils/brine have been studied withε-βfishlike phase diagram method, and the effects of different alcohols, oils, temperature and inorganic salt (NaCl) on the middle-phase behavior of microemulsion formed by composile CTAB/AEO9 (TX-100) microemulsions systems were also investigated systematically. The phase diagrams of the pseudo-ternary-component of CTAB/ AEO9 (TX-100)/n-butanol/n-octane/water or brine systems were studied by dilution method, and then the microstrctures of microemulsions were determined through conductance technique, and the method of preparing Al2(WO4)3 precursor in the W/O microemulsion region was studied. Which provide valuable theoretical basis for preparing nanoparticles through microemulsion technology. This thesis contains four chapters:
     Chapter I. Introduction
     Significance and various types of mixed surfactants systems were introduced. The structure and characteristic of microemulsion were also overviewed. And the formation mechanism of microemulsion was introduced in detail: Instantaneous negative interfacial tension theory, Double film theory, Geometry theory, R ratio theory. The application and research methods of microemulsion were investigated. At last, the legislative basis and the contents of this thesis were summarized.
     Chapter II. Studies on the middle phase behavior of the microemulsion formed by CTAB/AEO9 mixed surfactants systems
     The middle-phase behavior and solubilization for the microemulsion system of cetyltrimethy -lammonium bromide (CTAB) and poly-ethyleneglycol (9) monododecyl ether (AEO9) have been studied withε-βfishlike phase diagram method. The effects of different alcohols, oils, temperature and inorganic salt (NaCl) on the middle-phase behavior of microemulsion formed by composile CTAB/AEO9 systems were also investigated systematically.
     1. Fromε-βfishlike phase diagrams, the microemulsion phase inversion Winsor I→III→II was observed with the increase in the alcohol concentration. Whether a small amount of AEO9 added into the CTAB system, or a small amount of CTAB added into the AEO9 system, the solubilization of the microemulsion formed by mixed cationic and nonionic surfactants is more effective than the single surfactant system.
     2. With the increase in the mass fraction of NaCl in aqueous phase, the amount of alcohol (εE) used to form single phase microemulsion decreases, and the solubilization power of the microemulsion system increases. The order of the solubilization power is 10 % > 7.5 % > 5 % > 2.5 %.
     3. The longer the carbon chain length of alkane is, the more alcohol needed to form middle phase microemulsion is. The solubilization power order is n-hexane > n-heptane > n-octane.
     4. The temperature has some effect on solubilization power of the microemulsion systems formed by CTAB/AEO9 microemulsion systems. The order of the solubilization power is 40℃> 50℃> 25℃> 30℃.
     5. The ability to form middle phase microemulsion and the solubilization power increase with its carbon chain length increases.
     Chapter III. Studies on the middle phase behavior of the microemulsion formed by CTAB/TX-100 mixed surfactants systems
     The middle-phase behavior and solubilization for the system of cetyltrimethylammonium bromide (CTAB) and Octylphenol polyoxyethylene-10-ether (Triton X-100) have been studied withε-βfishlike phase diagram method. The effects of different alcohols (n-butanol, n-propanol), oils (n-hexane, n-heptane, n-octane) and inorganic salt (NaCl: 5 %, 7.5 %, 10 %) on the middle-phase behavior of microemulsion formed by composile CTAB/TX-100 systems were also investigated systematically. Finally, we compared the effects of different factors on the phase behavior of microemulsions formed by CTAB/AEO9 and CTAB/TX-100 systems.
     1. The solubilization of the microemulsion formed by mixed cationic and nonionic surfactants is more effective than the single surfactant system.
     2. Adding inorganic salt (NaCl) facilitates the microemulsion inversion.
     3. The oils with shorter carbon chain lengths and the alcohols with longer carbon chain lengths are of higher solubilization power of their microemulsions systems.
     4. Comparing the effects of different factors on the phase behavior of microemulsions formed by CTAB/AEO9 and CTAB/TX-100 systems, we can see that the solubilization of CTAB/AEO9 microemulsion is higher than that of CTAB/TX-100 system under the same conditions, while the impact on the two systems with the factors are almost the same. Chapte IV. Studies on the structure of microemulsion formed by the mixed surfactants systems by conductivity
     The phase diagrams of the pseudo-ternary-component of CTAB/AEO9/n-butanol/n-octane/ water and CTAB/TX-100/n-butanol/n-octane/water systems were studied by dilution method. The microstrctures of microemulsions were determined through conductance technique, and the method of preparing Al2(WO4)3 precursor in the W/O microemulsion region was studied.
     1. The single-phase microemulsion region of CTAB/AEO9/n-butanol/n-octane/water system is larger than that of CTAB/TX-100/n-butanol/n-octane/water system, the addition of inorganic salts reduced the single-phase microemulsion of the two systems.
     2. Three types of microemulsion microstructure can be identified from the conductivity curves of CTAB/AEO9 (TX-100)/butanol/octane/water microemulsion systems: W/O, O/W and BC. Conductivity increases linearly with the increase of water content at the beginning, and then increased slowly to reach the maximum, the conductivity begin to decline with the further increasing of the water content.
     3. From the conductivity curves of CTAB/AEO9 (TX-100)/butanol/octane/brine microemulsion systems, we can see that conductivity of the brine system changes almost the same as that of the water systems with a small amount of water. And then conductivity showed a nonlinear increase with the increase of brine. Finally, conductivity increases linearly. Therefore, the whole single- phase microemulsion area is divided into W/O, BC and O/W based on the two turning point in the electrical conductivity curve of brine microemulsion systems .
引文
[1] Bourrel M, Bernard D, Graciaa A, Properties of binary mixtures of anionic and cationic surfactants: micellization and microemulsion [J]. Tenside Deter, 1984, 21: 311-318.
    [2] Cates M E, Andelman D, Safran S, et al., Theory of microemulsions:comprison with exper- imental behavior[J]. Langmuir, 1988, 4: 802-806.
    [3] Binks B P, Meunier J, Abillon O, et al., Measurement of film rigidity and interfacial tensions in several ionic surfactant-oil-water microemulsion systems[J]. Langmuir, 1989, 5: 415-421.
    [4] Mitra K R, Paul K B, Physicochemical investigations of microemulsification of eucalyptus oil and water using mixed surfactants (AOT+Brij-35) and butanol [J]. J.Colloid Interface Sci., 2005, 283:565-577.
    [5] A. K. Poulsen, L.Arleth, K.Almdal, et al., Unusually large acrylamide induced effect on the droplet size in AOT/Brij30 water-in-oil microemulsions [J]. J.Colloid Interface Sci., 2007, 306: 143 - 153.
    [6] Mitra K R, Paul K B, Moulik P S, Phase behavior, interfacial composition and thermody- namic properties of mixed surfactant (CTAB and Brij-58) derived w/o microemulsions with 1-butanol and 1-pentanol as cosurfactants and n-heptane and n-decane as oils [J]. J. Colloid Interface Sci., 2006, 300: 755-764.
    [7] Holmberg K, Surfactant-templated nanomaterials synthesis [J]. J. Colloid Interface Sci., 2004, 274: 355-364.
    [8]吕玲,黄志宇,邹长军,等,三次采油用石油磺酸盐体系的界面张力及其影响因素[J];内蒙古石油化工.2006, 06: 122.
    [9]黄国平,温其标,罗志刚,微乳技术在食品化学中的应用[J].食品科技,2003, 01:7-10.
    [10]邹利宏,方云,阴-阳离子表面活性剂复配研究与应用[J].日用化学工业, 2001, 5: 37- 38.
    [11]王世荣,李祥高,刘东志,等,表面活性剂化学[M].北京:化学工业出版社, 2005:209.
    [12] Sharma S C, Durga P A, Aramaki K, Viscoelastic Micellar Solutions in a Mixed Nonionic Fluorinated Surfactants System and the Effect of Oils[J]. Langmuir, 2007, 23: 5324-5330.
    [13] Blin L J, Henzel N, StébéM, Mixed fluorinated-hydrogenated surfactant-based system: Preparation of ordered mesoporous materials[J]. J.Colloid Interf. Sci., 2006, 302: 643-650.
    [14] Lindma B, Danielson L, The definition of microemulsion [J]. Colloids and Surfaces, 1981, 3: 391-392.
    [15] Hoar T P, Schulman J H, Transparent water in oil dispersions oleophatics hydromicelle [J]. Nature, 1943, 152:102.
    [16]王延平,孙新波,赵德智,微乳液的结构及应用进展[J].辽宁化工, 2004, 33(2): 96-98.
    [17] Hoho H C, Sheu M T, Preparation of microemulsions using polyglycerin fatty acid ester sd surfactant for the delivery of protein drug[J]. J Pharm Sci, 1996, 85(2): 138-143.
    [18] Schechter R S, Bourrel M, Microemulsions and Related Systems [M]. New York: Marcel Dekker, 1998: 160 - 185.
    [19] Prince L M, Microemulsion, Theory and Practice [M], New York: Academic Press, 1977.
    [20] Bowcott J E, and Schulman J H, EmUlsions-control of droplet size and phase continuity in transparent oil-water dispersions stabilized with soap and alcohol[J]. Z. Elektrochem., 1955, 59: 283 - 290.
    [21] Robbins M L, Micellization Solubilization and Microemulsion [M]. New York: Plenum Press. 1977.
    [22] Mitchell D J, Ninham B W, Curvature elasticity of charged membranes [J]. Langmuir, 1989, 5(4): 1121-1123.
    [23]俞鹏勇,王树华,詹晓力,等,氨基硅油柔软剂微乳液的制备及其稳定机理模型,化学通报[J]. 2002, 65(9): w68.
    [24] Bourrel M and Schechter R S, in "Microemulsion and Related systems: Fomulation, Solvency and Physical ProPerties", Chapter l, Surfaetant Seienee Series Vol. 30, Marcel Dekker, Inc., New York and Base, 1988, 1.
    [25]王仲妮,李干佐,张高勇.表面活性剂缔合结构作为药物载体的研究进展-微乳液、囊泡体系[J].自然科学进展, 2004, 14 (11): 1209-1214.
    [26] Bruno F B S, Eduardo F M, Olsson U, et al., Size, Shape, and Charge of Salt-Free Catanionic Microemulsion Droplets:A Small-Angle Neutron Scattering and Modeling Study [J]. J.Phys.Chem.B, 2009, 113: 10230 - 10239.
    [27] Debdurlav N, Mitra K R, Paul B K, Phase behavior of the mixtures of poly (oxyethylene) (10) stearyl ether (Brij-76), 1-butanol, isooctane, and mixed polar solvents II. Water and ethylene glycol (EG) or tetraethylene glycol (TEG)[J]. J.Colloid Interface Sci., 2007, 310:229-239.
    [28] Najjar R, Stubenrauch C, Phase diagrams of microemulsions containing reducing agents and metal salts as bases for the synthesis of metallic nanoparticles [J]. J.Colloid Interface Sci., 2009, 331:214-220.
    [29] Wilk A K, Katarzyna Z, Agnieszka H D, et al., Biocompatible microemulsions of dicephalic aldonamide-type surfactants: Formulation, structure and temperature influence [J]. J.Colloid Interface Sci., 2009, 334:87-95.
    [30] Chai J L, Li G Z, Zhang G Y, et al., Middle-phase microemulsions of green surfactant alkyl polyglucosides[J]. Science in China (Series B), 2003, 46(1): 25-34.
    [31] Kunieda H, Shinoda K, Solution behavior and hydrophile-lipophile balance temperature in the aerosol OT-isooctane-brine system: correlation between microemulsions and ultralow interfacial tensions [J]. J.Colloid Interface Sci., 1980, 75: 601-606.
    [32] Penders M H G M, Strey R, Phase behavior of the quaternary system H2O/n-octane /C8E5/ n-octanol: role of the alcohol in microemulsions [J]. J. Phys. Chem., 1995, 99:10313-10318.
    [33] Yamaguchi S, Kunieda H, Determination of a Three-Phase Tie Triangle (the Hydrophile- Lipophile Balance Plane) in a Composition Tetrahedron: Evaluation of the Composition of Adsorbed Mixed-Surfactant and the Monomeric Solubilities of Short-Chain Surfactant [J]. Langmuir, 1997, 13:6995-7002.
    [34] Yamaguchi S, Correlation between the Mixing Ratio of Surfactants and the Water/Oil Ratio in Middle Microemulsions in Water/Mixed Surfactant/Hydrocarbon Systems [J]. Langmuir, 1998, (14): 7183-7188.
    [35] Chai J L, Li G Z, Diao Z Y, et al., Studies on phase behavior of alkyl polyglucoside based on microemulsion with modified fishlike phase diagram [J]. Chinese Chem. Let., 2004, 15 (3): 361-364.
    [36] Yang X D, Li H L, Chai J L, et al., Phase behavior studies of quaternary systems containing N-lauroyl-N-methylglucamide/alcohol/alkane/water [J]. J. Colloid Interface Sci., 2008, 320: 283-289.
    [37] Clausse M, Zradba A, Morgantini L N, in: H.L. Rosano, M. Clausse (Eds.), Microemulsion systems [M]. Dekker, New York, 1987: 387-425.
    [38] Bumajdad A, Eastoe J, Conductivity of water-in-oil microemulsions stabilized by mixedsurfactants[J]. J. Colloid Interface Sci., 2004, 274:268-276.
    [39] Zhang X G, Dong J F, Zhang G Y, et al., The effect of additives on the water solubilization capacity and conductivity in n-pentanol microemulsions[J]. J. Colloid Interface Sci., 2005, 285: 336-341.
    [40] Bauduin P, Touraud D, Kunz W, et al., The influence of structure and composition of a reverse SDS microemulsion on enzymatic activities and electrical conductivities[J]. J. Colloid Interface Sci., 2005, 292: 244-254.
    [41] Gao Y N, Wang S Q, Zheng L Q, et al., Microregion detection of ionic liquid microemuls- ions[J]. J. Colloid Interface Sci., 2006, 301: 612-616.
    [42] Freiberger N, Moitzi C, An attempt to detect bicontinuity from SANS data [J]. J. Colloid Interface Sci., 2007, 312: 59-67.
    [43] Glatter O, Orthaber D, Stradner A, et al., M. Fanun, N. Garti, et al., Sugar-Ester Nonionic Microemulsion: Structural Characterization[J], J. Colloid Interface Sci., 2001, 241: 215- 225.
    [44] Mendon C R B, Silva Y P, Bkel W J, et al., Role of the co-surfactant nature in soybean w/o microemulsions[J], J. Colloid Interface Sci., 2009, 337: 579-585.
    [45] Kasuba M, Mcknight D, Connah M T, et al., Measuring sub nanometre sizes using dynamic light scattering[J], J. Nanopart. res., 2008, 10: 823-829.
    [46] Behera K, Pandey S, Interaction between ionic liquid and zwitterionic surfactant: A comparative study of two ionic liquids with different anions [J], J. Colloid Interface Sci. , 2009, 331:196-205.
    [47] Roberto R, Pedro L O, L-Tryptophan transport through a hydrophobic liquid membrane using AOT micelles: Dynamics of the process as revealed by small angle X-ray scattering [J]. J. Colloid Interface Sci., 2008, 318: 59-67.
    [48] Note C, Koetz J, Kosmella S, Structural changes in poly (ethyleneimine) modified microemulsion [J]. J. Colloid Interface Sci. 2006, 302: 662-668.
    [49] Baier J, Koetz J, Kosmella S, et al., Olyelectrolyte-Modified Inverse Microemulsions and Their Use as Templates for the Formation of Magnetite Nanoparticles[J]. J. Phys. Chem. B, 2007, 111: 8612-8618.
    [50] Rojas O, Koetz J, Kosmella S, et al, Structural studies of ionic liquid-modified microemu-lsions [J], J. Colloid Interface Sci., 2009, 333: 782-790.
    [51] Olsson U, Shinoda K, Lindman B, Change of the structure of microemulsions with the hydrophile lipophile balance of nonionic surfactant as revealed by NMR self-diffusion studies[J]. J Phys Chem 1986, 90: 4083-4088.
    [52] Lindman B, Stilbs P, Mosely M E , Fourier-transform NMR self-diffusion and microem- ulsion structure[J]. J. Colloid Interface Sci., 1981, 83: 569-582.
    [53] Rozner S, Aserin A, Garti N, Competitive solubilization of cholesterol and phytosterols in nonionic microemulsions studied by pulse gradient spin-echo NMR[J], J. Colloid Interface Sci. ,2008, 321: 418-425.
    [54] Kataoka H, Ueda T, Ichimei D,et al., Evaluation of nanometer-scale droplets in a ternary o/w microemulsion using SAXS and 129Xe NMR[J]. Chem Phys Lett. 2007, 441: 109-114.
    [55] Mehta S K , Kaur K, Rishu, Bhasin K K, Mixed anionic and zwitterionic surfactant based microemulsions as vehicles for solubilizing organodiselenides[J] J. Colloid Interface Sci., 2009, 336: 322-328.
    [56] Calandra P, Giordano C, Ruggirello A, et al., Physicochemical investigation of acrylamide solubilization in sodium bis (2-ethylhexyl) sulfosuccinate and lecithin reversed micelles[J] , J. Colloid Interface Sci., 2004, 277: 206-214.
    [57] Falcone R D, Correa N M, Biasutti M A, et al., SilberAcid?Base and Aggregation Processes of Acridine Orange Base in n-Heptane/AOT/Water Reverse Micelles [J]. Langmuir, 2002, 18: 2039-2047.
    [58] Harada M, Kimura Y, Saijo K, et al., Photochemical synthesis of silver particles in Tween 20/water/ionic liquid microemulsions[J], J.Colloid Interface Sci., 2009, 339: 373-381.
    [59] Gounili G, Bobbitt J M, Rusling J F, Electron Transfer between Amphiphilic Ferrocenes and Electrodes in a Bicontinuous Microemulsion[J]. Langmuir, 1995, 11: 2800-2805.
    [60] Sripriya R, Raj K M, Santhosh G, et al., The effect of structure of oil phase, surfactant and co-surfactant on the physicochemical and electrochemical properties of bicontinuous mic- roemulsion [J]. J.Colloid Interface Sci., 2007, 314: 712-717.
    [61] Chhatre A S, Kulkarni B D, The phase behavior of microemulsion systems containing kerosene [J]. J. Colloid Interface Sci., 1992, 150: 528-534.
    [62] Chhatre A R, Joshi R A, Kulkarni B D, Microemulsions as media for organic synthesis:selective nitration of phenol to ortho-nitrophenol using dilute nitric acid[J]. J. Colloid Interface Sci., 1993, 158: 183-187.
    [63] Lawremce M J, REFS G D, Micmenadsion-based media as novel drug delivery systems [J] . Adv. Drug Deliver Revi., 2000, 45: 89-121.
    [64]刘杰,刘少杰,吕峰峰,等.,微乳液体系作为药物载体的研究进展[J].日用化学工业, 2004, 34: 100-104.
    [65] Boutonnet M, king J, Tennis P, et al., The preparation of monodisperse colloidal metal particles from microemulsions [J]. Colloid and Interfaces, 1982, 5:209-225.
    [66] Palaniraj W R, Sasthav M, Cheung H M, Polymeriration of single-phase microemulsions dependence of polymer morphology on microemulsion structure [J]. Polymer, 1995, 36 (13): 2637-2646.
    [67] Poulsen A K, Arleth L, Almdal K, et al., Unusually large acrylamide induced effect on the droplet size in AOT/Brij30 water-in-oil microemulsions [J]. J. Colloid Interface Sci., 2007, 306: 143-153.
    [68] Garcia A, Llusar M, Sorli S , et al., Effect of the surfactant and precipitant on the synthesis of pink coral by a microemulsion method[J]. J. Eur Ceram Soc. 2003, 23(11): 1829- 1838.
    [69]甘孟瑜,揭芳芳,微乳液技术及其在涂料中的应用[J].涂料工业,2007,37:51-54.
    [70] Bergmann, Wolfgang, Bees, et al., Hair treating microemulsion composition and method of preparing and using the same[P]. US, 507740, 1991:12-13.
    [71] Doan T, Acosta E, Scamehorn J F, et al., Formulating middle phase microemulsions using mixed anionic and cationic surfactant systems[J]. J Surfactants Deterg., 2003, 6(3): 215 - 223.
    [72] Tongcumpou C, Acosta E J, Quencer L B, Microemulsion formation and detergency with oily soil:Ⅱ. detergeny formation and performance[J]. J Surfactants Deterg., 2003, 6(3): 205 -213.
    [73]钟涛,乐长高,微乳液在萃取分离中的应用研究[J].化工时刊, 2008, 22: 56-58.
    [74] Mashavan V, John M V, Role of the interface in protein extractions using nonionic micro- emulsions [J]. J. Colloid Interface Sci., 1997, 186: 185-192.
    [75] Dantas T N C, Neto A A, Moura M C P A, et al., Heavy metals extraction by microemuls- ions[J]. Water research, 2003, 37: 2709-2717.
    [76] Dantas T N C, Neto M H D L, Neto A A D, et al., New surfactant for gallium and aluminum extraction by microemulsion[J]. Ind. Eng. Chem. Res., 2005, 44(17): 6784-6788.
    [1] Prévost S, Gradzielski M, SANS investigation of the microstructures in catanionic mixtures of SDS/DTAC and the effect of various added salts [J]. Colloid Interface Sci., 2009, 337: 472-484.
    [2] Mehta S K, Kaur K, Rishu, et al., Mixed anionic and zwitterionic surfactant based microemulsions as vehicles for solubilizing organodiselenides [J]. Colloid Interface Sci., 2009, 336: 322-328.
    [3] Poulsen A K, Arleth L , Almdal K , et al., Unusually large acrylamide induced effect on the droplet size in AOT/Brij30 water-in-oil microemulsions[J]. Colloid Interface Sci., 2007, 306: 143-153.
    [4] Rajib K, Mitra, Paul K B, Moulik, et al., Phase behavior, interfacial composition and thermody namic properties of mixed surfactant (CTAB and Brij-58) derived w/o microemulsions with 1-butanol and 1-pentanol as cosurfactants and n-heptane and n-decane as oils [J]. Colloid Interface Sci., 2006, 300: 755-764.
    [5] Mitra R K, Paul B K, Investigation on percolation in conductance of mixed reverse micelles [J]. Colloids Surf. A, 2005, 252: 243-259.
    [6] Mitra R K, Paul B K, Physicochemical investigations of microemulsification of eucalyptus oil and water using mixed surfactants (AOT + Brij-35) and butanol [J]. Colloid Interface Sci., 2005, 283: 565-577.
    [7] Paul B K, Mitra R K, Water solubilization capacity of mixed reverse micelles: Effect of surfactant component, the nature of the oil, and electrolyte concentration [J]. Colloid Interface Sci., 2005, 288: 261-279.
    [8] Musarat J, Aijaz A D, Ghulam M R, Effect of sodium butanoate and sodium hexanoate on micelle formation of model cationic-nonionic and anionic-nonionic surfactant mixtures[J]. Colloids and Surfaces A: Physicochem.Eng. Aspects, 2009, 335: 114-120.
    [9] Mehta S K, Kaur K, Rishu, et al., Mixed anionic and zwitterionic surfactant based microemulsions as vehicles for solubilizing organodiselenides [J]. Colloid Interface Sci., 2009, 336: 322-328.
    [10] Hironobu K, Akihiro N, Ma A P, Effect of oil on the solubilizationin microemulsionsystems including nonionic surfactant mixtures [J]. Langmuir, 1995, 11: 3302-3306.
    [11] Yamaguchi S, Kunieda H, Determination of a three-phase tie triangle (the hydrophile- lipophile balance plane) in a composition tetrahedron: Evaluation of the composition of adsorbed mixed-surfactant and the monomeric solubilities of short-chain surfactant [J]. Langmuir, 1997, 13: 6995-7002.
    [12] Yamaguchi S, Correlation between the mixing ratio of surfactants and the water/oil ratio in middle microemulsions in water/mixed surfactant/hydrocarbon systems [J]. Langmuir, 1998, 14: 7183-7188.
    [13] Chai J L, Li G Z, Diao Z Y, et al., Studies on phase behavior of alkyl polyglucoside based on microemulsion with modified fishlike phase diagram[J]. Chineae Chem. Let., 2004, 15 (3): 361-364.
    [14] Yang X D, Li H L, Chai J L, et al., Phase behavior studies of quaternary systems containing N-lauroyl-N-methylglucamide/alcohol/alkane/water[J]. J.Colloid Interface Sci., 2008, 320: 283-289.
    [15] Kunieda H, Nakano A, Pres M A, Effect of oil on the solubilization in microemulsion systems including nonionic surfactant mixtures[J]. Langmuir, 1995, 11: 3302-3306.
    [16]李干佐,宋淑娥,王秀文,林元。中相微乳液的形成和特性(Ⅰ)醇和表面活性剂的影响[J].化学物理学报,1991, 1: 296-301.
    [17] Kunieda H, Shinoda K, Evaluation of the hydrophile-lipophile balance (HLB) of nonionic surfactants.I. Multisurfactant systems[J]. J.Colloid Interface Sci., 1985, 107: 107-121.
    [18] Chai J L, Li G Z, Zhang G Y, et al., Studies on the phase behavior of the system APG/alcohol/alkane/H2O with fishlike diagrams[J]. Colloids and Surfaces A: Phys. Eng. Aspects, 2003, 231: 173-180.
    [19] Chai J L, Zhao J R, Gao Y H, et al., Studies on the phase behavior of the microemulsions formed by sodium dodecyl sulfonate, sodium dodecyl sulfate and sodium dodecyl benzene sulfonate with a novel fishlike phase diagram [J].Colloids and Surfaces A: Phys. Eng. Aspects, 2007, 302: 31-35.
    [20] Beerbower A, Hill M W., McCutcheon's detergents and emulsifiers [M]. Ridgewood: Annual. allured publ.co.,1971: 223.
    [1] Li X C , Gao H H, Zheng W J, et al., Study on conductivity property and microstructure of TritonX-100/alkanol/n-heptane/water microemulsion[J]. Colloids and Surfaces A: Phys. Eng. Aspects, 2010, 360: 150-158.
    [2]曾红霞,李之平,汪汉卿,水/TX-100/正己醇/正辛烷反相微乳液的物化性质[J].物理化学学报,1999,15 (6):522-527.
    [3]汪志银,朱慧,王兆伦,等.醇的链长对Trition X-100微乳液的调控[J].应用化学,2006, 23 (10): 1081-1084.
    [4] Jan M, Dar A A , Rather G M,Effect of sodium butanoate and sodium hexanoate on micelle formation of model cationic-nonionic and anionic-nonionic surfactant mixtures [J]. Colloids and Surfaces A: Phys. Eng. Aspects, 2009, 335: 114-120.
    [5] Chai J L , Li G Z, Diao Z Y, et al., Studies on phase behavior of alkyl polyglucoside based on microemulsion with modified fishlike phase diagram[J]. Chineae Chemical Letter, 2004, 15(3): 361-364.
    [6]李干佐,宋淑娥,王秀文,等.中相微乳液的形成和特性(Ⅰ)醇和表面活性剂的影响,[J].化学物理学报,1991 (1):296-301.
    [7] Chai J L, Zhao J R, Gao Y H, et al., Studies on the phase behavior of the microemulsions formed by sodium dodecyl sulfonate, sodium dodecyl sulfate and sodium dodecyl benzene sulfonate with a novel fishlike phase diagram [J]. Colloids and Surfaces A: Phys. Eng. Aspects, 2007, 302: 31-35.
    [8] Kunieda H, Nakano A, Pres M A, Effect of oil on the solubilization in microemulsion systems including nonionic surfactant mixtures[J]. Langmuir 1995, 11: 3302-3306.
    [9] Zhang X G, Dong J F, Zhang G Y, et al., The effect of additives on the water solubilization capacity and conductivity in n-pentanol microemulsions[J]. Colloid Interface Sci, 2005 285(1): 336-341.
    [10] Hironobu K, Akihiro N, Ma A P, Effect of oil on the solubilizationin microemulsion systems including nonionic surfactant mixtures [J]. Langmuir, 1995, 11: 3302-3306.
    [11] Jan M, Dar A A, Rather G M, Effect of sodium butanoate and sodium hexanoate on micelle formation of model cationic-nonionic and anionic-nonionic surfactant mixtures[J]. Colloid Surface A: Phys. Eng. Aspects, 2009, 335: 114-120.
    
    [1] Boutonneet M, Kizling J, Stenins P, et al., The preparation of mondisperse colloidal metal particles from microemulsions [J]. Colloids and Surfaces, 1982, 5: 209-225.
    [2] Kishida M, Tago T, Hatsuta T, et al., Preparation of silica coated rhodium nanoparticles using water-in-oil microemulsion [J]. Chem. Lett., 2000, 9: 1108-1109.
    [3]高保娇,高建峰,周加其,等,超微镍粉的微乳液法制备研究[J].无机化学学报, 2001, 17 (4): 491-495.
    [4]信文瑜,姚敬华,杨中民, ZnO及其掺杂纳米粒子的反相微乳液法合成及表征[J].云南大学学报(自然科学版), 2003, 25(1): 57-60.
    [5]何天平,彭子飞,微乳法制备纳米级WO3粉体[J].合成化学, 1997, 5(1): 4-6.
    [6]井新利,郑茂盛,蓝立文,反向微乳液法合成导电聚苯胺纳米粒子[J].高分子材料科学与工程, 2000, 16(2): 23-25.
    [7] Li M, Schnablegger H, Main S, Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization [J]. Nature, 1999, 402 (6760): 393-395.
    [8] Vaucher S, Li M, Mann S, Synthesis of prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions[J]. Angen Chem Int Ed, 2000, 39(10): 1793-1796.
    [9] Zarur A J, Ying J Y, Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion [J]. Nature, 2000, 403(6): 65-67.
    [10] Agostiano A, Catalano M, Curri M L, et al., Synthesis and structural characterisation of CdS nanoparticles prepared in a four-components "water-in-oil" microemulsion[J]. Micron, 2001, 31(3): 253-258.
    [11] Liu B, Xu G Q, Gan L M, et al., Photoluminescence and structural characteristics of CdS nanoclusters synthesized by hydrothermal microemulsion[J]. J Appl Phys, 2001, 89 (2): 1059-1063.
    [12]罗静卿,赵新华,周固,CTAB/正丁醇-正辛烷-水和盐水的拟三元体系相图及微乳液结构的电导研究[J].高等学校化学学报, 2004, 25(6): 1085-1089.
    [13] Evans J.S.O., Mary T.A., Sleight A.W., Negative thermal expansion in a large molybdate and tungstate family[J]. J. Solid State chemistry, 1997, 133: 580-583.
    [14]陈宗淇,张洪林,郝策,等, pH和盐类对非离子型表面活性剂所组成微乳液的异常流变性影响[J].化学学报.1995, 53: 625-631.
    [15]薛美玲,张积树,于永良,等,微乳液变型及W/O型导电机理的研究[J].青岛化工学院学报, 1998, 19(1): 21-26.
    [16] Podlogar F., Gasperlin M, Tomsic M, et al., Structural characterization of water- Tween40/Imwitor 308-isopropyl myristate microemulsions using different experimental methods[J]. Int. J. Pharm, 2004, 276: 115-128.
    [17] Paul D I F . Andrew M H, Brian H R, The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsion [J]. J. Chem. Soc., Faraday Trans., 1987, 83(1): 985-1006.
    [18] Amarnath M, Charlly M, Manoj V, Closed and open structure aggregates in microemu- lsions and mechanism of percolative conduction [J]. J. Phys. Chem., 1990, 94(13): 5290- 5292.
    [19]莫春生,邬实华,十六烷基三甲基溴化铵/正丁醇/正庚烷/水四组份体系的相行为及微乳结构研究[J].江西师范大学学报(自然科学版), 2001, 25(2): 145-149.
    [20] Lagourette B, Peyrelasse J, Boned C, et al., Percolative conduction in microemulsion type systems [J]. Nature, 1979, 281: 61-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700