离心力场中液—液两相传递过程的实验研究和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油和水都是国民经济和人民生活中不可替代的资源,随着国民经济的发展,全球性能源危机日渐加剧,以及环境污染的日益严重,油水混合物分离问题受到广泛的重视。旋流式离心分离的方法由于离心力场强度远大于重力场强度,分离速率和效率较高,设备体积小,结构简单,同时避免了化学处理法对水和油资源的二次污染等优点,在各行各业显示出越来越广泛的应用前景。但是目前该法主要是用在对水中脱油的研究,而油中除水的研究则处于初始阶段。
     针对这种情况,本文以柴油—水为实验物系,从实验和数值模拟两方面对离心力场中液-液两相的传递过程进行了研究,尤其是油中脱水的情况。主要研究内容为:
     (1)实验研究了两相组成对混合物黏度和相状态的影响,确定了含水量为33 %时为转相点,对应混合物黏度最大。在含水量低于33 %的范围内,油为连续相,水为分散相,随着油中含水量的增加,混合物的黏度也增大。在含水量大于33 %的范围内水为连续相而分散相为油,混合物的黏度则随含水量的增大而下降。
     (2)通过正交实验,对离心分离器结构参数进行了优化,确定最佳的结构参数为:溢流口直径2mm、底流口直径3.5mm,溢流管长度22mm。
     (3)实验研究了主要操作条件对分离性能的影响,在最佳的结构参数、原料中水的体积浓度为8.832%,及分流比为0.75时,进口流量在550 L/h~700 L/h范围内,有较高的分离效率,达到85%左右。
     (4)首次探讨了旋流器内构件对液-液旋流器分离效果的影响,当加实心棒时效果显着,分离效率可达到90%左右,并使原料中含水浓度从8.3%降至1%以下。
     (5)对液液两相的质量传递过程和动量传递过程进行了理论研究,使用CFD—Fluent软件,通过合理的选择数学模型和正确的设定边界条件,结合流体力学中的旋转流、组合涡理论以及旋流器相关理论和试验结果,对实验条件下的油中除水型旋流器进行了内部流场的数值模拟。在模拟结果、试验结果及理论分析的基础上,提出了实验设备的优化方案。
Oil and water are resources which cannot be substituted in the civil economy and the lives of the people. With the development of the national economy, the global energy crisis intensifies, as well as the environmental pollution becomes more serious. Therefore the oil-water mixture separation receives the widespread recognition. Because the centrifugal force field intensity is far bigger than the gravitational field intensity, the segregation rate and efficiency are higher, the equipment volume is small, the structure is simple, and it can avoided the second pollution of the chemistry processing to water and oil resources. The eddy-type centrifugal separation method demonstrates more and more widespread application prospect. But presently this method is mainly used to separate the oil from the water, the research for eliminating water from the oil is just at the preliminary stage.
     Aimed at this topic, in this paper taking the diesel oil -water as the raw material are researched, make the research of the fluid-fluid two phases’transferring processes in the centrifugal force field from the experiment and the value simulation aspects, especially in the oil dehydrating. The main research contents are followed:
     (1) The influence of two phases composition on the mixture viscosity and the phase condition was studied. The results showed that the phase change point is when the water content is 33 %, the corresponding mixture viscosity is the biggest. When the water content is lower than 33 %, the oil is the continuous phase, the water is a dispersed phase. The mixture viscosity increases with the increasing of the water content. When water content is bigger than 33%, and the water phase is the continuous phase but the dispersed phase is the oil phase, the mixture viscosity decreases with the increasing of water content drops.
     (2) Through the orthogonal experiment, the centrifugal separator parameters were optimized. The best structure parameters are: overflow diameter 2mm, underflow diameter 3.5mm, overflow length 22mm.
     (3) The influence of the main operating condition on the separating performance, when the best structure parameters was investigated, the water volume concentration in the raw material is 8.832%, the split rate is 0.75, and the importing current capacity is within 550 L/h~700 L/h, the higher separation efficiency reaches to about 85%.
     (4) The influence of the hydrocyclone components on separation efficiency was discussed for the first time, when the solid stick is added, the effect is remarkable, the separation efficiency reach about 90%, and the water content in the raw material changes from 8.3% to fall to below 1%.
     (5) Using the CFD -Fluent software, the mass transfer process and the momentum transmission processes between the two fluid-fluid phases were theoretically studied, Through reasonably choosing the mathematical model and correctly deciding the boundary condition, combining the circumgyration fluent, the combination whorl theory in the hydromechanics as well as the correlating hydrocyclone theories and the test results, the internal flow field numerical simulation of the water type hydrocyclone under the experimental condition. On the basis of the simulating result, the test result and the theoretical analysis, the optimized plan for the experiment equipment was proposed.
引文
[1] Li Y. Conditioning water contaminant in oil by coalescence [J]. 2nd IFC, 1999, 9(11): 134-135
    [2] Rios G., Pazos C., Coca J. Destabilization of cutting oil emulsions using inorganic salts as coagulant [J]. Colloids and Surface: Physicochemical and Engineering Aspects. 1988, 138(1): 383-389
    [3] Kotsaridou. Demulsifying water-in-oil emulsions through chemical addition [J]. Erdoel Erdgas Kohle, 1996, 112 (2): 72 -79
    [4]王枢,褚良银,陈文梅等.油水分离膜的研究新进展[J].油田化学2003, 12 (4) : 25-26
    [5] Fang S. R., Chu L. Y., Liu P. K. et al. De-watering research of water dispersed in oil with hydrocyclone. In: Proc. Of 3rd China-Japan International Conference on Filtration & Separation, Wuxi, China , Oct, 1997, 1(1): 356-359
    [6]倪玲英.高含水原油对水力旋流器预分离性能的影响[J].石油机械, 1999, 27 (9): 43-45
    [7] Thew M. A. Hydrocyclone redesign for liquid-liquid separation [J]. The chemical Engineer, 1986, 18 (4): 7-23
    [8]褚良银,刘培坤.除水型油水分离旋流器实验研究[J].石油机械, 1998, 26(8): 10213-10214
    [9]王跃进,聂通元,袁惠新.旋流分离技术在石油、石化工业中的应用[J] .化工进展, 2002 , 21 (12): 926-929
    [10]杨成伟,袁惠新.旋流分离技术在催化柴油脱水净化中的应用[J].炼油与化工,2004 , 15 (3) : 11-12
    [11]蔡小华,袁惠新,王跃进.结构参数对油脱水型旋流器分离性能的影响[J].江南大学学报, 2002, 1(4): 391-393
    [12] Pasquier S., Cilliers J. J. Sub-micron particle de-watering using hydrocyclones [J]. Chemical Engineering Journal, 2000, 80(1): 283-288
    [13] Smyth I. C., Thew M. T., Colman D. A. The effect of split ratio on heavy dispersion liquid-liquid separation in hydrocyclones [A]. 2nd International Conference on Hydrocyclone [C], England : BHRA, 1984, 15(21): 177-190
    [14] Ohasi H., Maeda S. The velocity distribution with in a hydrocyclone operating without an air core [J]. Can. J. Chem. Eng., 1958, 22(11): 200-211
    [15] Listewnik J. Some factors influencing the performance of de-oiling hydrocyclones for marine applications. In: Proc. 2nd International Conference on Hydrocyclone, Bath, England, 1984, 9: 191-204
    [16]褚良银,陈文梅.旋转流分离理论[M].北京:冶金工业出版社, 2002, 3-47
    [17] Versteeg H. K., Malalasekera W. An Introduction to computational fluid dynamics: The finite volume method [J]. Wiley, New York, 1995,11(3): 111- 121
    [18] Launder B. E., Spalding D. B. Lectures in mathematical models of turbulence [J]. Academic Press, London, 1972, 2(3): 1121 -2110
    [19]冯进,陈海,陈刚. 70mm单锥脱油旋流器主要尺寸参数优化试验.过滤与分离, 1997, 7(l): 7 -10
    [20]冯进,陈海,胡泽明. 70mm单锥脱油旋流分离器流量和压力特性试验过滤与分离, 1996, 6(4): 26 -30
    [21]文和平,何利民.双锥型污水处理旋流器分离效果研究.石油大学学报, 1999, 23( 5): 63- 65
    [22] Colman D. A., Thew M. T. Correlation of separation results from Light dispersion hydrocyclones [J], Chem. Eng. Res., 1983, 61(6): 233 - 240
    [23] Thew M. T. Hydrocyclone redesign for liquid-liquid separation [J]. The chemical Engineer, 1986, 18 (4): 1117 -1123
    [24]文和平,何利民.双锥型污水处理旋流器分离效果研究.石油大学学报, 1999, 23( 5): 63-65
    [25] Chu L. Y., Luo Q., Yu R. H. Controlling over grinding of valuable materials using modified air-sparged hydrocyclone [J]. Trans. Nonferrous Met. Soc. China, 6(3): 16 -21
    [26] Chu L. Y., Luo Q., Qiu J. C. In Proceedings of the 7th world filtration international. Miner Process, 1991, 31: 2111-2130
    [27]蔡小华,袁惠新,王跃进.结构参数对油脱水型旋流器分离性能的影响[J].江南大学学报, 2002, 35(4) : 391-239.
    [28]徐继润.水力旋流器强制涡及内部损失研究: [学位论文].沈阳:东北工学院, 1989, 4
    [29] Colman D. A., Thew M. T. Correlation of separation results from Light dispersion hydrocyclones [J], Chem. Eng. Res. , 1983, 61(6): 233 -240.
    [30] Meldrum N. Hydrocyclones: a solution to produced-water treatment [J]. Spe. Production Engineering, 1988, 11(9): 669- 676.
    [31]刘安生,蒋明虎,贺杰等.压降比—液-液旋流分离的一个重要参数[J].石油矿物机械, 1997, 26(1): 27-29
    [32]贺杰,蒋明虎,宋华等.液一液分离水力旋流器特性参数研究[J].石油学报, 1996, 17(1): 147- 153
    [33]贺杰,蒋明虎,宋华.水力旋流器液一液分离效率[J].石油规划设计, 1995, 5(1): 27-29
    [34] Ebbenhorst T., Rietema K. D. Cyclones in industry [M]. London Elsevier, 1961, 11: 11-34
    [35]何利民,何跃生.影响水力旋流器除油效率的因素[J].油田地面工程, 1994, 13 (4): 10-13
    [36] Carroll J., Chang K. Statistical computer-aided design for microwave circuits [J]. Ieee. Trans. Mtt., 1996, 44(1): 145 -148.
    [37] Rieterna K. Performance and design of hydrocyclones: separating power of the hydrocyclone [J]. Chemical Engineering Science, 1961, 15(3): 310 -319
    [38] Smth I. C., Thew M. T., Debebham P. S. Colman small-scale experiments on hydrocyclones for de-watering eight oils international conference on hydrocyclones [M]. Chemical Engineering Science, 1980, 10: 1120 - 1134
    [39]徐继润.水力旋流器强制涡及内部损失研究: [学位论文].沈阳:东北工学院, 1989, 4
    [40] Patankar S. V. Numerical heat transfer and fluid flow [M]. Hemisphere, Washington, 1980, 11(2): 201-203
    [41] Li J. M. Numerical simulation of turbulence two-phase flow within hydrocyclone and their separation performance [D]. Chengdu: Sichuan Unit Univ., 1997, 11(2): 122-126
    [42]褚良银,陈文梅,戴光清等.水力旋流器[M].北京:化学工业出版社, 1998, 56- 67
    [43]王福军.计算流体动力学分析: CFD软件原理与应用[M]. 2004, 1: 3-231
    [44]褚良银,陈文梅,李晓钟等.水力旋流器湍流数值模拟及湍流结构[J].高校化学工程学报, 1999, 13 (2): 107-113
    [45] Grady S. A., Wesson G. D., Abdullab M. et al. Prediction of 10 mm hydrocyclone separation efficiency using computational fluid dynamics [J]. Filtration and Separation, 2003, 1(11): 41 - 46.
    [46] Yang I. H., Shin C. B., Kim T. H. et al. A three-dimensional simulation of a hydrocyclone for the sludge separation in water purifying plants and comparison with experimental data [J]. Minerals Engineering, 2004, 17(5): 637- 641.
    [47] Van J. P., Raithby G. G. Enhancement of the simple method for predicting incompressible fluid flows [J]. Nmerical Heat Transfer, 1984, 7(2): 147-163
    [48] Issa R. I. Solution of the implicitly discretized fluid flow equations by operator-splitting [J]. Compute Phys., 1986, 62(3): 40-65
    [49] Bradley D. Flow patterns in the hydraulic cyclone and their interpretation in terms of performance [J]. Int. Mined Process Congr., London, 1961, 23(42): 1211- 1236
    [50] Van D. G., Rietema K. Solid-liquid separation of hydrocyclone[J]. Chem. Eng. Sci., 38(10): 1651-1983
    [51] Kelsall D. F. A further study of the hydraulic cyclone [J]. Chem. Eng. Sci., 1953, 2(1): 254-272
    [52]褚良银,罗茵.锥齿形高效水力旋流器.中国专利, ZL932297, 1994, 13(7)
    [53] Bradley D., Pulling D. J. The hydrocyclones [J]. I. Chem. E., 1959, 11(3): 211- 231
    [54] Yakhot V., Orzag S. A. Renonrmalization group analysis of turbulence: basic theory [J]. Scient Compute, 1986, 16(2): 3 - 11
    [55]徐继润,罗栖.水力旋流器流场理论[M].北京:科学出版社, 1998, 3: 112-120
    [56]褚良银,陈文梅等.水力旋流器[M].北京:化学工业出版社, 1998, 1: 56-75
    [57] Dai G. Q., Chem W. M. Experimental study of solid-liquid two-phase flow in ahydrocyclone [J]. Chemical Engineering Journal, 1999, 74(3): 211-216
    [58] Chen W. M., Chu L. Y. Theory of fluid flow and practice of hydrocyclones.In: Proc. Of 3rd China-Japan International Conference on Filtration & Separation [C], Wuxi, China, Oct, 1997, 4(3): 501-505
    [59]赵国庆,张明贤等.水力旋流器分离技术[M].北京:化学工业出版社, 2003, 6: 3-5
    [60] Chu L. Y., Li X. Z., Chen W. M. In proceeding of the 7th world Filtration Congress. Budapest, Hungary, 1996, 1(7): 88 - 96
    [61] Larsson T. A new type of hydrocyclone presented in the 1st Int. conf. on hydrocyclone [J]. BHRA, Cranfiend, 1980, 1(7): 83 -97
    [62] Boadway J. D. 2nd Int. Conf. on hydrocyclones [C]. Bath, England, 1984, 5(13): 99 -108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700