一种油水分离用含氟丙烯酸酯树脂及其复合材料的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油液中水的存在会严重影响油液品质,从而降低发动机的效率和使用寿命,给现代生产生活带来许多的危害和损失,因此控制油液中的含水量显得尤为必要。目前市场上,油水分离设备中的分离滤网一般是喷涂聚四氟乙烯粉末涂料实现疏水亲油性能,但其存在成膜温度高、亲油性不佳等缺点。因此开发新的油水分离材料显得极为重要。
     本文首先采用自由基溶液聚合法,以甲基丙烯酸十八烷基酯和苯乙烯等单体为亲油单体,氟单体为疏水单体,甲基丙烯酸-β-羟乙酯为羟基单体制备了热固性含氟丙烯酸酯树脂。研究了氟单体的种类、含量、添加方式对树脂各项性能的影响,并分析了苯乙烯(St)/甲基丙烯酸十八酯(SMA)/甲基丙烯酸十二氟庚酯(DFMA)的单体配比以及羟基单体用量等因素对树脂涂膜性能的影响。将树脂稀释至合适浓度浸渍不锈钢滤网,于120°C固化成膜后,可得到疏水亲油效果的过滤网,其水接触角为132.4°、煤油接触角为0°。
     其次,通过表面构造微观结构增大粗糙度,进一步提高树脂浸渍过滤网的疏水亲油性能,采用物理共混的方法,制备了纳米二氧化硅/含氟丙烯酸复合涂层。考察了纳米二氧化硅粒子的添加量和复合树脂的浓度对浸渍滤网疏水亲油性的影响。结果表明,当纳米二氧化硅粒子添加量为20wt%,涂层溶液浓度达到10wt%时,不锈钢网浸渍复合涂层溶液固化后可得到超疏水超亲油过滤网。
     最后,根据滤网油水分离的作用机理,设计简单的油水分离装置,研究了复合树脂在油水分离过滤网上的应用。结果表明:油水分离过程中,疏水性的提高对提高水的分离效率更为重要;本文制备的疏水亲油树脂可以适用于50目-1800目范围孔径内的不锈钢网;浸渍树脂的不锈钢网也适用于多种油液混合物中污染水的分离。
The existence of water in oil can seriously reduce the quality of oil, so the efficiency andthe service life of the engine were reduced, which causes enormous damage and loss toindustrial production and modern living. Therefore, it is particularly necessaryal to reduce thecontent of water in oil. Generally, the hydrophobic-oleophilic properties of oil-waterseparation filter is endowed by spraying PTFE powder on the filter media. However, there arestill some defects such as high film-forming temperature and poor oleophilicity. Therefore,developing a facile and inexpensive approach to obtain an oil-water separation media iscrucial.
     Firstly, with methyl octadecyl acrylate and styrene as oleophilic monomer, fluorinatedmonomer as hydrophobic monomer, 2-hydroxyethyl methacrylate as hydroxy monomers, athermosetting fluorine-containing acrylic resin was prepared by free radical solutionpolymerization. Effect of the types, content and the way of addition of the fluorinatedmonomer on the properties of resin was studied. Besides, the ratio of the St/SMA/DFMA andthe amount of hydroxyl monomers were optimized for the performance of the resin. Stainlesssteel mesh was impregnated into the preparaed resin with the appropriate concentration. Aftercuring at 120℃, the oleophilic and hydrophobic filter was obtained. The contact angle ofwater and contact angle of kerosene were 132.4°and 0°, respectively.
     Secondly, to enhance the hydrophobic and oleophilic properties of the resin coated mesh,a micro-structure on the surface of the mesh was fabricated by blending nano-SiO2 particleinto the prepared fluorinated acrylate resin. Effects of nano-SiO2 content and concentration ofcomposite resin on the hydrophobic and oleophilic properties of stainless mesh wereinvestigated. The results show that a superhydrophobic and superoleophilic filter can beobtained when the nano-SiO2 particle content was 20wt% and the concentration of thesolution was 10wt%.
     Finally, base on oil-water separation mechanism, a simple oil-water separation devicewas designed. Application of the prepared composite resin on stainless mesh as oil-waterseparation filter was studied. The results show that improving the hydrophobicity of filter ismore important for high water separation efficiency in the process of oil-water separation.The prepared hydrophobic and oleophilic resin can be applied to stainless steel mesh with theaperture in the range of 50 to 1800 mesh. The resin coated stainless steel mesh can also beused for water separation in a varietyof oil-water mixture.
引文
[1] Wenzel R.N.. Resistance of solid surfaces to wetting by water [J]. Industrial andEgineering Chemistry, 1936, 28: 988-994
    [2] Cassie A.B.D., Baxter S.. Wettability of porous surfaces [J]. Transactions of the FaradaySociety, 1944, 40: 546-551
    [3] Philip B.. Engineering shark skin and other solutions [J]. Nature, 1999, 400: 507 -509
    [4] Nakajima A., Hashimoto K., Langmuir W.. Transparent superhydrophobic thin films withself-cleaning properties [J]. Langmuir, 2000, 16 (17): 7044-7047
    [5] McHale G., Newton M.I.. Frenkel’s method and the dynamic wetting of heterogeneousplanar surfaces [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002, 206: 193-201
    [6] Adamson A.W., Gast A.P.. Physical chemistry of surfaces(6thed) [M]. New York: JohnWiley& Sons, 1997
    [7] Yüce M.Y., Demirel A.L., Frank M.. Tuning the surface hydrophobicity of polymer/nanoparticle composite films in the Wenzel regime by composition [J]. Langmuir, 2005,21 (11): 5073-5078
    [8]顾惕人,朱步瑶,李外郎,等.表面化学[M].北京:科学出版社, 2001
    [9]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社, 2007
    [10] Nicolas M., Guittard F., Geribaldi S.. Stable superhydrophobic and lipophobic conjugatedpolymers films [J]. Langmuir, 2006, 22(7): 3081-3088
    [11] Tsujii K., Yamamoto T., Onda T., et al. Super oil-repellent surfaces [J]. AngewandteChemie International Edition in English, 1997, 36(9): 1011-1012
    [12] Shibuichi S., Yamamoto T., Onda T., et al. Super water- and oil-repellent surfacesresulting from fractal structure [J]. Colloid and Interface Science. 1998, 208(1): 287-294
    [13] Xu A.M., Zeng L.K.. Development of hydrophobic ceramic surface [J]. Journal ofSynthetic Crystals, 2007, 36 (2): 405-409
    [14] Zhu L.Q., Jin Y.. Preparation and performance of hydrophobic inorganic/organic film [J].Surface Technology, 2005, 34 (3): 1-4
    [15] Wang R., Kazuhito H., Akira F.. Light induced amphiphilic surfaces [J]. Nature, 1997,388 (31):431-432
    [16]冯艳文,张青,陈则立.钛-硅烷超亲水功能复合材料研究[J].环境工程, 2009, 27:515-519
    [17]王国建,沙海洋.汽车玻璃超亲水涂膜的制备[J].涂料工业, 2009, 39(9): 25-28
    [18] Russell T.P.. Surface-responsive materials [J]. Science, 2002, 297(8):964-967
    [19] Liu Y., Mu L., Liu B.H., et al. Controlled switchable surface [J]. Chemistry a EuropeanJournal, 2005, 11(9): 2622-2631
    [20] Sun T.L., Wang G.J., Feng L., et al. Reversible switching between superhydrophilicityand superhydrophobicity [J]. Angewandte Chemie International Edition, 2004, 43(3):357-360
    [21] Qin F.T., Yu Z.J., Fang X.H., et al. A novel composite coating mesh film for oil-waterseparation [J]. Frontiers of Chemical Engineering China, 2009, 3(1): 112-118
    [22] Lin F., Zhang Z.Y., Mai Z.H., et al. A super-hydrophobic and super-oleophilic coatingmesh film for the separation of oil and water [J]. Angewandte Chemie InternationalEdition in English. 2004, 43, 2012-2014
    [23] Pan Q.M., Wang M., Wang H.B.. Separating small amount of water and hydrophobicsolvents by novel super-hydrophobic copper meshes [J]. Applied Surface Science, 2008,(254): 6002-6006
    [24] DeSimone J.M., Guan Z., Elsbernd C.S.. Synthesis of fluoropolymers in supercriticalcarbon dioxide [J]. Science, 1992, 257(8):945-F947
    [25] Zhang Zh.B., Shi Z.Q., Ying S.K.. Atom transfer radical homopolymerization offluorinated meth- and acrylates [J]. China Synthetic Rubber Industry, 1999, 22 (3): 177
    [26]梁媛媛,杨文英,刘翔宜,等. Co(Ⅱ)Schiff碱配合物作用下甲基丙烯酸-2, 2, 3, 3-四氟丙酯可控均聚[J].合成橡胶工业, 2003, 26(3): 172-176
    [27]张彬,张兆斌,万小龙等.水分散体系中甲基丙烯酸甲酯和丙烯酸八氟戊酯嵌段共聚物的合成与表征[J].高分子学报, 2003, 6: 906-909
    [28] Hansen N.M.L, Haddleton D.M., Hvilsted S.. Fluorinated bio-accepted polymers via anATRP macroinitiator approach [J]. Polymer Science: Polymer Chemistry, 2007,45:5770-5780
    [29] Xu F.J., Zhao J.P., Neoh K.G., et al. Surface functionalization of polyimide films viachloromethylation and surface-initiated atom transfer radical polymerization [J].Industrial Engineering ChemistryResearch. 2007, 46: 4866-4873
    [30]王建忠.液压油过滤脱水的研究[J].黑龙江矿业学院学报.2000,1:15-19
    [31]刘军.聚结式油水分离工艺[J].山西建材. 2000, C00期, 7-8
    [32] Li Y.. Conditioning water contaminant in oil bycoalescence. 2nd IFC, 1999
    [33]陈宇肤.油水聚结分离技术理论及试验研究[D].北京:北京化工大学, 2006
    [34]胡雪滨,胡振国,陈龙花.油田污油处理技术研究与应用[J].河南石油, 2005,19(6):78-80
    [35]李廷朝,程素萍.润滑油聚结脱水技术[J].液压与气动, 2003, 1:41-42
    [36]戴罗宁,沈德毅.液压油的水污染及真空脱水净油理论的研究[J].机电设备,1991,1:16-20
    [37]蔡小华,王超,周游,等.将超声破乳法用于炼厂污油脱水[J].化工进展, 2008,27(10): 1614-1617
    [38]张敏,袁惠新.聚结分离过程的机理、方法及应用[J].过滤与分离, 2003, 13(01):44-46
    [39]杨冬梅,赵县防.含油废水处理方法综述[J].洛阳师范学院学报, 2007, (05):104-108
    [40]胡晓林,刘红兵.几种油水分离技术介绍[J].热力发电. 2008, 37(3): 91-92
    [41]李爱阳,蔡玲.膜分离技术处理含油废水研究进展[J].化工时刊, 2007, (06):62-64
    [42]戴军,衰惠新,俞建峰.膜技术用于工业废水处理的现状及进展[J].过滤与分离,2001, (03):5-8
    [43]冯和平,罗万明,孙王民,等.聚结干燥技术及应用[J].化工自动化表. 2003, 6:69-70
    [44] Lloyd L., Aileen S., Mridula N., Coalescence During Emulsification [J]. Journal ofColloid and Interface Science, 2002, 253:409-418
    [45]陆耀军.油水重力分离过程中的液滴动力学分析[J].油气田地面工程, 1998, 17 (4):1-5
    [46]郭大光.新型膜分离过-膜分相技术和应用[J].石油化工高等学校学报.1995,8(2):24-27
    [47]张玉梅,束长好,吕效平.超声破乳脱水处理污油[J].南京工业大学学报, 2004,26(4): 67-70
    [48]管从胜,王威强.氟树脂涂料及其应用[M].北京:化学化工出版社, 2004,(3): 238-256
    [49]李芸芸,舒武炳,蔺福强.高吸油性树脂的研究及应用现状[J].精细与专用化学品,2007, 15(20):1-3
    [50]吴波,周美华.高吸油性树脂[J].现代塑料加工应用. 2006, 18(2):62-64
    [51]汪长春,包启宇.丙烯酸酯涂料[M].北京:化学工业出版社, 2005
    [52] Roussel F., Saidi S., Guittard F., et al. Thermophysical properties of fluorinated acrylatehomopolymers: Mixing and Phase Separation [J]. The European Physical Journal E: SoftMatter and Biological Physics, 2002, 8(3):283-288
    [53] Hartmann P., Collet A., Viguier M.. Acrylic copolymers with perfluoroalkylated biphenylside groups: Correlation Structure-Surface Properties [J]. Macromolecules, 2006,39(20):6975-6982
    [54] Nishino T., Meguro M., Nakamae K., et al. The lowest surface free energy based on -CF3alignment [J]. Langmuir, 1999, 15(13): 4321-4323
    [55] Wang J., Mao G., Ober C.K., et al. Liquid crystalline, semifluorinated side group blockcopolymers with stable low energy surfaces synthesis, liquid crystalline structure, andcritical surface tension [J]. Macromolecules, 1997, 30: 1906-1914
    [56] Satoh J.K., Nakazumi H., Morita M.. Preparation of super-water-repellent fluorinatedinorganic-organic coating films on nylon 66 by the sol-gel method using microphaseseparation [ J]. Sol-Gel Science and Technology, 2003, 27: 327-329
    [57] Erbil H.Y., Demirel A.L., Avci Y., et al. Transformation of a simple plastic into asuperhydrophobic surface [J]. Science 2003, 299, 1377
    [58] Vogler E.A. Structure and reactivity of water at biomaterial surfaces [J]. Adv. ColloidInterface Sci., 1998, 74(1-3):69-117
    [59] Dorrer C., Ruhe J.. Wetting of silicon nanograss: From superhydrophilic tosuperhydrophobic surfaces [J]. Adv. Mater., 2008, 20(1):159-163
    [60]孙治谦.油水重力分离原理及聚结破乳机理初探[J].化工机械, 2009, 6: 636-639
    [61]张敏,袁惠新.聚结分离过程的机理、方法及应用[J].过滤与分离, 2003, 1(13): 44-46
    [62] Seid M.J., Elham A., He Y.H., et al. Re-coaleseenee of emulsion droplets duringhigh-energy emulsification [J]. Food Hydrocolloids, 2007, 22(7): 1191-1202
    [63]程传煊.表面物理化学.科学技术文献出版社[M].北京:科技文献出版社,1995
    [64]王枢.抗污染油水分离复合膜制备及分离性能研究[D].成都:四川大学, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700