新型电极高压脉冲电场破乳试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳状液是一种或几种液体以液滴形式分散在另一种与之互不相溶的液体中构成具有相当稳定度的多相分散体系。乳状液分为油包水(W/O)型和水包油(O/W)型。
     随着石油和化工工业的发展,日益增多的乳状液需要进行破乳。目前破乳的方法有:加热破乳、研磨破乳、润湿聚结破乳、微波破乳、破乳剂破乳、膜法破乳、电场破乳等。针对这些破乳方法尤其是电破乳方法的不足,本课题提出了新型电极高压脉冲电场破乳法。
     本研究采用的新型电极由环氧树脂/钛酸钡(EP/BT)复合材料覆盖铜棒构成。模拟乳状液是煤油和水按1:1体积比混合,以Span80为乳化剂配制而成的W/O乳状液。破乳电场由高压脉冲电源提供,其电压范围为8~22kV,频率为50Hz以下。试验测定了复合材料的介电常数,并分析了电场特征。研究了各因素对破乳率的影响。研究结果表明:复合材料的介电常数随其配比升高而升高,在67%附近达峰值。电极绝缘材料、外加电压、破乳时间、气温对破乳率都有不同程度的影响,随着电极复合材料配比的升高,破乳率上升,40%时最高,但80%反而有所下降;电压是对破乳率影响最大的因素,随着电压升高,破乳率不断上升,22kV时破乳效果最好;随着破乳时间的增加,破乳率不断上升,但其增长速率不断降低;温度越高,破乳率越高。三因素、三水平的正交试验结果表明:采用3#(40%)电极、在电压22kV条件下5min的破乳效果最好。
     本文在临界电场强度的基础上提出了“临界液滴直径”的概念。结合乳状液内相水滴的正态分布情况推导出一个关于外加电场强度的函数,这个函数表达了给定电场强度下的破乳率。它很好地解释了本研究中的试验现象,具有较高的应用价值。
     最后本文针对试验中遇到的困难和未能解决的问题,提出了建议,以期对以后的研究有一定的借鉴作用。
Emulsion is a comparatively stable multiphase dispersive system which is composed of several liquids. In this system, one or several liquids disperse into another insoluble liquid. There are two kinds of emulsion: water-in-oil (W/O) and oil-in-water (O/W).
     As the development of petroleum and chemical industry, more and more emulsion needs to be broken down. Currently the applied methods of demulsification include: heating demulsification, grinding demulsification, wetting coalescence demulsification, microwave demulsification, demulsifier demulsification and membrane demulsification. In this work, the demulsificatuion method by high-voltage pulsed electric field (HPEF) applying new types of electrode was investigated.
     In this work, The new types of electrode were made by copper sticks covered with epoxide resin/barium titanate (EP/BT) composite materials. Model emulsion was made from kerosene and water (1:1 by volume) with Span 80 as emulsifier, it is a type of W/O. The voltage of the electrical source generating electric field ranged form 8 to 22 kV, and its frequency was less than 50Hz. Permittivity of composite materials were measured, electric field character was analysed, and effluence of various factors on demulsification rate were investigated. The result of this study indicates: The permittivity of composite materials increases as the content of barium titanate increases, and it reaches the peak value when the content is near 67%. And all of the factors such as dielectric composite materials, applied voltage, time, air temperature affect demulsification rate to varying degrees. The demulsification rate increases, as the content increases, and it reaches peak value when the content is 40%, however, it decreases when the content is 80%; The applied voltage is the most vital factor. As voltage rises, the demulsification rate increases continuously, and when voltage value is 22kV, the effect of demulsification is the best; As time increases the demulsification rate increases continuously, and the rising rate becomes lower and lower; The higher the air temperature, the higher the demulsification rate under the experimental conditions; In the work, an orthogonal experiment involving three factors, each at three levels was designed. And the result of orthogonal experiment shows that the condition combination is 3# electrode +22kV voltage+5 minutes is the optimum one.
     In this paper, a new concept of critical droplet diameter was proposed on the basis of critical electric field intensity. And according with normal distribution of internal phase droplet, a function on applied electric field was deducted. The demulsification rate under a given electric field intensity can be expressed by this function. Some experimental phenomena in this reseach were explained very clearly. Also it has high value in application field.
     At last this paper presents some suggestions to some difficulties and unresolved problems in oder to suppy valuable refernces for the further study.
引文
[1]梁治齐,李金华.功能性乳化剂与乳状液[M],第一版.中国轻工业出版社,2000,4:18-80.
    [2]廖雨郊.物理化学[M].北京:高等教育出版社,1994.
    [3]傅献彩,沈文霞,姚天扬.物理化学(第四版)[M].北京:高等教育出版社,1990.
    [4] Lucassen-Raynders E. H. and Kuijpers K.A. The role of interfacial properties in emulsification[J]. Colloids Surfaces,1992,65,175-184.
    [5]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1984,40.
    [6]聂建波,黄万抚.乳状液破乳机理研究进展[J].江西有色金属,2004,18(2):38-40.
    [7]禇莹,刘沛妍,马占芳等.研磨破乳的规律及其机理[J].高等学校化学学报,1996,17(8):1285-1288.
    [8]宋友,包德才,宋桂萍.利用单滴法对研磨和电场联合破乳机理的研究[J].河北大学学报(自然科学版),1997,3:85-88.
    [9]孙德智,段晓东,徐衍岭等.乳化液膜德润湿聚结破乳的研究[J].哈尔滨工业大学学报,1996,28(4):68-71.
    [10] Sun Dezhi, Jong Shik Chung,Duan Xiaodong,et al. Dumulsification of water-in-oil emulsion by wetting coalescence material in stirred-and packed- columns[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,150:69-75.
    [11] C.S. Fang, P.M.C. Lai. Microwave heating and separation of water in oil emul- sions[J].Journal of microwave power and electromagnetic energy,1995,30(1): 46-57.
    [12] Klaika, William J.. Method and apparatus for controlling fluency of high viscosity hydrocarbon fluids [P].U.S.: 4067683, 1978.
    [13] Wolf, Nicholas O.. Use of microwave radiation in separating emulsions and dispersions of hydrocarbons and water [P]. U.S.: 4582629,1986.
    [14]胡同亮,李萍,张起凯,等.微波辐射原油脱水的研究[J].炼油技术与工程,2003,33(2):6-8.
    [15]刘晓艳,楚伟华,戴春雷,等.油水乳液的微波分离[J].大庆石油学院学报,2005,29(3):99-101.
    [16]傅大放,吴海锁.微波辐射破乳的试验研究[J].中国给水排水,1998,14:4-6.
    [17] Lixin Xia, Shiwei Lu, Guoying Cao.Stability and demulsification of emulsions stabilized by asphaltenes or resins[J]. Journal of Colloid and Interface Scien- ce,271(2004):504-506.
    [18]任卓琳,牟英华,崔付义.原油破乳剂机理与发展趋势[J].油气田地面工程,2005,24(7):16-17.
    [19]孟琳.原油破乳剂的应用与发展趋势[J].油气田地面工程,2005,24(4):18-19.
    [20] Zhiqing Zhang, G.Y. Xu, F. Wang, S.L. Dong,et al.Characterization and demul- sification of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly (ethylene oxide) copolymers[J]. Journal of Colloid and Interface Science, 2004,277:464-470.
    [21] Jiangying Wu, Yuming Xu, Tadeusz Dabros,et al. Effect of EO and PO posi- tions in nonionic surfactants on surfactant properties and demulsification performance[J]. Colloids and Surfaces A: Physicochem, 252(2005): 79-85.
    [22]吴少杰,李朝辉,朱泮民,等.化学复合破乳剂处理冷轧乳化液废水的试验研究[J].给水排水,2004,30(2):45-47.
    [23] Tomalia, Donald A., Dewald, James R.. Dense star polymer[P]. U.S.:4558120, 1985.
    [24]王俊,李杰,丁翠艳,等.星型聚合物破乳剂的合成与性能研究[J].精细化工,2002,19(3):169-172.
    [25] Marc Hlavacek. Break-up of oil-in-water emulsions induced by permeation through a microfiltration membrane[J].Journal of Membrane Science,102 (1995):1-7.
    [26] N.M.Kocherginsky,Chin Lee Tan,Wen Feng Lu.Demulsification of water-in- oil emulsions via filtration through a hydrophilic polymer membrane[J]. Journal of Membrane Science,2003,220:117-128.
    [27]骆广生,邹财松,孙永等.微孔膜对O/W型乳液破乳的研究[J].化学工程,2001,29(4):32-35.
    [28]陆岗,蒋楚生,等.液膜乳状液电破乳的研究[J].膜科学与技术,1993,13(2):40-45.
    [29] Byoung-Yun Kim, Jun Hyuk Moon,Tae-Hyun Sung,et al.Demulsification of water-in-crude oil emulsions by a continuous electrostatic dehydrator[J]. separation science and technology,2002. 37(6):1307-1320.
    [30]阎军,毛宗强,何向明.静电场和离心力场联合分离水/油型乳状液[J].化工学报,1998,49(l),17-27.
    [31] Taylor S.E.. Theory and practice of electrically-enhanced phase separation of water-in-oil emulsions[J].Trans. IChem,1996,74(A5),526-540.
    [32]王大儒.原油电脱水的电场力学分析及最佳运行电场[J].油田地面工程,1983,2(3),28-37.
    [33] Urdahl O., Nordstad K. et al. Development of a New Compact Electrostatic Coalescer Concept[J].SPE prod. Facil., 2001,16(1),4-8.
    [34] Williams T.J., Bailey A.G Draxler J., Marr R. Design criteria for electrostatic deemulsifiers[J]. Int. Chem.Eng., 1993,33(1),1-7.
    [35] Urdahl O., Williams T.J., Bailey A.G. et al., Electrostatic destabilization of water-in-oil emulsion under conditions of turbulent flow[J]. Trans IChemE, 1996,74(A2),158.
    [36] Chen T.Y., Mohammed R.A., Bailey A.l., et al. Dewatering of crude oil emulsions:4. Emuilsion resolution by the application of an electric field[J]. Colloids and Surfaces A,1994,83,273-284.
    [37] Kim B.Y., Moon H.J., Sung T.H., et al. Demulsification of Water-in-crude oil Emulsion by a Continuous Electrostaic Dehydrator[J]. Sep.Sci.Technol., 2002,37(6), 1307-1320.
    [38]陈海燕,漆新民.原油脉冲电脱水的研究[J].石油炼制与化工,2000,31(1),65-66.
    [39]毛宗强,阎军,李锐.新型破乳器的研制[J].石油炼制与化工,1998,29(10),51-54.
    [40]乔建江,詹敏,张一安,等.乳化原油的破乳机理研究I.油水界面张力对破乳效果的影响[J].石油学报(石油加工),1999,15(2)1-4.
    [41] Harpur I.G., Wayth N.J., Bailey A.G., et al. Destabilisation of water-in-oil emulsions under the influence of A.C. electric field: Experimental assessment of performance[J]. J.Electrost., 1997, 40&41, 135-140.
    [42]韩伟,邓修,马新胜等.液膜法提取发酵液中苯丙氨酸的静电破乳[J].高校化学工程学报,1997,11(4),361-365.
    [43]陈宝东,林建琛,沈宏俊.原油之预处理[J].石油季刊,1998,34(3),9-16.
    [44]沈良,宋世庚,贾锐等.BaTiO3薄膜的sol-gel法制备及对其介电特性的研究[J].新强大学学报(自然科学版),2000,2(17):57-60.
    [45]刘泽,李永祥,吴冲若.BaTi03纳米粒子/环氧精细功能复合材料的制备及其介电性能的研究[J].电子元件与材料,1998,17(1):1-3.
    [46]李克友,魏毅.国内外改性丙烯酸树脂研究发展概况[J].中国皮革,1991,20(6):13.
    [47]赵国玺.表面活性剂物理化学(修订版)[M],北京:北京大学出版社,1991.
    [48]段世铎,谭逸玲.界面化学[M],北京:高等教育出版社,1990年.
    [49]章小林,李佟茗.新型电极和电场的电场破乳研究[D],2004年.
    [50] H·诺特勃洛克著,张政译.电容器[M],北京:国防工业出版社,1958.
    [51]杨晓军,杨志民,毛昌辉,杜军.高介电常数EP/BT复合材料介电性能的研究[J].化工新型材料,2006,34(12):27-30.
    [52] Fujinawa K, Morishita M, et al. J Chem Eng Jpn,1988,17(6):632.
    [53] Wang S S and Chan C C. Seperation Science and Technology,1994,29(2):165.
    [54] Lu Gang, Lu QiongHua, Li PanSheng. Break-down of liquid membrane emulsion under high electric field[J]. Journal of membrane science.128(1997) 1-6.
    [55] J.O.Hinze, AIChE J., 1(3)(1995)289.
    [56] J.W.Franknfeld and N.N.Li, Sep.Sci.Technol., 16(5)(1981)385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700