基于明渠流原理的多相计量装置研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多相流计量技术被列为影响石油工业未来发展的关键技术之一,该技术不必分离出三相流的各个组成成份而同时对其各成份(油、气、水)的流量进行测量,可以替代由测试分离器及其控制系统、单相监控仪表、管汇等组成的巨大而笨重的传统测量系统,对于流程简化、减少油田开采成本具有重要意义。
     在已经开展的研究基础上,提出了对现有多相流计测系统的改造方案,改造后系统计量原理为:利用基于油气水混合流体在明渠内的流体力学原理建立的气液相计量模型进行计算,获得气液两相流量初始值,将模型计量的结果和所提取的液位差压、气体微差压和压力等参数特征值作为气液两相计测神经网络相应的输入信号。神经网络根据输入信号的数值特征,并通过流型的识别分类对气液两相的流动特征进行定量分析,找到相关的物理量与气、液分相流速之间的函数关系,从而对模型计量结果进行进一步补偿和修正而得出气液两相的流量。
     为了验证改造后多相流计测系统的性能指标,通过室内及现场实验对改造后的多相流计测系统进行了详细的研究。对采集到的数据的线性相关性进行了定量分析。根据分析结果,对不同的流型选取不同的特征参量对数据进行排序、分级和处理。处理过程采用了“交错叠盖区域拟合法”,实现了对状态参量的数值拟合。实验对比分析了改造前后装置结构以及测量程序的改进效果,对多相流量计测系统进行了现场测试,实验测试结果表明:得到修正后的计量系统的液相流量计量在90%的置信概率下相对误差小于10%,气相流量计量在90%的置信概率下相对误差小于15%,含水率相对误差小于5%,本计量装置的计量精度接近或达到当前油田多相流计量要求。
     针对多相流计测系统在现场实验中表现出的不足和缺点,对现有装置提出了新的改进方案。
The measurement of multiphase flow is one of the most critical technologies which influence the development of oil industry in the future. This technology needn’t separate each component of the multiphase flow, and can measure the flow rate of each component (oil, water and gas). So this technology can replace the traditional measurement system which is composed of test separator, single phase monitor instrument and manifold, and is very useful for flow process simplification and investment decrement of petroleum exploitation.
     Modified program about existing multiphase flow metering system was put forward based on the predecessor’s studies. The principle of the modified metering system is that the metering models of liquid and gaseous phase are established based on the principle of mixed fluid’s fluid dynamics in open channel, and then solved to get the preliminary flow rate of gas and liquid phase by means of these models. Results of models metering and the distilled eigenvalue of differential pressure of liquid level, tiny differential pressure of gas, pressure and other parameters are used as input of corresponding for gas-liquid two-phase measurement neural network. Based upon characteristics of numerical values, the neural network would perform quantitative analysis of flow feature by means of identification and classification of flow pattern, and then find out the functional relationship between correlation physical quantity and velocities of gas phase and liquid phase, further compensation and modification of the results would be made to obtain the final flow rate of gas and liquid phase.
     In order to validate the performance index of modified multiphase flow metering system, the detailed study has been done in laboratory and onsite experiment. The linear dependence of the collecting data has been quantitative analyzed in this thesis. According to the result of analyses, different characteristic parameters have been selected for different flow regime, and then the experimental data has been sorted, classified and calculated.‘Interlace-overlap interval fitting’was adopted to realize the numerical value fitting to state parameter in treating process. Amelioration effectiveness of modified device structure and measurement routine have been contrastively analyzed with the before modified. Multiphase flow metering system was applied to onsite experiment. The results showed that the relative error of liquid phase flow rate is below 10% at a confidence level of 90%, the relative error of gas phase flow rate is below 15% at a confidence level of 90%, the relative error of water cut is less than 5%. The metering precision of this meter can approach or meet the need of oilfield multiphase flow metering.
     New modified program about the device in existence is put forward aiming at the shortages and flaws of multiphase flow metering system at field testing.
引文
[1]刘强,郑莹娜.多相流多参数动态测量技术发展与应用[J].工业仪表与自动化装置,2000(6):52~54.
    [2] Slijkerman,W.F.J.et al:Oil companies’needs in multiphase flow metering Proc.13th North Sea Flow Measurement Workshop,1995.
    [3]周芳德.各国竞相发展多相流量计量技术[J].国际学术动态,1998,(4):62~65.
    [4]洪毅,毕晓星.多相流量计的研究及应用[J].中国海上油气(工程),2003,15(4):16~20.
    [5] Lijun Xu, Jian Xu, Feng Dong, Tao Zhang.On fluctuation of the dynamic differential pressure signal of Venturi meter for wet gas metering[J].Flow Measurement and Instrumentation,14(2003):211~217.
    [6]刘轶,陈明等.自回归模型谱估计在流量测量中的应用[J].传感技术学报,2004,9(3):424~426.
    [7]钟兴福,张新宏等.油水两相持水率非线性模型及其数值解[J].测井技术,1998,22(6):404~406.
    [8]韩书芳等.湿气双参数流量测量方法的探索与研究[J].中国仪器仪表,2005,4:36~42.
    [9]李海清.两相流参数检测及应用[M].杭州:浙江大学出版社,1991,142~148.
    [10] Abdullah Buhidma,Rajinder Pa1.Flow measurrnent of two-phase oil-in-water emulsions using wedge meters and segmental orifice meters[J].The Chemical Engineering Journal,1996,63:59~64.
    [11]戴培文等.孔板—均速管组合法测量汽—水两相流双参数[J].特种油气藏,1995,2(4):31~34.
    [12]林宗虎.气液两相旋涡脱落特性及工程应用[M].化学工业出版社,2001,08.
    [13]吕宇玲,何利民.多相流量计及其在石油工业中的应用[J].石油规划设计,2005,16(2):47~48.
    [14] Ashton,S.L.et al.Development and trial of microwave techniques for measurement of multiphase flow of oil,water and gas,Proc.SPE Asia Pacific Oil and Gas Conf,1994.
    [15] E.Abro,G.A.Johansen.Improved void fraction determination by means of multibean gamma-ray attention measurement[J].Flow measurement and Instrumentation,2001 (12):25~28.
    [16]滕汜颖,李永光,周伟国等.气固两相流动测量技术的现状与展望[J].上海电力学院学报,2002,18(4),39~43.
    [17]童茂松,李莉.光纤传感器在石油测井中的应用进展[J].技术与应用,2005,2,17~20.
    [18] Oystein Lund Bo*,Ebbe Nyfors.Application of microwave spectroscopy for the detection of water fraction and water salinity in water/oil/gas pipe flow[J].Journal of Non-Crystalline Solids,2002,30(5):345~353.
    [19]曹学文等.在线多相流量计测量技术研究[J].中国海上油气(工程),2002,14(2):37~40.
    [20]燕金刚,成玉岭.超声流量计在液相及固液两相测量中的应用[J].江苏煤炭,2003(3),52~53.
    [21]林宗虎等.多相流近期工程应用趋向[J].西安交通大学学报,2001,Vol.35(9), 886~890.
    [22]王晓东,董守平.石油多相流计量研究的现状和发展趋势[J].油气田地面工程,1999,18(2):4~7.
    [23]李玉星,冯叔初.油气水多相管流[M].石油大学研究生院,2003.
    [24]燕芳,李文涛.气/液两相泡状流想关流速测量系统的研究[J].传感器世界,2005,2,10~12.
    [25]黄志尧、王宝良等.软测量技术在多相流检测中的应用[J].仪器仪表学报,第22卷第3期增刊,2001.
    [26]俞金寿.先进控制技术及应用.世界仪表与自动化,2005年7月.自动化软件新技术应用论坛.
    [27]杨钢,王玉涛等.多传感器数据融合技术在多相流参数测量中的应用[J].仪表技术与传感器,2005,11,51~53.
    [28]张菊秀.多传感器信息融合技术和发展[J].电子世界,2005,4,6~7.
    [29]钱平,徐兵.基于虚拟仪器的多相流量计量系统[J].仪器仪表学报,2006,27(5):481~483,488.
    [30]许其清.两相流流量测量技术研究.南京理工大学工程硕士学位论文,2004.
    [31]王勇.多相计量将成为油田降低成本的重要手段[J].国外油田工程.1995,11(5):40~42.
    [32]鲁惟翔.多相流量计的研究.浙江大学硕士论文,2005.
    [33]孙贺东,赵海鸿等.油气水三相流测量技术的最新进展[J].油气储运,2002,21(3):31~37.
    [34]方代煊,朱云祖.国外多相流量计开发与应用现状[J].石油机械,1999,27(7):44~47.
    [35]杨慧敏.基于明渠流的多相不分离计量研究.中国石油大学(华东)硕士论文,2007.
    [36]冯叔初,郭揆常,王学敏.油气集输[M].东营:石油大学出版社,1988.9
    [37]贺礼清.工程流体力学.东营:石油大学出版社,2001
    [38]李国珍,董守平.气液两相水平管流分层/段塞流型转换机制研究.水动力学研究与进展,2003,18(3):271~275
    [39]刘刚,张国忠.人工神经网络预测热油环道的启动压力.天然气与石油,2002,20(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700