微乳液法制备油溶性纳米金属铜及其在摩擦学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米金属铜作为一种新型的润滑油添加剂材料,由于比传统的润滑添加剂具有更为优异的抗磨减摩性能、热氧化安定性和抗腐蚀等特性而被广泛应用在摩擦学领域,其制备及应用研究越来越受到人们的重视。本文综合胶体化学、界面化学和纳米技术,研究了在微乳液体系中还原制备纳米金属铜粒子的方法和工艺;考查了纳米铜在润滑油中的摩擦学性能;对纳米金属粒子在润滑油中的抗磨减摩机理提出了自己的见解,建立了以纳米粒子和表面修饰剂组成的微单元为核心的抗磨减摩模型。
     主要研究成果和结论:
     1.借助微乳液体系中的“微反应器”成功制备出了粒径分布在20 nm左右、分散性良好的纳米铜颗粒。分别从表面活性剂的配比、反应顺序、反应物浓度、微乳液的分散方法及温度等方面,研究在该体系下制备纳米金属铜的适宜工艺条件。最终反应出了纳米铜润滑油添加剂16。
     2.研究了纳米铜添加剂16的摩擦学性能。结果显示,按质量分数5%添加16配制成的复合纳米润滑油16/HL68、16/HL46分别比基础油HL68和HL46的P_B值提高了34.95%和23.47%;其摩擦系数分别下降了78.3%和53.8%;在高速重载条件下16/HL68还出现了负磨损现象。
     3.提出了纳米铜粒子的两种可能的润滑机理:①纳米铜粒子不是单独分散在基础油中,而是被表面活性剂包裹着形成类似纳米“单元球”的形态分散在油中,这种具有弹性球体结构使得纳米颗粒既具有易错动的性质又具有较高的承载能力;②摩擦产生的局部高压高温使部分纳米金属铜以熔融状态附着在摩擦副表面,起到隔离作用从而减小摩擦磨损。
The nano copper particles, as a new lubrication additive material, have been used widely in tribology for its excellent antiwear properties, thermal stability and corrosion resistance as compared with conventional additive. As a result, more and more people take an active in doing research on the preparation and application of nano copper. In this thesis, the oil-soluble nano copper particles were prepared by chemical reduction in the microemulsion base on collochemistry, surface chemistry and nanometer material technology. And the tribological properties of the nanophase copper in lubricating oil were investigated also by tribology testing. The mechanism of antifriction of the copper nanoparticles as lubrication additive was presented by the author: The copper nanoparticles were dispersed in the base oil by means of coating with the surface-activators instead of bare copper particles, and the "elastic microballoon sphere cells" were composed with copper nanoparticles as the center of sphere and surface-activators as the surface layer. The main research production comprised three parts as below:
     1. The nano copper particles which sized about 20nm with a small partition of conglome-ration were obtained by chemical reduction in the microemulsion. The proper technology condition of preparation was studied in terms of activator, reaction sequence, solution concentration, scatter operation and temperature. The nanophase copper lubricant additive I6 was prepared eventually.
     2. The tribological properties of the nano copper additive I6 were studied by means of friction test, and the results indicated that I6 additive performed excellent wear resistance effect. It shows that I6 makes the base oil HL68 and HL46 have an increase of 34.95 percent and 23.47 percent in terms of P_B respectively, and have a decrease of 78.3 percent and 53.8 percent in terms of friction coefficient. I6 can make the test button have a relatively negative wear extent on high velocity and low-load condition.
     3. The mechanism of antifriction of the copper nanoparticles was discussed in this article:①The copper nanoparticles were dispersed in the base oil by means of coating with the surface-activators instead of bare copper particles, and the "elastic microballoon sphere cells" were composed with copper nanoparticles as the center of sphere and surface-activators as the surface layer. The perfect antifriction and tribology characters were probably attributed to the elastic microballoon sphere cells which was prone to slip on high velocity and low-load condition as a result of the specific structure, while on low velocity and over-load condition, the load bearing and separate action of the copper nano- particles were main factors to the antiwear property.②The nano copper particles may be melted for the hyperthermia of the rubbing effect and adhered on the friction surface. It was possible that theadherence action of the nanoparticles made the resistance to abrasion.
引文
[1] 周瑞发,韩雅芳,陈祥宝.纳米材料技术[M].国防工业出版社,2003:5-25.
    [2] Tarasov S, Kolubaev A, Belyaev S, et al. Study of friction reduction by nanocopper additives to motor oil[J]. Wear. 2002, 252: 63-69.
    [3] 刘维民.纳米颗粒及其在润滑油脂中的应用[J].摩擦学学报,2003,23(4):265-267.
    [4] Sun L, Zhou J F, Zhang Z J, et al. Synthesis and tribological behavior of surface modified (NH_4)_3PMo_(12)O_(40) nanoparticles[J]. Wear, 2004, 256: 176-181.
    [5] 叶斌,陶德华.几种纳米添加剂在环境友好润滑剂中的摩擦化学特性[J].机械工程材料,2005,29(6):55-58.
    [6] HU Z S. Study on Antiwear and Reducing Friction Additive of Nanometer Ferric Oxide[J]. Tribology International. 1998, 31(7): 355-360.
    [7] 温诗铸.纳米摩擦学[M].北京:清华大学出版社,1998.
    [8] 郭志光,顾卡丽,赵源.纳米润滑技术的进展[J].新材料产业,2003(4):67-70.
    [9] 赵彦保,张治军,吴志申等.锡纳米微粒的摩擦学性能[J].应用化学,2003,20(12):1157-1160.
    [10] F. P. 鲍登,D. 泰伯.摩擦学入门[M].机械工业出版社,1982
    [11] Hardy W B, Hardy J K. Phil. Mag. 1919, 38: 33-48.
    [12] Tomlinson G A. Phil Mag. 1929, 7: 905-935.
    [13] Bowdon F P, Tabor D. The Friction and Lubrication of Solids[J]. Oxford: Clarenden Press, 1964.
    [14] 路新春,温诗铸.微观摩擦磨损研究的新进展[J].摩擦学学报,1995,15(2):177-183.
    [15] 温诗铸.世纪回顾与展望——摩擦学研究的发展趋势[J].机械工程学报,2000,36(6):1-6.
    [16] 温诗铸,纳米摩擦学[M].北京:清华大学出版社,1998:5-6.
    [17] Winer W O. Wear, 1990, 136: 19-27.
    [18] Dowson D. Thin Film in Tribology (Synopses of Papers) [C]. 19th Leed Lyon Symposium on Tribology. Leeds, 1991.
    [19] 胡邦喜,设备润滑基础[M].冶金工业出版社,2002:17-23.
    [20] 李凤生,杨毅.纳米/微米复合技术及应用[M].北京:国防工业出版社.2002:41-44.
    [21] 张立德,牟季美.纳米材料科学[M].沈阳:辽宁科学技术出版社,1994:19-20.
    [22] 叶毅,董俊修,陈波水等.纳米硼酸镧对润滑油抗磨性能的影响的研究[J].润滑与密封,2000,(2):23-24.
    [23] 张泽抚,刘维民,薛群基.含氮有机物修饰的纳米三氟化镧的摩擦学性能研究[J].摩擦学学报,2000,20(3):217-219.
    [24] 张泽抚,刘维民,薛群基.纳米氢氧化镧与ZDDP相互作用的研究[J].电子显微学报,2000,19(4):603-604.
    [25] Liu W M, Chen S. An Investigation of the Tribological Behavior of Surface-Modified ZnS Nanoparticles in Liquid Paraffin[J]. Wear, 2000, 238: 120-124.
    [26] 陈爽,刘维民.温度对PbS纳米微粒摩擦学性能的影响[J].摩擦学学报,1999,19:169-172.
    [27] Chen s, Liu W M, Yu L G. Study on the stmcture of PbS nanoparticles coated with dialkyldithiophosphate[J]. J. Mater. Res., 1999, 14: 2147-2151.
    [28] 王齐华,薛群基,沈维长.石墨对纳米SiC填充聚醚醚酮摩擦学性能的影响[J].中国矿业大学学报,1999,28:29-31.
    [29] 张平余,齐尚奎,薛群基等.脂肪酸及表面修饰纳米微粒LB膜摩擦 过程中结构变化的XPS研究[J].摩擦学学报,2000,20(3):211-213.
    [30] Yu L G, Zhang P Y, Du Z L. Friction and wear behaviors of LB films of MoS_2 nanoparticles coated with dialkyldithiophosphate [J]. Surface and Coatings Technology, 2000, 130: 110-115.
    [31] Yu L G, Liu W M. Yang S R, et al. An Investigation of the Friction and Wear Behaviors of Micrometer Copper Particle and Nano-meter Copper Particle-Filled Polyoxymethylene Composites[J]. Journal of Applied Polymer Science, 2000, 77: 2404-2410.
    [32] 张平余,薛群基.LaF_3纳米微粒LB膜摩擦学行为研究[J].电子显微学报,2000.19(4):591-592.
    [33] N. Cioffi, N. Ditaranto, L. Torsi, et al. Analytical characterization of bioaetive fluoropolymer ultra-thin coatings modified by copper nanoparticles [J]. Anal Bioanal Chem, 2005, (381): 607-616.
    [34] Hisakado T, Ikuta K, Suda H, et al. The effects of copper particles and oleic acid on the friction and wear characteristics of ceramics in ethanol [J]. Wear, 1996, (197): 280-285.
    [35] Wang X B, Liu W M, Yan F Y. Synthesis of diakyldithiophophate surface capped copper nanoclusters [J]. Chemistry Letters, 2004, (2): 196-197.
    [36] Goto, M.; Honda, F. Film-thickness effect of Ag lubricant layer in the nano-region [J]. Wear, 2004, (256): 1062-1071.
    [37] 夏延秋,丁津源,马先贵.纳米级金属粉改善润滑油的摩擦磨损性能研究[J].润滑油,1998,13(6):37-40.
    [38] 姜秉新,陈波水,董浚修.铜型添加剂摩擦修复作用的可行性研究[J].润滑与密封,1999,(2):50-52.
    [39] 史佩京,刘谦,于鹤龙等.纳米铜微粒作为润滑油添加剂的分散方法及其摩擦学性能研究[J].石油炼制与化工,2005,(3):33-37.
    [40] 尹邦跃.纳米时代——现实与梦想[M].中国轻工业出版社,2001.
    [41] 张立德,牟季美.纳米材料与纳米结构[M].科学出版社,2001.
    [42] 何峰,张正义,肖耀福等.新一代润滑剂——超细金属粉固体润滑剂[J].润滑与密封,1997,(5):65-66.
    [43] S. Tarasov. A. kolubaev etal. Study of fricton reduction by nanocopper additives to motor oil. Wear, 2002, (252): 63-69.
    [44] 郭志光,顾卡丽,徐建生.纳米润滑添加剂的润滑自修复效应[J].材料保护,2003,36(9):22-24.
    [45] 周静芳,张治军.油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性能研究[J].摩擦学学报,2000,20(2):123-126.
    [46] 史佩京,许一,刘谦等.纳米复合自修复添加剂的制备及其在发动机上的应用[J].中国表面工程,2004,17(2):37-40.
    [47] 郭延宝,许一,徐滨士等.纳米铜粉作润滑油添加剂时的“负磨损”现象研究[J].中国表面工程,2004,2:15-17.
    [48] 高善民,孙树声.纳米材料的制备[J].现代化工,1999,19(10):46-48.
    [49] 沈兴海,高宏成.纳米微粒的微乳液制备法[J].化学通报,1995(11):6-9
    [50] Hoar T P. and Schulman J H. [J]. Nature, 1943, 152: 102-110.
    [51] Shinoda K and Friberg S. Microemulsion: colloidal aspects [J]. Adv colloid Interface Sci. 1975, 4: 281-300.
    [52] Schulman J H, Stoeckenius W, Prince L M. Mechanism of formation and structure of micro-emulsion by electron microscopy [J]. J. Phys. Chem, 1959, 63: 1677-1680.
    [53] 黄东,南海,吴鹤.纳米铜粉的制备进展[J].金属功能材料,2004,(2):30-34.
    [54] 刘谦,徐滨士,许一等.纳米铜添加工艺对润滑油摩擦学性能的影响[J].润滑与密封,2005(2):12-13.
    [55] Prince L M. Microemulsion, Theory and Practice [M]. New York: Academic Press, 1977.
    [56] Shinoda K and Friberg S. Microemulsion: colloidal aspects[J]. Adv colloid Interface Sci, 1975, 4: 281-300.
    [57] 赵国玺.表面活性剂作用原理[M].北京:中国轻工业出版社,2003:589-594.
    [58] Shinoda K and Hironko K. J. Colloid Interface Sci. 1973, 42: 381.
    [59] Ahmad S I, Shinoda K, Friberg S et al. J. Colloid Interface Sci. 1974, 47: 32.
    [60] 杨传芳,洪滨,陈家镛.反向胶团或微乳液在超细颗粒制备中的应用[J].化工冶金,1996,17(1):71-79.
    [61] Jian J. Proceedings of the 1997 8th International Conference on Organized Molecular Films. USA, 1998: 559-562.
    [62] 甘礼华,岳天仪,陈龙武等.微乳液反应法制备草酸铜均匀微粒[J].物理化学学报,1998,14(2):97-102.
    [63] 成国祥.反相胶束微反应器及其制备纳米微粒的研究进展[J].化学通报,1997,3:14-19.
    [64] Haram S K, Mahadeshwar A R, Dixit S G. Synthesis and characterization of copper sulfide nanoparticles in TritonX-100 water-in-oil microemulsion [J]. J. Phys. Chem, 1996, 101(14): 5868-5873.
    [65] Arriagada F J, Osseso-Asare K. Synthesis of nansize silca in Aerosol OT reverse microemulsion [J]. J. Colloid and Interface Sci, 1995, 170(1): 8-17.
    [66] T Hisakado, T Tsukizoe, H Yoshikawa. Lubrication Mechanism of Solid Lubricants in Oil(81-Lub-50)[J]. Journal of Lubrication Technology, 1983, 105: 245.
    [67] 肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003:10.
    [68] 沈一丁.高分子表面活性剂[M].北京:化学工业出版社,2002: 21-24.
    [69] 林荣会,方亮,郗英欣等.化学还原法制备纳米铜[J].化学学报,2004,62(23):2365-2368.
    [70] 耿新玲,苏正涛.液相法制备纳米铜粉的研究[J].应用化工,2005,34(10):615-617.
    [71] 高保娇,高建峰,周加其等.超微细镍粉的微乳液法制备研究[J].无机化学学报,2001,17(4):491-495.
    [72] 吴其晔,方鲲,崔陇兰等.两步连续反相微乳液法原位合成铁钴镍/聚苯胺核-壳型纳米复合微粒[J].青岛科技大学学报,2003,24(1):37-41.
    [73] 信文瑜,姚敬华,杨中民.ZnO及其掺杂纳米粒子的反相微乳液法合成及表征[J].云南大学学报(自然科学版),2003,25(1):57-60.
    [74] G. Liu, X. Li, B. Qin, et al. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface[J]. Tribology Letters, 2004, 17(4): 961-966.
    [75] 张红萍,唐爱东,彭宏.超声波法合成三烷基硼及其裂解制备碳化硼[J].中南大学学报,2005(3):448-451.
    [76] 肖锋,叶建东,王迎军.超声技术在无机材料合成与制备中的应用[J].硅酸盐学报,2002,30(5):615-619.
    [77] 黄文轩.润滑剂添加剂应用指南[M].北京:中国石化出版社,2003:8-9.
    [78] 胡泽善,王立光,黄令等.纳米硼酸铜微粒的制备及其用作润滑油添加剂的摩擦学性能[J].摩擦学学报,2000,20(4):292-295.
    [79] 陈爽.表面修饰纳米微粒的制备、结构表征及摩擦学性能研究(博士学位论文).兰州:中国科学院兰州化学物理研究所,2000.
    [80] 史佩京,刘谦,于鹤龙等.纳米铜微粒作为润滑油添加剂的分散方法及其摩擦学性能研究[J].石油炼制与化工,2005(3):33-38
    [81] 沈一丁.高分子表面活性剂[M].北京:化学工业出版社,2002.
    [82] Sakurai T, Sato K. Study of corrosivity and correlation between chemical reactivity and load carrying capacity of oils containing extreme pressure agents. ASLE Transactions, 1996, 9: 77-87.
    [83] 郭志光,顾卡丽,徐建生等.表面粗糙度对纳米润滑添加剂摩擦学性能影响的研究[J].润滑与密封,2003,05:25-26.
    [84] 谢友柏.摩擦学的三个公理[J].摩擦学学报,2001,21(3):161-166.
    [85] 翁来,杨凯,顾正斌等.润滑油添加剂摩擦性能对比试验[J].机械设计与研究,1997(2):46-48.
    [86] 方建锋,柳学全等.纳米材料在润滑领域中的应用[J].新材料产业,2003(4):63-66.
    [87] 徐国财,张立德,纳米复合材料[M].化学工业出版社,2002:P41.
    [88] 豆立新,龚华栋,吕振坚等.分散在润滑剂中的柔性金属微粒的摩擦学行为的实验研究[J].润滑与密封,2002,(5):23-25.
    [89] 周静芳,张治军.油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性能研究[J].摩擦学学报,2000,20(2):123-126.
    [90] 夏延秋,金寿日 纳米级铜粉改善润滑油抗磨性能的研究[J].润滑与密封,1998(5):43-44.
    [91] 张志梅,古乐,齐毓霖等.纳米级金属粉改善润滑油摩擦性能的研究[J].润滑与密封,2000,(2):37-40.
    [92] 徐建生,赵源,高万振.新型自补偿添加剂的摩擦学特性研究[J].材料保护,2000(7):16-19.
    [93] 莫易敏,邹岚,赵源.磨损自补偿的摩擦学原理[J].润滑与密封,1998(5):32-34.
    [94] 莫易敏,邹岚,赵源.磨损自补偿的载荷效应研究[J].机械科学技术,1998,17(6):1014-1016.
    [95] 郭延宝,许一,徐滨士等.纳米铜粉作润滑油添加剂时的“负磨损”现象研究[J].中国表面工程,2004(2):15-17.
    [96] 张会臣,佘云川,刘世永等.ZnO纳米微粒作为润滑油添加剂的摩擦学作用机理[J].2003,22(3):468-470.
    [97] 刘谦,徐滨士,许一等.纳米铜自修复添加剂摩擦学性能研究[J].材料保护,2004(7):147-149.
    [98] 乔玉林,徐滨士,马世宁等.含纳米铜的减摩修复添加剂摩擦学性能及其作用机理研究[J].石油炼制与化工,2002,33(8):34-38.
    [99] 郭志光,顾卡丽,徐建生等.有机钼及其复合纳米润滑添加剂的摩擦磨损性能研究[J].摩擦学学报,2005,25(4):317-321.
    [100] 董凌,陈国需,方建华等.纳米微胶囊铜的摩擦学性能研究[J].合成润滑材料,2004,31(2):1-3.
    [101] 顾卓明,顾彩香,王仁兵等.含纳米碳酸钙粒子润滑油的摩擦学性能研究[J].材料科学与工程学报,2005,23(2):269-272.
    [102] 郭志光,辛燕,顾卡丽等.钢-铜摩擦副选择性转移效应的研究[J].合成润滑材料,2005,32(1):1-6.
    [103] 吕君英,龚凡,郭亚平.纳米粒子改善润滑油摩擦磨损性能机理的评述[J].应用科技,2004(11):51-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700