小富勒烯和准富勒烯衍生物的结构和稳定性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据IPR规则,富勒烯结构中的五元环要尽可能的分散,以此降低体系的张力能,增强体系的稳定性。C60是能够满足IPR规则的最小碳笼。碳原子数少于60的小富勒烯,和结构中含有除五元环、六元环之外的其他结构(如四元环或七元环)的准富勒烯,由于不满足IPR规则,结构中必然存在较大的张力,因此具有较高的化学活性,难以在实验中合成和分离。因此,对小富勒烯和准富勒烯衍生物的结构、稳定性和物理化学性质等方面进行详细的理论研究,对富勒烯化学的发展具有重要的意义。本论文采用量子化学方法,对C32、C50、C52小富勒烯和C58、C62准富勒烯衍生物进行理论研究,目的是为加深对这些富勒烯衍生物的了解,并为实验研究奠定理论基础、提供有效的信息。本论文的主要研究内容如下:
     1.采用密度泛函理论B3LYP/6-31G(d)方法,计算D3 C32富勒烯包合H、Li、Na、K、Be、Mg、Ca、B、Al、C、Si、N、P等13种原子和H+、Li+、Na+、K+、Be2+、Mg2+、Ca2+、B3+、Al3+等9种阳离子生成的内嵌衍生物。计算结果表明,包合粒子使D3 C32的体积增大,中性原子对C–C键长的影响大于相应的阳离子。中性富勒烯包合物的热力学稳定性由内嵌原子的电负性决定,与内嵌原子的体积无关。
     2.采用密度泛函理论B3LYP/6-31G(d)方法,计算D5h C50富勒烯包合H原子,碱金属原子和碱土金属原子生成的内嵌衍生物及其阳离子。计算结果表明氢原子内嵌对D5h C50的影响可以忽略,金属原子内嵌的影响较大。随着化合物上外加正电荷的增加,D5h C50包合Li、Na、K、Mg和Ca系列粒子的衍生物的结构扭曲参数增大,包合Be系列粒子的衍生物的结构扭曲参数减小。D5h C50内嵌衍生物的前线轨道能级主要由所带外加正电荷的大小决定。D3 C50内嵌衍生物的变化规律与D5h C50内嵌衍生物相同。
     3.依次采用PM3、HCTH/3-21G和B3LYP/6-31G(d)方法计算所有C2-C52H2异构体的相对稳定性。用卤原子取代HCTH/3-21G水平下最稳定的19个C2-C52H2异构体中的氢原子,得到C2-C52X2 (X = F, Cl)的基态候选结构,采用B3LYP/6-31G(d)方法进行计算。结果表明,最稳定的19个C2-C52X2 (X = H, F, Cl)异构体都是热力学稳定的,其中最稳定的5个异构体的加成位置均位于5/5键上。加成反应能够释放C52的结构张力,增强其化学稳定性。加成产物的热力学稳定性由加成基团的种类和加成位置共同决定。C2-C52X2 (X = H, F, Cl)是潜在的实验合成目标。
     4.采用密度泛函理论B3LYP/6-31G(d)方法,计算3种H2@C58Hn、6种CO@C58Hn和6种LiH@C58Hn (n = 0, 18)准富勒烯内嵌衍生物,并讨论内嵌分子的体积和极性对化合物结构和稳定性的影响。计算结果表明,C58Hn (n = 0, 18)包合非极性H2和弱极性CO是热力学不稳定的,包合强极性LiH是热力学稳定的。在C58Hn (n = 0, 18)中,非极性H2和弱极性CO的取向由内嵌分子与碳笼之间的空间排斥作用决定,强极性LiH分子的取向则由内嵌分子和碳笼之间的偶极–诱导偶极作用决定。
     5.依次采用AM1、HF/STO-3G、B3LYP/3-21G和B3LYP/6-31G(d)方法计算了所有hept-C62F2异构体的相对稳定性。用氯原子或溴原子取代B3LYP/6-31G(d)水平下最稳定的5个hept-C62F2异构体中的氟原子,得到hept-C62X2 (X = Cl, Br)的基态候选结构,并在相同水平下进行计算。结果表明,最稳定的5个hept-C62X2 (X = F, Cl, Br)加成衍生物都是热力学稳定的,加成反应能够释放hept-C62结构中的张力,增强其化学稳定性。加成位置相同时,加成产物的热力学稳定性随着加成原子体积的增大而降低。hept-C62F2具有很强的热力学稳定性,是潜在的实验合成目标。
     本论文的研究结果表明,小富勒烯内嵌衍生物的结构和稳定性受到内嵌原子(或分子)的电负性、极性、体积、及碳笼容积等因素的影响。一般而言,内嵌能够改善小富勒烯的电子结构,但不能显著释放小富勒烯结构中的张力,这也是小富勒烯内嵌衍生物难以合成分离的原因。氢/卤素的加成反应能够有效的释放小富勒烯和准富勒烯结构中的张力,增强其化学稳定性,因此其氢/卤化物具有较高的热力学稳定性,是潜在的实验合成目标。
Since the discovery and macroscopic scaled synthesis of C60, the fullerenes have aroused tremendous scientific interest because of their novel and unusual physical and chemical properties, and were extensively studied. Geometries and stabilities of fullerenes are governed by the well-known isolated pentagon rule (IPR), and the Ih C60 is the smallest carbon cage fulfilling this rule. The smaller fullerenes C2n (2n < 60) violating IPR, inevitable suffer large strain energies and show high lability. Besides that, quasi-fullerenes violating the classical definition, contain rings of other size, for example 4 or 7, are expected to suffer extra local strain or/and further loss ofπdelocalization, and thus highly unstable. Most of smaller fullerenes and quasi-fullerenes are not experimentally approachable at present, and therefore, theoretical studies are significant for investigating their structures, stabilities and properties. In this thesis, derivatives of smaller fullerenes and quasi-fullerenes have been studied by quantum chemical method. The main results are summarized as follows.
     1. The endohedral complexes formed by D3 C32 and 13 atoms ranging fromⅠA toⅤA, including H, Li, Na, K, Be, Mg, Ca, B, Al, C, Si, N, and P, as well as 9 cations ranging fromⅠA toⅢA, including H+, Li+, Na+, K+, Be2+, Mg2+, Ca2+, B3+, and Al3+, were theoretically investigated using density functional theory at the B3LYP/6-31G(d) level. Theoretical studies reveal that size of all endohedral fullerenes is slightly enlarged due to encapsulation, and cage containing atom is larger than the cage containing corresponding cation. Thermodynamic stability of neutral endohedral complex is determined by electronegativity of the guest atom, and only Li, Na, and Ca atoms can be stably put into the cage.
     2. The endohedral complexes formed by D5h C50 and H, alkali metals, and alkaline-earth metals, as well as charged states of the endohedral complexes, were theoretically investigated using B3LYP/6-31G(d) method. Theoretical studies reveal that the encapsulated H hardly affects the D5h C50, but the encapsulated metals significantly distort the cage. As the extra charges on the complexes increase, the structural distortions decrease for Li, Na, K, Mg, Ca series derivatives, but increase for Be series derivatives. Both EHOMO and ELUMO of complexes are determined by the number of extra charges on them. The D3 endohedral complexes are found to change in the same way as the D5h isomers.
     3. PM3, HCTH/3-21G, and B3LYP/6-31G(d) methods were orderly used for searching the most stable C2-C52H2 isomer. C2-C52X2 (X = F and Cl) isomers being isostructural with the first 19 most stable C2-C52H2 isomers were considered as candidates of the most stable one, and optimized at the B3LYP/6-31G(d) level. Theoretical studies reveal that the first 19 most stable C2-C52X2 (X = H, F, and Cl) isomers are energetically favorable, and the attaching sites of the first 5 most stable isomers all locate the pentagon-pentagon fusions of C2-C52. The additional reactions release the strain energy of C2-C52, and enhance its chemical stability. Relative stability of C2-C52X2 (X = H, F, and Cl) isomers is determined by both attaching sites and properties of addends. The C2-C52X2 (X = H, F, and Cl) complexes are potential targets in experiments.
     4. To investigate the influence of size and polarity of endohedral molecules on fullerene derivatives, three H2@C58Hn, six CO@C58Hn and six LiH@C58Hn (n = 0, 18) complexes were optimized using density functional theory at the B3LYP/6-31G(d) level. The results show that C58Hn (n = 0, 18) cages destabilize nonpolar H2 and weakly polar CO, and stabilize strongly polar LiH. For cage encapsulating H2 or CO, size of endohedral molecule is the main factor determining its orientation inside the cages. Orientation of LiH inside C58Hn (n = 0, 18) cages is determined by the dipole-induced dipole attractive interaction between them, which is especially significant in LiH@C58H18 complexes.
     5. AM1, HF/STO-3G, B3LYP/3-21G, and B3LYP/6-31G(d) methods were employed orderly to search the most stable hept-C62F2 isomer. The hept-C62X2 (X = Cl and Br) isomers, which are isostructural with the first 5 most stable hept-C62F2 isomers, were chosed as candidates of the most stable one, and optimized at the B3LYP/6-31G(d) level. From the results of the first 5 most stable hept-C62X2 (X = F, Cl, and Br) isomers, it is found that halogenations release the strain energy of hept-C62, and enhance its chemical stability. All 5 most stable hept-C62X2 (X = F, Cl, and Br) halogenated complexes are energetically favorable, and their thermodynamic stability decreases following with the increase of size of addends. The hept-C62F2 complexes are potential targets in experiments with high thermodynamic stability.
     In all, theoretical investigations in the thesis reveal that structures and stabilities of endohedral complexes of smaller fullerenes are influenced by factors such as electronegativity, polarity, size of endohedral spcies, and capability of fullerenes. The encapsulation usually can enhance the electronic structures of smaller fullerenes, but cannot release their strain energies effectively. That is the reason why experimental isolation for the endohedral complexes of smaller fullerenes is difficult. However, additional reactions of H2/halogens can significantly release the strain energies of smaller fullerenes and quasi-fullerenes, and enhance their chemical stability. Therefore, the corresponding hydrofullerenes and halofullerenes show high thermodynamic stability, and are potential targets in experiments.
引文
[1] Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckyminister-fullerene[J]. Nature, 1985, 318(6042): 162-163.
    [2] Kr?tschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60 - a new form of carbon[J]. Nature, 1990, 347(6291): 354-358.
    [3]任小元.富勒烯及其衍生物的理论与实验研究[D]: [博士学位论文].杭州:浙江大学理学院, 2005.
    [4] Schmalz T G, Seitz W A, Klein D J, et al. Elemental carbon cages[J]. J Am Chem Soc, 1988, 110(4): 1113-1127.
    [5] Haddon R C. Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules[J]. Science, 1993, 261(5128): 1545-1550.
    [6] Ajie H, Alvarez M M, Anz S J, et al. Characterization of the soluble all-carbon molecules C60 and C70[J]. J Phys Chem, 1990, 94 (24): 8630-8633.
    [7] Taylor R, Hare J P, Abdul-Sada A K, et al. Isolation, separation and characterization of the fullerenes C60 and C70: The third form of carbon[J]. J Chem Soc Chem Commun, 1990, 20: 1423-1425.
    [8] Parker D H, Wurz P, Chatterjee K, et al. High-yield synthesis, separation, and mass-spectrometric characterization of fullerenes C60 to C266[J]. J Am Chem Soc, 1991, 113(20): 7499-7503.
    [9] Peters G, Jansen M. A new fullerene synthesis[J]. Angew Chem Int Ed Engl, 1992, 31(2): 223-224.
    [10] Gerhardt Ph, Laffer S, Homann K. Polyhedral carbon ions in hydrocarbon flames[J]. Chem Phys Lett, 1987, 137(4): 306-310.
    [11] Gerhardt Ph, Homann K. Ions and charged soot particles in hydrocarbon flames. 2. Positive aliphatic and aromatic ions in ethyne/oxygen flames[J]. J Phys Chem, 1990, 94(13): 5381-5391.
    [12] Tarlor R, Langley G J, Kroto H W, et al. Formation of C60 by pyrolysis of naphthalene[J]. Nature, 1993, 366(6457): 728-731.
    [13] Amelinckx S, Zhang X B, Bernaerts D, et al. A formation mechanism for catalytically grown helix-shaped graphite nanotubes[J]. Science, 1994, 265 (29): 635-639.
    [14]李文治,解思深,钱露茜,等.纳米碳管催化热解方法的制备及其微观结构的研究[J].电子显微学报, 1998, 17(3): 243-247.
    [15] Li W Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbon nanotubes[J]. Science, 1996, 274(5293): 1701-1703.
    [16] Chibante L P F, Thess A, Alford J M, et al. Solar generation of the fullerenes[J]. J Phys Chem, 1993, 97(34): 8696-8700.
    [17] Scott L T, Bratcher M S, Hagen S. Synthesis and characterization of a C36H12 fullerene subunit[J]. J Am Chem Soc, 1996, 118(36): 8743-8744.
    [18] Yoshle K, Kasuya S, Eguchi K, et al. Novel method for C60 synthesis: A thermal plasma at atmospheric pressure[J]. Appl Phys Lett, 1992, 61(23): 2782-2783.
    [19] Xie S, Huang R, Yu L, et al. Microwave synthesis of fullerenes from chloroform[J]. Appl Phys Lett, 1999, 75(18): 2764-2766.
    [20] Huang R B, Huang W J, Wang Y H, et al. Preparation of decachlorocorannulene and other perchlorinated fragments of fullerenes by electrical discharge in liquid chloroform[J]. J Am Chem Soc, 1997, 119(25): 5954-5955.
    [21] Scott L T, Boorum M M, McMahon B J, et al. A rational chemical synthesis of C60[J]. Science, 2002, 295(5559): 1500-1503.
    [22] Scott L T. Methods for the chemical synthesis of fullerenes[J]. Angew Chem Int Ed, 2004, 43(38): 4994-5007.
    [23] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
    [24] Ugrte D. Curling and closure of graphitic networks under electron-beam irradiation[J]. Nature, 1992, 359(6397): 707-709.
    [25] Smith B W, Monthioux M, Luzzi D E, Encapsulated C60 in carbon nanotubes[J]. Nature, 1998, 396(6709): 323-324.
    [26] Hirahara K, Bandow S, Suenaga K, et al. Electron diffraction study of one-dimensional crystals of fullerenes[J]. Phys Rev B, 2001, 64(11): 115420(1-5).
    [27] Hirahara K, Suenaga K, Bandow S, et al. One-dimensional netallofullerene crystal generated inside single-walled carbon nanotubes[J]. Phys Rev Lett, 2000, 85(25): 5384-5387.
    [28] Simon F, Kuzmany H, Rauf H, et al. Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT[J]. Chem Phys Lett, 2004, 383(3-4): 362-367.
    [29] Rohlfing E A, Cox D M, Kaldor A. Production and characterization of supersonic carbon cluster beams[J]. J Chem Phys, 1984, 81(7), 3322-3330.
    [30] Cox D M, Reichmann K C, Kaldor A. Carbon clusters revisited: The“special”behavior of C60 and large carbon clusters[J]. J Chem Phys, 1988, 88(3): 1588-1597.
    [31] So H Y, Wikins C L. First observation of carbon aggregate ions >C600+ by laser desorption fourier transform mass spectrometry[J]. J Phys Chem, 1989, 93(4): 1184-1187.
    [32] Hahn M Y, Honea E C, Paguia K E, et al. Magic numbers in CN+ and CN? abundance distributions[J]. Chem Phys Lett, 1986, 130(1-2): 12-16.
    [33] David W I F, Ibberson R M, Matthewman J C, et al. Crystal structure and bonding of ordered C60[J]. Nature, 1991, 353(6340): 147-149.
    [34] H?ser M, Alml? J, Scuseria G E. The equilibrium geometry of C60 as predicted by second-order (MP2) perturbation theory[J]. Chem Phys Lett, 1991, 181(6): 497-500.
    [35] Kroto H W. The stability of the fullerenes C24, C28, C32, C36, C50, C60 and C70[J]. Nature, 1987, 329(6139): 529-531.
    [36] Piskoti C, Yarger J, Zettl A. C36, a new carbon solid[J]. Nature, 1998, 393(6687): 771-774.
    [37] Goel A, Howard J B, Sande J B V. Size analysis of single fullerene molecules by electron microscopy[J]. Carbon, 2004, 42(10): 1907-1915.
    [38] Fowler P W, Heine T. Stabilisation of pentagon adjacencies in the lower fullerenes by functionalisation[J]. J Chem Soc Perkin Trans, 2001, 2: 487-490.
    [39] Fowler P W, Heine T, Rogers K M, et al. C36, a hexavalent building block for fullerene compounds and solids[J]. Chem Phys Lett, 1999, 300(3-4): 369-378.
    [40] Fowler P W, Mitchell D, Zerbetto F. C36: The best fullerene for covalent bonding[J]. J Am Chem Soc, 1999, 121(1): 3218-3219.
    [41] Koshio A, Inakuma M, Sugai T, et al. A preparative scale synthesis of C36 by high-temperature laser-vaporization: Purification and identification of C36H6 and C36H6O[J]. J Am Chem Soc, 2000, 122(2): 398-399.
    [42]王震遐,柯学志,朱志远,等. C20富勒烯的Ar+离子辐照合成[J].物理学报, 2000, 49: 939-942.
    [43] Prinzbach H, Weller A, Landenberger P, et al. Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20[J]. Nature, 2000, 407(6800): 60-63.
    [44] Chen Z F, Heine T, Jiao H J, et al. Theoretical studies on the smallest fullerene: From monomer to oligomers and solid states[J]. Chem Eur J, 2004, 10: 963-970.
    [45] Xie S Y, Gao F, Lu X, et al. Capturing the labile fullerene[50] as C50Cl10[J]. Science, 2004, 304(5671): 699-699.
    [46] Lu X, Chen Z F, Thiel W, et al. Properties of fullerene[50] and D5h decachlorofullerene[50]: Acomputational study[J]. J Am Chem Soc, 2004, 126(45): 14871-14878.
    [47] Lu X, Chen Z F. Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (carbon nanotubes[J]. Chem Rev, 2005, 105(10): 3643-3693.
    [48] Xu Z J, Han J G, Zhu Z Y, et al. Valence of D5h C50 fullerene[J]. J Phys Chem A, 2007, 111(4): 656-665.
    [49] Chen Z F. The smaller fullerene C50, isolated as C50Cl10[J]. Angew Chem Int Ed, 2004, 43(36): 4690-4691.
    [50] Zhechkov L, Heine T, Seifert G. D5h C50 fullerene: A building block for oligomers and solids?[J]. J Phys Chem A, 2004, 108(52): 11733-11739.
    [51] Zhao X. On the structure and relative stability of C50 fullerenes[J]. J Phys Chem B, 2005, 109(11): 5267-5272.
    [52] Chang Y F, Zhang J P, Hong B, et al. D5h C50X10: Saturn-like fullerene derivatives (X = F, Cl, Br)[J]. J Chem Phys, 2005, 123(9): 094305(1-4).
    [53] Troshin P A, Avent A G, Darwish A D, et al. Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C58F18[J]. Science, 2005, 309(5732): 278-281.
    [54] Wang C R, Shi Z Q, Wan L J, et al. C64H4: Production, isolation, and structural characterizations of a stable unconventional fulleride[J]. J Am Chem Soc, 2006, 128(20): 6605-6610.
    [55] Tan Y Z, Liao Z J, Qian Z Z, et al. Two Ih-symmetry-breaking C60 isomers stabilized by chlorination[J]. Nat Mater, 2008, 7: 790-794.
    [56] Iijima S, Ichihashi T, Ando Y. Pentagons, heptagons and negative curvature in graphite microtubule growth[J]. Nature, 1992, 356(6372): 776-778.
    [57] B. I. Dunlap. Connecting carbon tubules[J]. Phys Rev B, 1992, 46(3): 1933-1936.
    [58] Taylor R. The 3rd form of carbon-a new era in chemistry[J]. Interdiscip Sci Rev, 1992, 17(2): 161-170.
    [59] Hummelen J C, Prato M, Wudl F. There is a hole in my bucky[J]. J Am Chem Soc, 1995, 117(26): 7003-7004.
    [60] Birkett P R, Avent A G, Darwish A D, et al. Holey fullerenes! A bis-lactone derivative of [70]fullerene with an eleven-atom orifice[J]. J Chem Soc Chem Commun, 1995, 18: 1869-1870.
    [61] Gao Y D, Herndon W C. Fullerenes with four-membered rings[J]. J Am Chem Soc, 1993, 115(18): 8459-8460.
    [62] Fowler P W, Heine T, Manolopoulos D E, et al. Energetics of fullerenes with four-membered rings[J]. J Phys Chem, 1996, 100(17): 6984-6991.
    [63] Ayuela A, Fowler P W, Mitchell D, et al. C62: Theoretical evidence for a nonclassical fullerene with a heptagonal ring[J]. J Phys Chem, 1996, 100(39): 15634-15636.
    [64] Qian W Y, Bartberger M D, Pastor S J, et al. C62, A non-classical fullerene incorporating a four-membered ring[J]. J Am Chem Soc, 2000, 122(34): 8333-8334.
    [65] Qian W Y, Chuang S C, Amador R B, et al. Synthesis of stable derivatives of C62: The first nonclassical fullerene incorporating a four-membered ring[J]. J Am Chem Soc, 2003, 125(8): 2066-2067.
    [66] Chen D L, Tian W Q, Feng J K, et al. Structures, stabilities, and electronic and optical properties of C58 fullerene isomers, ions, and metallofullerenes[J]. ChemPhysChem, 2007, 8: 1029-1036.
    [67] Chen D L, Tian W Q, Feng J K, et al. Search for more stable C58X18 isomers: Stabilities and electronic properties of seven-membered ring C58X18 fullerene derivatives (X = H, F, and Cl)[J]. J Phys Chem B, 2007, 111(19): 5167-5173.
    [68] Heath J R, O’Brien S C, Zhang Q. Lanthanum complexes of spheroidal carbon shells[J]. J Am Chem Soc, 1985, 107 (25): 7779-7780.
    [69] Chai Y, Guo T, Jin C. Fullerenes with metals inside[J]. J Phys Chem, 1991, 95(20): 7564-7568.
    [70] Laasonen K, Andreoni W, Parrinello M. Structural and electronic properties of La@C82[J]. Science, 1992, 258(5090): 1916-1918.
    [71] Takata M, Umeda B, Nishibori E, et al. Confirmation by X-ray diffraction of the endohedral nature ofthe metallofullerene Y@C82[J]. Nature, 1995, 377(6544): 46-49.
    [72] Kobayashi K, Nagase S. Structures and electronic states of M@C82 (M = Sc, Y, La and lanthanides)[J]. Chem Phys Lett, 1998, 282(3-4): 325-329.
    [73] Kobayashi K, Nagase S, Akasaka T. A theoretical study of C80 and La2@C80[J]. Chem Phys Lett, 1995, 245(2-3): 230-236.
    [74] Nagase S, Kobayashi K. Structural study of endohedral dimetallofullerenes Sc2@C84 and Sc2@C74[J]. Chem Phys Lett, 1997, 276(1-2): 55-61.
    [75] Slanina Z, Chen Z F, Schleyer P v R, et al. La2@C72 and Sc2@C72: Computational characterizations[J]. J Phys Chem A, 2006, 110(6): 2231-2234.
    [76] Lu X, Nikawa H, Nakahodo T, et al. Chemical understanding of a non-IPR metallofullerene: Stabilization of encaged metals on fused-pentagon bonds in La2@C72[J]. J Am Chem Soc, 2008, 130(28): 9129-9136.
    [77] Wakahara T, Nikawa H, Kikuchi T, et al. La@C72 having a non-IPR carbon cage[J]. J Am Chem Soc, 2006, 128(44): 14228-14229.
    [78] Popov A A, Dunsch L. Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): A density functional theory study[J]. J Am Chem Soc, 2007, 129(38): 11835-11849.
    [79] Knapp C, Dinse K P, Pietzak B, et al. Fourier transform EPR study of N@C60 in solution[J]. Chem Phys Lett, 1997, 272(5-6): 433-437.
    [80] Mauser H, van Eikema Hommes N J R, Clark T, et al. Stabilization of atomic nitrogen inside C60[J]. Angew Chem Int Ed Engl, 1997, 36(24): 2835-2838.
    [81] Suzuki T, Li Q, Khemani K C, et al. Systematic inflation of buckminsterfillerene C60: Synthesis of diphenyl fulleroids C61 to C66[J]. Science, 1991, 254(5035): 1186-1188.
    [82] Boudon C, Gisselbrecht J P, Gross M, et al. Electrochemistry of mono-through hexakis-adducts of C60[J]. Helv Chim Acta, 1995, 78: 1334-1344.
    [83] Hirsch A, Lamparth I, Gr?bsser T, et al. Regiochemistry of multiple additions to the fullerene core: Synthesis of a Th-symmetric hexakis adduct of C60 with bis(ethoxycarbonyl)methylene[J]. J Am Chem Soc, 1994, 116(20): 9385-9386.
    [84] Guo T, Diener M D, Chai Y, et al. Uranium stabilization of C28: A tetravalent fullerene[J]. Science, 1992, 257(5077): 1661-1664.
    [85] Guo T, Scuseria G E, Smalley R E. Ab initio theoretical predictions of C28, C28H4, C28F4, (TiC28)H4, and MC28 (M = Mg, Al, Si, S, Ca, Sc, Ti, Ge, Zr, and Sn)[J]. J Chem Phys, 1993, 99(1): 352-359.
    [86] Pederson M R, Laouini N. Covalent container compound: Empty, endohedral, and exohedral C28 complexes[J]. Phys Rev B, 1993, 48(4): 2733-2737.
    [87] Jackson K, Kaxiras E, Pederson M R. Electronic states of group-IV endohedral atoms in C28[J]. Phys Rev B, 1993, 48(23): 17556-17561.
    [88] Dunlap B I, H?berlen O D, R?sch N. Asymmetric localization of titanium in carbon molecule (C28)[J]. J Phys Chem, 1992, 96(23): 9095-9097.
    [89] Sun Q, Wang Q, Yu J Z, et al. First-principles studies on pure and doped C32 clusters[J]. J Phys: Condens Matter, 2001, 13: 1931-1938.
    [90] Lin M H, Chiu Y N, Lai S T, et al. Theoretical study of metallofullerenes M@C32[J]. J Mol Struct THEOCHEM, 1998, 422(1-3): 57-67.
    [91] Breslavskaya N N, Levin A A, Buchachenko A L. Endofullerenes: Size effects on structure and energy[J]. Russ Chem Bull, 2004, 53: 18-23.
    [92] Chang Y F, Hong B, Sun L L, et al. Theoretical studies on structures and properties of endohedral fullerenes complexes: XHn@C32 (X = F, O, N, C; n = 1-4)[J]. Chem Res Chinese U, 2008, 24(2): 220-222.
    [93] Li J Q, Huang X, Wu L M, et al. DFT studies on the electronic of C36 (D6h symmetry) and its derivatives[J]. Acta Chim Sin, 2000, 58: 319-325.
    [94] Huang X, Li J Q, Zhang Y F. DFT Studies on the electronic structure of C36 (D6h symmetry) and its alkaline earths metals derivatives[J]. Chinses J Struct Chem, 2000, 19: 64-68.
    [95] Cross R J, Saunders M, Prinzbach H. Putting helium inside dodecahedrane[J]. Org Lett, 1999(1): 1479-1481.
    [96] Moran D, Stahl F, Jemmis E D, et al. Structures, stabilities, and ionization potentials of dodecahedrane endohedral complexes[J]. J Phys Chem A, 2002, 106(20): 5144-5154.
    [97] Chen Z F, Jiao H J, Moran D, et al. Structures and stabilities of endo- and exohedral dodecahedrane complexes (X@C20H20 and XC20H20, X = H+, H, N, P, C-, Si-, O+, S+)[J]. J Phys Chem A, 2003, 107(12): 2075-2079.
    [98] Kimura T, Sugai T, Shinohara H. Production and mass spectroscopic characterization of metallocarbon clusters incorporating Sc, Y, and Ca atoms[J]. Int J Mass Spectrom, 1999, 188(3): 225-232.
    [99] Maruyama S, Yamaguchi Y, Kohno M. et al. Formation process of empty and metal-containing fullerenes-molecular dynamics and FT-ICR studies[J]. Fuller Sci Technol, 1999, 7(4): 621-636.
    [100] Rubin Y, Jarrosson T, Wang G W, et al. Insertion of helium and molecular hydrogen through the orifice of an open fullerene[J]. Angew Chem Int Ed, 2001, 40(8): 1543-1546.
    [101] Murata Y, Murata M, Komatsu K. 100% encapsulation of a hydrogen molecule into an open-cage fullerene derivative and gas-phase generation of H2@C60[J]. J Am Chem Soc, 2003, 125(24): 7152-7153.
    [102] Stanisky C M, Cross R J, Saunders M, et al. Helium entry and escape through a chemically opened window in a fullerene[J]. J Am Chem Soc, 2005, 127(1): 299-302.
    [103] Iwamatsu S, Uozaki T, Kobayashi K, et al. A bowl-shaped fullerene encapsulates a water into the cage[J]. J Am Chem Soc, 2004, 126(9): 2668-2669.
    [104] Stanisky C M, Cross R J, Saunders M. Putting atoms and molecules into chemically opened fullerenes[J]. J Am Chem Soc, 2009, 131(9): 3392-3395.
    [105] Whitener Jr K E, Frunzi M, Iwamatsu S, et al. Putting ammonia into a chemically opened fullerene[J]. J Am Chem Soc, 2008, 130(42): 13996-13999.
    [106] Murata M, Murata Y, Komatsu K. Synthesis and properties of endohedral C60 encapsulating molecular hydrogen[J]. J Am Chem Soc, 2006, 128(24): 8024-8033.
    [107] Murata Y, Maeda S, Murata M, et al. Encapsulation and dynamic behavior of two H2 molecules in an open-cage C70[J]. J Am Chem Soc, 2008, 130(21): 6702-6703.
    [108] Christian J F, Wan Z, Anderson S L. Nitrogen ion N+ + C60 fullerene reactive scattering: Substitution, charge transfer, and fragmentation[J]. J Phys Chem, 1992, 96(26): 10597-10600.
    [109] Lamparth I, Nuber B, Schick G, et al. C59N+ and C69N+: isoelectronic heteroanalogues of C60 and C70[J]. Angew Chem Int Ed Engl, 1995, 34(20): 2257-2259.
    [110] Averdung J, Luftmann H, Schlachter I, et al. Aza-dihydro[60]fullerene in the gas phase. A mass-spectrometric and quantumchemical study[J]. Tetrahedron, 1995, 51(25): 6977-6982.
    [111] Hummelen J C, Knight B, Pavlovich J, et al. Isolation of the heterofullerene C59N as its dimer (C59N)2[J]. Science, 1995, 269(5230): 1554-1556.
    [112] Andreoni W, Curioni A, Holczer K, et al. Unconventional bonding of azafullerenes: Theory and experiment[J]. J Am Chem Soc, 1996, 118(45): 11335-11336.
    [113] Prassides K, Keshavarz K M, Hummelen J C, et al. Isolation, structure, and electronic calculations of the heterofullerene salt K6C59N[J]. Science, 1996, 271(5257): 1833-1835.
    [114] Muhr H J, Nesper R, Schnyder B, et al. The boron heterofullerenes C59B and C69B: generation, extraction, mass spectrometric and XPS characterization[J]. Chem Phys Lett, 1996, 249(5-6): 399-405.
    [115] Fye J L, Jarrold M F. Structures of silicon-doped carbon clusters[J]. J Phys Chem A, 1997, 101(10): 1836-1840.
    [116] Billas I M L, Massobrio C, Boero M, et al. First principles calculations of Si doped fullerenes: Structural and electronic localization properties in C59Si and C58Si2[J]. J Chem Phys, 1999, 111(15): 6787-6796.
    [117] Stry J J, Garvey J F. Generation of C59O? via collision induced dissociation of oxy-fullerene anions[J]. Chem Phys Lett, 1995, 243(3-4): 199-204.
    [118] Glenis S, Cooke S, Chen X, et al. Evidence for the existence of sulfur-doped fullerenes from elucidation of their photophysical properties[J]. Chem Mater, 1996, 8(1): 123-127.
    [119] Branz W, Billas I M, Malinowski N, et al. Cage substitution in metal-fullerene clusters[J]. J Chem Phys, 1998, 109(9): 3425-3430.
    [120] Ohtsuki T, Ohno K, Shiga K, et al. Formation of As- and Ge-doped heterofullerenes[J]. Phys Rev B, 1999, 60(3): 1531-1534.
    [121] Ohtsuki T, Ohno K, Shiga K, et al. Systematic study of foreign-atom-doped fullerenes by using a nuclear recoil method and their MD simulation[J]. J Chem Phys, 2000, 112(6): 2834-2842.
    [122] Ding C, Yang J, Han R, et al. Formation mechanism and structural and electronic properties of metal-substituted fullerenes C69M (M = Co, Rh, and Ir)[J]. Phys Rev A, 2001, 64(4): 043201(1-6).
    [123] Simeon T, Balasubramanian K, Leszczynski J. New insights into the chemical and electronic properties of C69M (M = In-, Tl-, Sb+, Bi+) species[J]. J Phys Chem A, 2008, 112(47): 12179-12186.
    [124] Okamura H, Murata Y, Minoda M, et al. Synthesis of disubstituted 1,2-dihydro[60]fullerenes with well-defined structure by addition of 1-alkoxy-1-chloroethanes to 2-(1-octynyl)-1,2-dihydro
    [60]fulleren-1-ide ion[J]. J Org Chem, 1996, 61(24): 8500-8502.
    [125] Murata Y, Komatsu K, Wan T S M. The reaction of [60]fullerene with lithium fluorenide: Formation of a novel 1,4-adduct of [60]fullerene[J]. Tetrahedron Lett, 1996, 37(39): 7061-7064.
    [126] Kusukawa T, Ando W. Reaktionen von silyllithiumverbindungen mit C60: isolierung und r?ntgenographische charakterisierung neuartiger disilyl-C60-addukte[J]. Angew Chem, 1996, 108(12): 1416-1418.
    [127] Henderson C C, Cahill P A. C60H2: Synthesis of the simplest C60 hydrocarbon derivative[J]. Science, 1993, 259(5103): 1885-1887.
    [128] Ballenweg S, Gleiter R, Kr?tschmer W. Hydrogenation of buckminsterfullerene C60 via hydrozirconation: A new way to organofullerenes[J]. Tetrahedron Lett, 1993, 34(23): 3737-3740.
    [129] Meier M S, weedon B R, Spielmann H P. Synthesis and isolation of one isomer of C60H6[J]. J Am Chem Soc, 1996, 118(46), 11682-11683.
    [130] Guarr T F, Meier M S, Vance V K, et al. Electrochemistry of the C60H2 fullerene[J]. J Am Chem Soc, 1993, 115(21): 9862-9863.
    [131] Rüchhardt C, Gerst M, Ebenhocn J, et al. Transferhydrierung und-deuterierung von buckminsterfulleren C60 durch 9,10-dihydro-anthracen bzw. 9,9’,10,10’-[D4]dihydroanthracen[J]. Angew Chem, 1993, 105(4): 609-611.
    [132] Rüchhardt C, Gerst M, Ebenhocn J, et al. Transfer hydrogenation and deuteration of buckminsterfullerene C60 by 9,10-dihydroanthracene and 9,9’,10,10’-[D4]dihydroanthracene[J]. Angew Chem Int Engl, 1993, 32(4): 584-586.
    [133] Attalla M I, Vassallo A M, Tattam B N, et al. Preparation of hydrofullerenes by hydrogen radical induced hydrogenation[J]. J Phys Chem, 1993, 97(24): 6329-6331.
    [134] Peera A, Saini R K, Alemany L B, et al. Formation, isolation, and spectroscopic properties of some isomers of C60H38, C60H40, C60H42, and C60H44 - Analysis of the effect of the different shapes of various helium-containing hydrogenated fullerenes on their 3He chemical shifts[J]. Eur J Org Chem, 2003, 2003(21): 4140-4145.
    [135] Talyzin A V, Dzwilewski A, Sundqvist B, et al. Hydrogenation of C60 at 2 GPa pressure and high temperature[J]. Chem. Phys, 2006, 325(2-3): 445-451.
    [136] Paquette L A, Ternansky R J, Balogh D W. A strategy for the synthesis of monosubstituted dodecahedrane and the isolation of an isododecahedrane[J]. J Am Chem Soc, 1982, 104(16): 4502-4503.
    [137] Ternansky R J, Balogh D W, Paquette L A. Dodecahedrane[J]. J Am Chem Soc, 1982, 104(16): 4503-4504.
    [138] Paquette L A, Ternansky R J, D. W. Balogh D W, et al. Total synthesis of dodecahedrane[J]. J Am Chem Soc, 1983, 105(16): 5446-5450.
    [139] Prinzbach H. The pagodane route to dodecahedranes: An improved approach to the C20H20 parent dramework; partial and total functionalizations - does C20-fullerene exist?[J]. Angew Chem Int Ed Engl, 1993, 32(12): 1722-1726.
    [140] Prinzbach H, Weber K. From an insecticide to plato's universe - the pagodane route to dodecahedranes: New pathways and new perspectives[J]. Angew Chem Int Ed Engl, 1994, 33(22): 2239-2257.
    [141] Bertau M, Leonhardt J, Weiler A, et al. The pagodane→dodecahedrane concept-shorter routes, higher yields[J]. Chem Eur J, 1996, 2(5): 570-579.
    [142] Disch R L, Schulman J M. Heat of formation of dodecahedrane[J]. J Phys Chem, 1996, 100(9): 3504-3506.
    [143] Koshio A, Inakuma M, Wang Z W, et al. In situ laser-furnace TOF mass spectrometry of C36 and the large-scale production by arc-discharge[J]. J Phys Chem B, 2000, 104(33): 7908-7913.
    [144] Corminboeuf C, Fowler P W, Heine T. 13C NMR patterns of C36H2x fullerene hydrides[J]. Chem Phys Lett, 2002, 361(5-6): 405-410.
    [145] Holloway J H, Hope E G, Taylor R, et al. Fluorination of buckminsterfullerene[J]. J Chem Soc Chem Commun, 1991, 14: 966-969.
    [146] Olah G A, Bucsi I, Lambert C, et al. Chlorination and bromination of fullerenes. Nucleophilic methoxylation of polychlorofullerenes and their aluminum trichloride catalyzed Friedel-Crafts reaction with aromatics to polyarylfullerenes[J]. J Am Chem Soc, 1991, 113(24): 9385-9387.
    [147] Boltalina O V, Lukonin A Y, Street J M, et al. C60F2 exists![J]. Chem Commun, 2000, 17: 1601-1602.
    [148] Boltalina O V, Darwish A D, Street J M, et al. Isolation and characterisation of C60F4, C60F6, C60F8, C60F7CF3 and C60F2O, the smallest oxahomofullerene; the mechanism of fluorine addition to fullerenes[J]. J Chem Soc Perkin Trans, 2002, 2: 251-256.
    [149] Tuinman A A, Gakh A A, Adcock J L, et al. Crystal structure of a parallel-stranded duplex of a deoxycytidylyl-(3'-5')-deoxycytidine analog containing intranucleosidyl C(3')-C(5') ethylene bridges[J]. J Am Chem Soc, 1993, 115(13): 5885-5886.
    [150] Matsuzawa N, Fukunaga T, Dixon D A. Electronic structures of 1,2- and 1,4-C60X2n derivatives with n = 1, 2, 4, 6, 8, 10, 12, 18, 24, and 30[J]. J Phys Chem, 1992, 96(26): 10747-10756.
    [151] Boltalina O V, Markov V Yu, Taylor R, et al. Preparation and characterisation of C60F18[J]. Chem Commun, 1996, 22: 2549-2550.
    [152] Gakh A A, Tuinman A A, Adcock J L. Selective synthesis and structure determination of C60F48[J]. J Am Chem Soc, 1994, 116(2): 819-802.
    [153] Boltalina O V, Markov V Y, Troshin P A, et al. C60F20:“Saturnene”, an extraordinary squashed fullerene[J]. Angew Chem Int Ed, 2001, 40(4): 787-789.
    [154] Cioslowski J. Electronic structure calculation on fullerenes and their derivatives[M]. New York: Oxford University Press, 1995.
    [155] Denisenko N I, Troyanov S I, Popov A A, et al. Th-C60F24[J]. J Am Chem Soc, 2004, 126(6): 1618-1619.
    [156] Jia J F, Wu H S, Xu X H, et al. Fused five-membered rings determine the stability of C60F60[J]. J Am Chem Soc, 2008, 130(2): 3985-3988
    [157] Birkett P R, Hitchcock P B, Kroto H W, et al. Preparation and characterization of C60Br6 and C60Br8[J]. Nature, 1992, 357(6378): 479-481.
    [158] Birkett P R, Avent A G, Darwish A D, et al. Preparation and 13C NMR spectroscopic characterisation of C60Cl6[J]. J Chem Soc Chem Commun, 1993, 15: 1230-1232.
    [159] Troyanov S I, Shustova N B, Popov A A, et al. Chlorination C60 and C70 fullerenes using SbCl5 and VCl4 chlorides[J]. Russ J Inorg Chem, 2004, 49(9): 1403-1407.
    [160] Troshin P A, Lyubovskaya R N, Ioffe I N, et al. Synthesis and structure of the highly chlorinated
    [60]fullerene C60Cl30 with a drum-shaped carbon cage[J]. Angew Chem Int Ed, 2005, 44(2): 234-237.
    [161] Taylor R. The chemistry of fullerene[M]. Singapore: World Scientific, 1995.
    [162] Hirsch A. Brettreich M. Fullerenes - Chemistry and reactions[M]. Weinheim: Wiley-VCH, 2005.
    [1]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社, 1985.
    [2]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社, 1982.
    [3]金松寿.量子化学基础及其应用[M].上海:上海科学技术出版社, 1980.
    [4]陈念陔,高坡,乐征宇.量子化学理论基础[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [5] Born M, Huang K. Dynamical Theory of Crystal Lattices[M]. New York: Oxford University Press, 1954.
    [6] Born M, Oppenheimer R. [J]. Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84: 457-484.
    [7] Hartreee D R. Proc. Cambridge Phil. Soc. 1928, 24, 89.
    [8] Fock V. Ann. Physik. 1930, 61: 126.
    [9]Hartree D. Calculations of Atomic Structure[M]. Wiley, 1957.
    [10] Roothaan C C J. New developments in molecular orbital theory[J]. Rev Mod Phys, 1951, 23(2): 69-89.
    [11] Thomas L H. Calculation of atom field[J]. Proc. Combridge Philos.Soc, 1927, 23: 542.
    [12] Fermi E. Statistical method of investigating electrons in atom[J]. Z Phys, 1928, 48: 73.
    [13] Dirac M A P. Exchange phenomena in the Thomas atom[J]. Combridge Philos Soc, 1930, 26: 376.
    [14] Wigner P E. On the interaction of electrons in metals[J]. Phys Rev, 1934, 46: 1002.
    [15] Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys Rev, 1964, B136: 864.
    [16] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys Rev, 1965, A140:1133.
    [17] Sham L J, Kohn W. One-particle properties of an inhomogeneous interacting electron gas[J]. Phys Rev, 1966, 145:561.
    [18] Parr R G, Yang W. Density-functional theory of atoms and molecules Oxford Univ[M]. Press: Oxford, 1989.
    [19] Pople J A, Head-Gordon M, Raghavachari K. Quadratic configuration interaction: A general technique for determining electron correlation energies[J]. J Chem Phys, 1987, 87(10): 5968-5975.
    [20] Szabo A, Ostlund N S. Modern Quantum Chemistry, Introduction to
    [21] Advanced Electronic Structure Theory[M]. Dover, New York, 1996.
    [22] M?ller C, Plesset M S. Note on an Approximation Treatment for Many-Electron Systems[J]. Phys Rev, 1934, 46: 618-622.
    [23] Head-Gordon M, Pople J A, Frisch M J. MP2 energy evaluation by direct methods[J]. Chem Phys Lett, 1988, 153(6): 503-506.
    [24] Pople J A, Seeger R, Krishnan R. Variational configuration interaction methods and comparison with perturbation theory[J]. Int J Quantum Chem, 1977, 11(1): 149-161.
    [25] Foresman J B, Head-Gordon M, Pople J A, et al. Toward a Systematic Molecular Orbital Theoryfor Excited States[J]. J Phys Chem, 1992, 96(1): 135-149.
    [26] Krishnan R, Schlegel H B, Pople J A. Derivative studies in configuration interaction theory[J]. J Chem Phys, 1980, 72(8): 4654-4655.
    [27] Brooks B R, Laidig W D, Saxe P, et al. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach[J]. J Chem Phys, 1980, 17(8): 4652-4653.
    [28] Salter E A, Trucks G W, Bartlett R J. Analytic energy derivatives in many-body methods I. First derivatives[J]. J Chem Phys, 1989, 90(3): 1752-1766.
    [29] Raghavachari K, Pople J A. Calculation of one-electron properties using limited configurationinteraction techniques[J]. Int J Quantum Chem, 1981, 20(5): 1067-1071.
    [30] Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys Rev, 1964, 136, B864-B871.
    [31] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys Rev, 1965, 140, A1133-A1138.
    [32] Fukui K. Varational principles in a chemical reaction[J]. Int J Quantum Chem, 1981, 15: 633-641.
    [33] Fukui K, Tachibana A, Yamashita K. Toward chemodynamitcs[J]. Int J Quantum Chem, 1981, 15: 621-632.
    [34] Slater J C. Quantum Theory of Molecular and Solids: The Self-Consistent Field for Molecular and Solids McGraw-Hill[M]. New York, 1974.
    [35] Salahub D R, Zerner M C,et al. The Challenge of d and f Electrons[M]. Washington, D.C, 1989.
    [36] Pople J A , Gill P M W , Johnson B G. Kohn-Sham density-functional theory within a finite basis set[J]. Chem Phys Lett, 1992, 199(6): 557-560.
    [37] Johnson B G, Fisch M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy[J]. J Chem Phys, 1994, 100(10): 7429-7442.
    [38] Labanowski J K, Andzelm J W, eds. Density Functional Methods in Chemistry[M]. Springer-Verlag: New York, 1991.
    [39] Lowin P O. Quantum Theory of Many-Particle Systems.I.Physical Interptetations by Means of Density Matrics, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction [J]. Phys Rev, 1955, 97: 1474-1489.
    [40] Rood A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chem Rev, 1988, 88(6): 899-926.
    [41][42] Jensen F. Introduction to Computational Chemistry [J].Wil Sons, 1999: 161, 229.
    [1] Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminsterfullerene[J]. Nature, 1985, 318((6042): 162-163.
    [2] Feyereisen M, Gutowski M, Simons J, et al. Relative stabilities of fullerene, cumulene, and polyacetylene structures for Cn : n = 18–60[J]. J Chem Phys, 1992, 96(4): 2926-2932.
    [3] Kroto H W. The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70[J]. Nature (London), 1987, 329(6139): 529-531.
    [4] Heath J R, O’Brien S C, Zhang Q. Lanthanum complexes of spheroidal carbon shells[J]. J Am Chem Soc, 1985, 107(25): 7779-7780.
    [5] Caraiman D, Koyanagi G K, Scott L T, et al. Fullerometallic ion chemistry: reactions of C60Fe+ and C20H10Fe+ in the gas phase[J]. J Am Chem Soc, 2001, 123(35): 8573-8582.
    [6] Cao B P, Wakahara T, Tsuchiya T, et al. Isolation, characterization, and theoretical study of La2@C78[J]. J Am Chem Soc, 2004, 126(30): 9164-9165.
    [7] Mauser H, van Eikema Hommes N J R, Clark T, et al. Stabilization of atomic nitrogen inside C60[J]. Angew Chem Int Ed Engl, 1997, 36(24): 2835-2838.
    [8] Hirsch A, Lamparth I, Gr?bsser T, et al. Regiochemistry of multiple additions to the fullerene core: synthesis of a Th-Symmetric hexakis adduct of C60 with bis(ethoxycarbonyl)methylene[J]. J Am Chem Soc, 1994, 116(20): 9385-9386.
    [9] Suetsuna T, Dragoe N, Harneit W, et al. Separation of N2@C60 and N@C60[J]. Chem Eur J, 2002, 8(22): 5079-5083.
    [10] Schmalz T G, Seitz W A, Klein D J, et al. Elemental carbon cages[J]. J Am Chem Soc, 1988, 110(4): 1113-1127.
    [11] Rohlfing E A, Cox D M, Kaldor A. Production and characterization of supersonic carbon cluster beams[J]. J Chem Phys, 1984, 81(7): 3322-3330.
    [12] Guo T, Scuseria G E, Smalley R E. Ab initio theoretical predictions of C28, C28H4, C28F4, (TiC28)H4, and MC28 (M = Mg, Al, Si, S, Ca, Sc, Ti, Ge, Zr, and Sn)[J]. J Chem Phys, 1993, 99(1): 352-359.
    [13] Guo T, Diener M D, Chai Y, et al. Uranium stabilization of C28: a tetravalent fullerene[J]. Science, 1992, 257(5077): 1661-1664.
    [14] Chang Y F, Jalbout A F, Zhang J P, Z. Et al. Theoretical study on C32 fullerenes and derivatives[J]. Chem Phys Lett, 2006, 428(1-3): 148-151.
    [15] Sun Q, Wang Q, Yu J Z, et al. First-principles studies on pure and doped C32 clusters[J]. J Phys: Condens Matter, 2001, 13: 1931-1938.
    [16] Hong B, Chang Y F, Qiu Y Q, et al. MP2 theory investigation on the halides of D6h C36:C36Xn (X = F, Cl, Br; n = 2, 4, 6, 12)[J]. J Chem Phys, 2006, 124(14): 144108(1-5).
    [17] Chen Z F. The smaller fullerene C50, isolated as C50Cl10[J]. Angew Chem Int Ed, 2004, 43(36): 4690-4691.
    [18] Zhechkov L, Heine T, Seifert G. D5h C50 fullerene: a building block for oligomers and solids?[J]. J Phys Chem A, 2004, 108(52): 11733-11739.
    [19] Lu X, Chen Z F, Thiel W, et al. Properties of fullerene[50] and D5h decachlorofullerene[50]: A computational study[J]. J Am Chem Soc, 2004, 126(45): 14871-14878.
    [20] Piskoti C, Yarger J, Zettl A. C36, a new carbon solid[J]. Nature, 1998, 393(6687): 771-774.
    [21] Fowler P W, Heine T. Stabilisation of pentagon adjacencies in the lower fullerenes by functionalisation[J]. J Chem Soc Perkin Trans, 2001, 2: 487-490.
    [22] Fowler P W, Heine T, Rogers K M, et al. C36, a hexavalent building block for fullerene compounds and solids[J]. Chem Phys Lett, 1999, 300(3-4): 369-378.
    [23] Fowler P W, Mitchell D, Zerbetto F. C36: The best fullerene for covalent bonding[J]. J Am Chem Soc, 1999, 121(1): 3218-3219.
    [24] Koshio A, Inakuma M, Sugai T, et al. A preparative scale synthesis of C36 by high-temperature laser-vaporization: purification and identification of C36H6 and C36H6O[J]. J Am Chem Soc, 2000, 122(2): 398-399.
    [25]王震遐,柯学志,朱志远,等. C20富勒烯的Ar+离子辐照合成[J].物理学报, 2000, 49: 939-942.
    [26] Prinzbach H, Weller A, Landenberger P, et al. Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20[J]. Nature, 2000, 407(6800): 60-63.
    [27] Chen Z F, Heine T, Jiao H J, et al. Theoretical studies on the smallest fullerene: from monomer to oligomers and solid states[J]. Chem Eur J, 2004, 10: 963-970.
    [28] Xie S Y, Gao F, Lu X, et al. Capturing the labile fullerene[50] as C50Cl10[J]. Science, 2004, 304(5671): 699-699.
    [29] Kietzmann H, Rochow R, Gantef?r G, et al. Electronic structure of small fullerenes: Evidence for the high stability of C32[J]. Phys Rev Lett, 1998, 81(24): 5378-5381.
    [30] Kroto H W, Walton D R M. Stable derivatives of small fullerenes[J]. Chem Phys Lett, 1993, 214(3-4): 353-356.
    [31] Lin M H, Chiu Y N, Xiao J M. Theoretical study for exohydrogenates of small fullerenes C28~C40[J]. J Mol Struct THEOCHEM, 1999, 489(2-3): 109-117.
    [32] Lin M H, Chiu Y N, Lai S T, et al. Theoretical study of metallofullerenes M@C32[J]. J Mol Struct THEOCHEM, 1998, 422(1-3): 57-67.
    [33] Breslavskaya N N, Levin A A, Buchachenko A L. Endofullerenes: size effects on structure and energy[J]. Russ Chem Bull, 2004, 53: 18-23.
    [34] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 98, Revision A.9. Gaussian Inc, Pittsburgh PA, 1998.
    [35] Li J Q, Huang X, Wu L M, et al. DFT studies on the electronic of C36 (D6h symmetry) and its derivatives[J]. Acta Chim Sin, 2000, 58: 319-325.
    [36] Huang X, Li J Q, Zhang Y F. DFT Studies on the electronic structure of C36 (D6h symmetry) and its alkaline earths metals derivatives[J]. Chinses J Struct Chem, 2000, 19: 64-68.
    [37] Young, D. C. Computational chemistry: A practical guide for applying technique[M]. A John Wiley & Sons, Inc, 2001: 227-228.
    [1] Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckyminister-fullerene[J]. Nature, 1985, 318(6042): 162-163.
    [2] Kr?tschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60 - a new form of carbon[J]. Nature, 1990, 347(6291): 354-358.
    [3] Kroto H W. The stability of the fullerenes C24, C28, C32, C36, C50, C60 and C70[J]. Nature, 1987, 329(6139): 529-531.
    [4] Schmalz T G, Seitz W A, Klein D J, et al. Elemental carbon cages[J]. J Am Chem Soc, 1988, 110(4): 1113-1127.
    [5] Koshio A, Inakuma M, Sugai T, et al. A preparative scale synthesis of C36 by high-temperature laser-vaporization: purification and identification of C36H6 and C36H6O[J]. J Am Chem Soc, 2000, 122(2): 398-399.
    [6] Koshio A, Inakuma M, Wang Z W, et al. In situ laser-furnace TOF mass spectrometry of C36 and the large-scale production by arc-discharge[J]. J Phys Chem B, 2000, 104(33): 7908-7913.
    [7] Rohlfing E A, Cox D M, Kaldor A. Production and characterization of supersonic carbon cluster beams[J]. J Chem Phys, 1984, 81(7): 3322-3330.
    [8] Parker D H, Wurz P, Chatterjee K, et al. High-yield synthesis, separation, and mass-spectrometric characterization of fullerenes C60 to C266[J]. J Am Chem Soc, 1991, 113(20): 7499-7503.
    [9] Cox D M, Reichmann K C, Kaldor A. Carbon clusters revisited: The“special”behavior of C60 and large carbon clusters[J]. J Chem Phys, 1988, 88(3): 1588-1597.
    [10] So H Y, Wikins C L. First observation of carbon aggregate ions >C600+ by laser desorption Fourier transform mass spectrometry[J]. J Phys Chem, 1989, 93(4): 1184-1187.
    [11] Hahn M Y, Honea E C, Paguia K E, et al. Magic numbers in CN+ and CN? abundance distributions[J]. Chem Phys Lett, 1986, 130(1-2): 12-16.
    [12] H?ser M, Alml? J, Scuseria G E. The equilibrium geometry of C60 as predicted by second-order (MP2) perturbation theory[J]. Chem Phys Lett, 1991, 181(6): 497-500.
    [13] David W I F, Ibberson R M, Matthewman J C, et al. Crystal structure and bonding of ordered C60[J]. Nature, 1991, 353(6340): 147-149.
    [14] Grossman J C, Cote M, Louie S G, et al. Electronic and structural properties of molecular C36[J]. Chem Phys Lett, 1998, 284(5-6): 344-349.
    [15] Halac E, Burgos E, Bonadeo H. Molecular structure and dynamical properties of C36: a semi-empirical calculation[J]. Chem Phys Lett, 1999, 299(1): 64-68.
    [16] Jagadeesh M N, Chandrasekhar J. Computational studies on C36 and its dimmer[J]. Chem Phys Lett, 1999, 305(3-4): 298-302.
    [17] Ito A, Monobe T, Yoshii T, Tanaka K. Do C36 and C36H6 molecules have [36-D6h] fullerene structure[J]. Chem Phys Lett, 2000, 328(1-2): 32-38.
    [18] Yuan L, Yang J, Deng K, et al. A first-principles study on the structural and electronic properties of C36 molecules[J]. J Phys Chem A, 2000, 104(28): 6666-6671.
    [19] Slanina Z, Uhlik F, Zhao X, et al. Enthalpy–entropy interplay for C36 cages: B3LYP/6-31G(d) calculations[J]. J Chem Phys, 2000, 113(12): 4933-4937.
    [20] Varganov S A, Avramov P V, Ovchinnikov S G, et al. A study of the isomers of C36 fullerene using single and multireference MP2 perturbation theory[J]. Chem Phys Lett, 2002, 362(5-6): 380-386.
    [21] Piskoti C, Yarger J, Zettl A. C36, a new carbon solid[J]. Nature, 1998, 393(6687): 771-774.
    [22]王震遐,柯学志,朱志远,等. C20富勒烯的Ar+离子辐照合成. [J].物理学报, 2000, 49: 939-942.
    [23] Prinzbach H, Weller A, Landenberger P, et al. Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20[J]. Nature, 2000, 407(6800): 60-63.
    [24] Chen Z F, Heine T, Jiao H J, et al. Theoretical studies on the smallest fullerene: from monomer to oligomers and solid states[J]. Chem Eur J, 2004, 10(4): 963-970.
    [25] Xie S Y, Gao F, Lu X, et al. Capturing the labile fullerene[50] as C50Cl10[J]. Science, 2004, 304(5671): 699-699.
    [26] Xu Z J, Han J G, Zhu Z Y, et al. Valence of D5h C50 fullerene[J]. J Phys Chem A, 2007, 111(4): 656-665.
    [27] Chen Z F. The smaller fullerene C50, isolated as C50Cl10[J]. Angew Chem Int Ed, 2004, 43(36): 4690-4691.
    [28] Xu Z J, Zhang W, Zhu Z Y, et al. A density functional study of C50 passivation[J]. Chem Phys, 2006, 331(1): 111-124.
    [29] Zhechkov L, Heine T, Seifert G. D5h C50 fullerene: a building block for oligomers and solids?[J]. J Phys Chem A, 2004, 108(52): 11733-11739.
    [30] Zhao X. On the structure and relative stability of C50 fullerenes[J]. J Phys Chem B, 2005, 109(11): 5267-5272.
    [31] Lu X, Chen Z F, Thiel W, et al. Properties of fullerene[50] and D5h decachlorofullerene[50]: A computational study[J]. J Am Chem Soc, 2004, 126(45): 14871-14878.
    [32] Chang Y F, Zhang J P, Hong B, et al. D5h C50X10: Saturn-like fullerene derivatives (X = F, Cl, Br)[J]. J Chem Phys, 2005, 123(9): 094305(1-4).
    [33] Heath J R, O’Brien S C, Zhang Q. Lanthanum complexes of spheroidal carbon shells[J]. J Am Chem Soc, 1985, 107 (25): 7779-7780.
    [34] Díaz-Tendero S, AlcamíM, Martín F, Fullerene C50: Sphericity takes over, not strain[J]. Chem Phys Lett, 2005, 407(1-3): 153-158.
    [35] Breslavskaya N N, Levin A A, Buchachenko A L. Endofullerenes: Size effects on structure and energy[J]. Russ Chem Bull, 2004, 53: 18-23.
    [36] Gunda T E.“MOL2MOL. Version 5.3”. University of Debrecen, Debrecen, Hungary, 2004.
    [37] Haddon R C. Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules[J]. Science, 1993, 261(5128):1545-1550.
    [38] Haddon R C. Comment on the relationship of the pyramidalization angle at a conjugated carbon atom to theσbond angles[J]. J Phys Chem A, 2001, 105(16): 4164-4165.
    [39] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 98, Revision A 9. Gaussian Inc, Pittsburgh PA, 1998.
    [1] Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckyminister-fullerene[J]. Nature, 1985, 318(6042): 162-163.
    [2] Kr?tschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60 - a new form of carbon[J]. Nature, 1990, 347(6291): 354-358.
    [3] Kroto H W. The stability of the fullerenes C24, C28, C32, C36, C50, C60 and C70[J]. Nature, 1987, 329(6139): 529-531.
    [4] Rohlfing E A, Cox D M, Kaldor A. Production and characterization of supersonic carbon cluster beams[J]. J Chem Phys, 1984, 81(7), 3322-3330.
    [5] Parker D H, Wurz P, Chatterjee K, et al. High-yield synthesis, separation, and mass-spectrometric characterization of fullerenes C60 to C266[J]. J Am Chem Soc, 1991, 113(20): 7499-7503.
    [6] Cox D M, Reichmann K C, Kaldor A. Carbon clusters revisited: The“special”behavior of C60 and large carbon clusters[J]. J Chem Phys, 1988, 88(3): 1588-1597.
    [7] So H Y, Wikins C L. First observation of carbon aggregate ions >C600+ by laser desorption fourier transform mass spectrometry[J]. J Phys Chem, 1989, 93(5): 1184-1187.
    [8] Hahn M Y, Honea E C, Paguia K E, et al. Magic numbers in CN+ and CN? abundance distributions[J]. Chem Phys Lett, 1986, 130(1-2): 12-16.
    [9] H?ser M, Alml? J, Scuseria G E. The equilibrium geometry of C60 as predicted by second-order (MP2) perturbation theory[J]. Chem Phys Lett, 1991, 181(6): 497-500.
    [10] David W I F, Ibberson R M, Matthewman J C, et al. Crystal structure and bonding of ordered C60[J]. Nature, 1991, 353(6340): 147-149.
    [11] Guo T, Scuseria G E, Smalley R E. Ab initio theoretical predictions of C28, C28H4, C28F4, (TiC28)H4, and MC28 (M=Mg, Al, Si, S, Ca, Sc, Ti, Ge, Zr, and Sn)[J]. J Chem Phys, 1993, 99(1): 352-359.
    [12] Chang Y F, Jalbout A F, Zhang J P, Z. Et al. Theoretical study on C32 fullerenes and derivatives[J]. Chem Phys Lett, 2006, 428(1-3): 148-151.
    [13] Hong B, Chang Y F, Qiu Y Q, et al. MP2 theory investigation on the halides of D6h C36:C36Xn (X = F, Cl, Br; n = 2, 4, 6, 12)[J]. J Chem Phys, 2006, 124(14): 144108(1-5).
    [14] Chen Z F. The smaller fullerene C50, isolated as C50Cl10[J]. Angew Chem Int Ed, 2004, 43(36): 4690-4691.
    [15] Chang Y F, Zhang J P, Hong B, et al. D5h C50X10: saturn-like fullerene derivatives (X = F, Cl, Br)[J]. J Chem Phys, 2005, 123(9): 094305(1-4).
    [16] Lu X, Chen Z F, Thiel W, et al. Properties of fullerene[50] and D5h decachlorofullerene[50]: A computational study[J]. J Am Chem Soc, 2004, 126(45): 14871-14878.
    [17] Piskoti C, Yarger J, Zettl A. C36, a new carbon solid[J]. Nature, 1998, 393(6687): 771-774.
    [18] Koshio A, Inakuma M, Sugai T, et al. A preparative scale synthesis of C36 by high-temperature laser-vaporization: Purification and identification of C36H6 and C36H6O[J]. J Am Chem Soc, 2000, 122(2): 398-399.
    [19] Paquette L A, Ternansky R J, D. W. Balogh D W, et al. Total synthesis of dodecahedrane[J]. J Am Chem Soc, 1983, 105(16): 5446-5450.
    [20] Prinzbach H. The pagodane route to dodecahedranes: An improved approach to the C20H20 parent dramework; partial and total Functionalizations - does C20-fullerene exist?[J]. Angew Chem Int Ed Engl, 1993, 32(12): 1722-1726.
    [21] Prinzbach H, Weber K. From an insecticide to plato's universe - the pagodane route to dodecahedranes:new pathways and new perspectives[J]. Angew Chem Int Ed Engl, 1994, 33(22): 2239-2257.
    [22] Bertau M, Wahl F, Weiler A, et al. From pagodanes to dodecahedranes - search for a serviceable access to the parent (C20H20) hydrocarbon[J]. Tetrahedron, 1997, 53(29): 10029-10040.
    [23] Cross R J, Saunders M, Prinzbach H. Putting helium inside dodecahedrane[J]. Org Lett, 1999(1): 1479-1481.
    [24]王震遐,柯学志,朱志远,等. C20富勒烯的Ar+离子辐照合成. [J].物理学报, 2000, 49: 939-942.
    [25] Prinzbach H, Weller A, Landenberger P, et al. Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20[J]. Nature, 2000, 407(6800): 60-63.
    [26] Chen Z F, Heine T, Jiao H J, et al. Theoretical studies on the smallest fullerene: from monomer to oligomers and solid states[J]. Chem Eur J, 2004, 10: 963-970.
    [27] Xie S Y, Gao F, Lu X, et al. Capturing the labile fullerene[50] as C50Cl10[J]. Science, 2004, 304(5671): 699-699.
    [28] Kroto H W. Space, Stars, C60, and Soot[J]. Science, 1988, 242(4882): 1139-1145.
    [29] O’Brien S C, Heath J R. Curl R F, et al. Photophysics of buckminsterfullerene and other carbon cluster ions[J]. J Chem Phys, 1988, 88(1): 220-223.
    [30] Yang Y A, Xia P, Junkin A L,et al. Direct ejection of clusters from nonmetallic solids during laser vaporization[J]. Phys Rev Lett, 1991, 66(9): 1205-1208.
    [31] Kietzmann H, Rochow R, Gantef?r G, et al. Electronic structure of small fullerenes: Evidence for the high stability of C32[J]. Phys Rev Lett, 1998, 81(24): 5378-5381.
    [32] Curl R F. Dawn of the fullerenes: experiment and conjecture[J]. Rev Mod Phys, 1997, 69(3): 691-702.
    [33] Chen D L, Tian W Q, Feng J K, et al. Structures and electronic properties of C56Cl8 and C56Cl10 fullerene compounds[J]. ChemPhysChem, 2007, 8: 2386-2390.
    [34] Gao X, Zhao Y. The way of stabilizing non-IPR fullerenes and structural elucidation of C54Cl8[J]. J Comput Chem, 2007, 28: 795-801.
    [35] Chen D L, Tian W Q, Feng J K, et al. Theoretical investigation of C56 fullerene isomers and related compounds[J]. J Chem Phys, 2008, 128(4): 044318(1-7).
    [36] Díaz-Tendero S, Martín F, AlcamíM. Structure of C56q+ (q = 0, 1, 2) fullerenes relevant in C60 fragmentation[J]. Comput Mat Science, 2006, 35(3): 203-209.
    [37] Díaz-Tendero S, Martín F, AlcamíM. Structure and reactivity of C54q+ (q = 0, 1, 2 and 4) fullerenes[J]. Phys Chem Chem Phys, 2005, 7: 3756-3761.
    [38] Troshin P A, Avent A G, Darwish A D, et al. Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C58F18[J]. Science 2005, 309(5732): 278-281.
    [39] Chen D L, Tian W Q, Feng J K, et al. Search for more stable C58X18 isomers: Stabilities and electronic properties of seven-membered ring C58X18 fullerene derivatives (X = H, F, and Cl)[J]. J Phys Chem B, 2007, 111(19): 5167-5173.
    [40] Chen D L, Tian W Q, Feng J K, et al. Structures, stabilities, and electronic and optical properties of C58 fullerene isomers, ions, and metallofullerenes[J]. ChemPhysChem, 2007, 8: 1029-1036.
    [41] Díaz-Tendero S, Alcamí, M Martín F. Theoretical study of ionization potentials and dissociation energies of Cnq+ fullerenes .n = 50-60, q = 0, 1 and 2[J]. J Chem Phys, 2003, 119(11): 5545-5557.
    [42] Chen D L, Tian W Q, Feng J K, et al. Structures, stabilities, and electronic and optical properties of C52 fullerene, ions, and metallofullerenes[J]. J Chem Phys, 2007, 126(7): 074313(1-7)
    [43] Díaz-Tendero S, Martín F, AlcamíM. Structure and electronic properties of fullerenes C52q+: Is C522+ an exception to the pentagon adjacency penalty rule?[J]. ChemPhysChem, 2005, 6: 92-100.
    [44] Xu X F, Xing Y M, Liang Y X, et al. Systematic investigation of the molecular behavior of C50X2 (X = H, F): An echo of the H/F parallels on structures and energetics among their derivatives[J]. Phys Chem Chem Phys, 2002, 4: 5572-5581.
    [45] Tian W Q, Feng J K, Wang Y A, et al.Search for suitable approximation methods for fullerene structureand relative stability studies: Case study with C50[J]. J Chem Phys, 2006, 125(9): 094105(1-10).
    [46] Haddon R C.π-Electrons in three dimensiona[J]. Acc Chem Res, 1988, 21(6): 243-249.
    [47] Gunda T E.“MOL2MOL version 5.3”. University of Debrecen, Debrecen, Hungary, 2004.
    [48] Haddon R C. Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules[J]. Science, 1993, 261(5128):1545-1550.
    [49] Haddon R C. Comment on the relationship of the pyramidalization angle at a conjugated carbon atom to theσbond angles[J]. J Phys Chem A, 2001,105(16): 4164-4165.
    [50] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision C 02. Gaussian Inc. Pittsburgh PA, 2003.
    [51] Cioslowski J, Edgington L, Stefanov B B. Steric overcrowding in perhalogenated cyclohexanes, dodecahedranes, and [60] fulleranes[J]. J Am Chem Soc, 1995, 117(41): 10381-10384.
    [52] Cioslowski J. Electronic structures of the icosahedral C60H60 and C60F60 molecules[J]. Chem Phys Lett, 1991, 181(1): 68-72.
    [53] Roger K M, Fowler P W. A model for pathways of radical addition to fullerenes[J]. Chem Commun, 1999, 23: 2357-2358.
    [54] Troyanov S I, Popov A A. A [70]fullerene chloride, C70Cl16, obtained by the attempted bromination of C70 in TiCl4[J]. Angew Chem Int Ed, 2005, 44(27): 4215-4218.
    [55] Vaissière B d L, Sandall J P B, Fowler P W, et al. Regioselectivity in radical reactions of C60 derivatives[J]. J Chem Soc Perkin Trans, 2001, 2: 821-823.
    [56] Sandall J P B, Fowler P W, Taylor R. Some cycloadditions of dienes with C60F18: structures and relative stabilities derived from theoretical calculation[J]. J Chem Soc Perkin Trans, 2002, 2: 1718-1721.
    [57] Sun L L, Tang S W, Chang Y F, et al. Searching for stable hept-C62X2 (X = F, Cl, and Br): Structures and stabilities of heptagon-containing C62 halogenated derivatives[J]. J Comput Chem, 2008, 29: 2631-2635.
    [1] Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckyminister-fullerene[J]. Nature, 1985, 318(6042): 162-163.
    [2] Heath J R, O’Brien S C, Zhang Q. Lanthanum complexes of spheroidal carbon shells[J]. J Am Chem Soc, 1985, 107(25): 7779-7780.
    [3] Cross R J, Saunders M, Prinzbach H. Putting helium inside dodecahedrane[J]. Org Lett, 1999(1): 1479-1481.
    [4] Chen Z F, Jiao H J, Moran D, et al. Structures and stabilities of endo- and exohedral dodecahedrane complexes (X@C20H20 and XC20H20, X = H+, H, N, P, C-, Si-, O+, S+)[J]. J Phys Chem A, 2003, 107(12): 2075-2079.
    [5] Moran D, Stahl F, Jemmis E D, et al. Structures, stabilities, and ionization potentials of dodecahedrane endohedral complexes[J]. J Phys Chem A, 2002, 106(20): 5144-5154.
    [6] Guo T, Diener M D, Chai Y, et al. Uranium stabilization of C28: A tetravalent fullerene[J]. Science, 1992, 257(5077): 1661-1664.
    [7] Guo T, Scuseria G E, Smalley R E. Ab initio theoretical predictions of C28, C28H4, C28F4, (TiC28)H4, and MC28 (M=Mg, Al, Si, S, Ca, Sc, Ti, Ge, Zr, and Sn)[J]. J Chem Phys, 1993, 99(1): 352-359.
    [8] Sun L L, Chang Y F, Hong B, et al. Theoretical studies on structures and stabilities of endohedral fullerenes X0/n+@C32 (X = H, Li, Na, K, Be, Mg, Ca, B, Al, C, Si, N, P, n = 1-3)[J]. Inter J Quan Chem, 2007, 107: 1241-1247.
    [9] Li J Q, Huang X, Wu L M, et al. DFT studies on the electronic of C36 (D6h symmetry) and its derivatives[J]. Acta Chim Sin, 2000, 58: 319-325.
    [10] Huang X, Li J Q, Zhang Y F. DFT Studies on the electronic structure of C36 (D6h symmetry) and its alkaline earths metals derivatives[J]. Chinses J Struct Chem, 2000, 19: 64-68.
    [11] Sun L L, Chang Y F, Tang S W, et al. Structures and stabilities of neutral and charged D5h X@C50 endohedral complexes[J]. Mol Phys, 2008, 106: 1413-1418.
    [12] Murata M, Murata Y, Komatsu K, Synthesis and properties of endohedral C60 encapsulating molecular hydrogen[J]. J Am Chem Soc 2006, 128(24): 8024-8033.
    [13] Iwamatsu S, Stanisky C M, Cross R J, et al. Carbon monoxide inside an open-cage fullerene[J]. Angew Chem Int Ed, 2006, 45(32): 5337-5340.
    [14] Whitener Jr K E, Frunzi M, Iwamatsu S, et al. Putting ammonia into a chemically opened fullerene[J]. J Am Chem Soc, 2008, 130(42): 13996-13999.
    [15] Wu X, Lu X. Dimetalloendofullerene U2@C60 has a U-U multiple bond consisting of sixfold one-electron-two-center bonds[J]. J Am Chem Soc, 2007, 129(7): 2171-2177.
    [16] Infante I, Gagliardi L, Scuseria G. E. Is fullerene C60 large enough to host a multiply bonded dimetal?[J]. J Am Chem Soc, 2008, 130(23): 7459-7465.
    [17] Murata Y, Maeda S, Murata M, et al. Encapsulation and dynamic behavior of two H2 molecules in an open-cage C70[J]. J Am Chem Soc, 2008, 130(21): 6702–6703.
    [18] Stevenson S, Rice G, Glass T, et al. Small-band gap endohedral metallofullerenes in high yield and purity[J]. Nature, 1999, 401(6748): 55-57.
    [19] Stevenson S, Fowler P W, Heine T, et al. Materials science: A stable non-classical metallofullerene family[J]. Nature, 2000, 408(6811): 427-428.
    [20] Olmstead M M, Lee H M, Duchamp J C, et al. Sc3N@C68: Folded pentalene coordination in an endohedral fullerene that does not obey the isolated pentagon rule[J]. Angew Chem Int Ed, 2003, 42(8): 900-903.
    [21] Cai T, Xu L S, Shu C Y, et al. Synthesis and characterization of a non-IPR fullerene derivative: Sc3N@C68[C(COOC2H5)2][J]. J Phys Chem C, 2008, 112(9): 19203-19208.
    [22] Gan L H, Yuan R. Influence of cluster size on the structures and stability of trimetallic nitride fullerenes M3N@C80[J]. ChemPhysChem, 2006, 7: 1306-1310.
    [23] Zuo T M, Beavers C M, Duchamp J C, et al. Isolation and structural characterization of a family of endohedral fullerenes including the large, chiral cage fullerenes: Tb3N@C88 and Tb3N@C86 as well as the Ih and D5h isomers of Tb3N@C80[J]. J Am Chem Soc, 2007, 129(7): 2035-2043.
    [24] Chaur M N, Melin F, Elliott B, et al. New M3N@C2n endohedral metallofullerene families (M = Nd, Pr, Ce; n = 40-53): Expanding the preferential templating of the C88 cage and approaching the C96 cage[J]. Chem Eur J, 2008, 14(15): 4594-4599.
    [25] Taylor R. The 3rd form of carbon-a new era in chemistry[J]. Interdiscip Sci Rev, 1992, 17(2): 161-170.
    [26] Ayuela A, Fowler P W, Mitchell D, et al. C62: Theoretical evidence for a nonclassical fullerene with a heptagonal ring[J]. J Phys Chem, 1996, 100(39): 15634-15636.
    [27] Cui Y H, Chen D L, Tian W Q, et al. Structures, stabilities, and electronic and optical properties of C62 fullerene isomers[J]. J Phys Chem A, 2007, 111(32): 7933-7939.
    [28] Sun L L, Tang S W, Chang Y F, et al. Searching for stable hept-C62X2 (X = F, Cl, and Br): structures and stabilities of heptagon-containing C62 halogenated derivatives[J]. J Comput Chem, 2008, 29: 2631-2635.
    [29] Díaz-Tendero S, Alcamí, M Martín F. Theoretical study of ionization potentials and dissociation energies of Cnq+ fullerenes .n = 50-60, q = 0, 1 and 2[J]. J Chem Phys, 2003, 119(11): 5545-5557.
    [30] Hu Y H, Ruckenstein E. Ab initio quantum chemical calculations for fullerene cages with large holes[J]. J Chem Phys, 2003, 119,(19): 10073-10080.
    [31] Díaz-Tendero S, AlcamíM, Martín F. Structure and electronic properties of highly charged C60 and C58 fullerenes[J]. J Chem Phys, 2005, 123(18): 184306 (1-12).
    [32] Lee S U, Han Y K, Structure and stability of the defect fullerene clusters of C60: C59, C58, and C57[J]. J Chem Phys, 2004, 121(8): 3941-3942.
    [33] Ribas-Ari?o J, Novoa J J. Ferromagnetism in pressed polymerized C60 solids induced by C60 cage vacancies: A density-functional study[J]. Phys Rev B, 2006, 73(3): 035405 (1-6).
    [34] Chen D L, Tian W Q, Feng J K, et al. Structures, stabilities, and electronic and optical properties of C58 fullerene isomers, ions, and metallofullerenes[J]. ChemPhysChem, 2007, 8: 1029-1036.
    [35] Troshin P A, Avent A G, Darwish A D, et al. Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C58F18[J]. Science, 2005, 309(5732): 278-281.
    [36] Chen D L, Tian W Q, Feng J K, et al. Search for more stable C58X18 isomers: stabilities and electronic properties of seven-membered ring C58X18 fullerene derivatives (X = H, F, and Cl)[J]. J Phys Chem B, 2007, 111(19): 5167-5173.
    [37] Hu Y H, Ruckenstein E. Density functional theory calculations for endohedral complexes of non-πC60H60 cage with small guest molecules[J]. J Chem Phys, 2005, 123(14): 144303(1-3).
    [38] Hu Y H, Ruckenstein E. Endohedral complexes of C58 cage with H2 and CO[J]. Chem Phys Lett, 2004, 390(4-6): 472-474.
    [39] Frisch M J, Trucks G. W, Schlegel H B, et al. Gaussian 03. Revision C 02. Gaussian, Inc, Pittsburgh PA, 2003.
    [1] Kroto H W. The stability of the fullerenes C24, C28, C32, C36, C50, C60 and C70[J]. Nature, 1987, 329(6139): 529-531.
    [2] Schmalz T G, Seitz W A, Klein D J, et al. Elemental carbon cages[J]. J Am Chem Soc, 1988, 110(4): 1113-1127.
    [3] Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckyminister-fullerene[J]. Nature, 1985, 318(6042): 162-163.
    [4] Kr?tschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60 - a new form of carbon[J]. Nature, 1990, 347(6291): 354-358.
    [5] Wang C R, Kai T, Tomiyama T, et al. Materials science: C66 fullerene encaging a scandium dimer[J]. Nature, 2000, 408(6811): 426-427.
    [6] Stevenson S, Fowler P W, Heine T, et al. Materials science: A stable non-classical metallofullerene family[J]. Nature, 2000, 408(6811): 427-428.
    [7] Yang S F, Popov A A, Dunsch L. Violating the isolated pentagon rule (IPR): The endohedral non-IPR C70 cage of Sc3N@C70[J]. Angew Chem Int Ed, 2007, 46(8): 1256-1259.
    [8] Stevenson S, Burbank P, Harich K, et al. La2@C72: Metal-mediated stabilization of a carbon cage[J]. J Phys Chem A, 1998, 102(17): 2833-2837.
    [9] Kato H, Taninaka A, Sugai T, et al. Structure of a missing-caged metallofullerene: La2@C72[J]. J Am Chem Soc, 2003, 125(26: 7782–7783.
    [10] Xie S Y, Gao F, Lu X, et al. Capturing the labile fullerene[50] as C50Cl10[J]. Science, 2004, 304(5671): 699-699.
    [11] Wang C R, Shi Z Q, Wan L J, et al. C64H4: production, isolation, and structural characterizations of a stable unconventional fulleride[J]. J Am Chem Soc, 2006, 128(20): 6605-6610.
    [12] Taylor R. The 3rd form of carbon-a new era in chemistry[J]. Interdiscip Sci Rev, 1992, 17(2): 161-170.
    [13] Gao Y D, Herndon W C. Fullerenes with four-membered rings[J]. J Am Chem Soc, 1993, 115(18): 8459-8460.
    [14] Fowler P W, Heine T, Manolopoulos D E, et al. Energetics of fullerenes with four-membered rings[J]. J Phys Chem, 1996, 100(17): 6984-6991.
    [15] Albertazzi E, Domene C, Fowler P W, et al. Pentagon adjacency as a determinant of fullerene stability[J]. Phys Chem Chem Phys, 1999, 1: 2913-2918.
    [16] Lee S U, Han Y K. Structure and stability of the defect fullerene clusters of C60: C59, C58, and C57[J]. J Chem Phys, 2004, 121(8): 3941-3942.
    [17] Díaz-Tendero S, Alcamí, M Martín F. Theoretical study of ionization potentials and dissociation energies of Cnq+ fullerenes .n = 50-60, q = 0, 1 and 2[J]. J Chem Phys, 2003, 119(11): 5545-5557.
    [18] Hu Y H, Ruckenstein E. Ab initio quantum chemical calculations for fullerene cages with large holes[J]. J Chem Phys, 2003, 119(19): 10073-10080.
    [19] Ayuela A, Fowler P W, Mitchell D, et al. C62: Theoretical evidence for a nonclassical fullerene with a heptagonal ring[J]. J Phys Chem, 1996, 100(39): 15634-15636.
    [20] Cui Y H, Chen D L, Tian W Q, et al. Structures, stabilities, and electronic and optical properties of C62 fullerene isomers[J]. J Phys Chem A, 2007, 111(32): 7933-7939.
    [21] Troshin P A, Avent A G, Darwish A D, et al. Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C58F18[J]. Science, 2005, 309(5732): 278-281.
    [22] Hu Y H, Ruckenstein E. Endohedral complexes of C58 cage with H2 and CO[J]. Chem Phys Lett,2004, 390(4-6): 472-474.
    [23] Chen D L, Tian W Q, Feng J K, et al. Structures, stabilities, and electronic and optical properties of C58 fullerene isomers, ions, and metallofullerenes[J]. ChemPhysChem, 2007, 8: 1029-1036.
    [24] Chen D L, Tian W Q, Feng J K, et al. Search for more stable C58X18 isomers: Stabilities and electronic properties of seven-membered ring C58X18 fullerene derivatives (X = H, F, and Cl)[J]. J Phys Chem B, 2007, 111(19): 5167-5173.
    [25] Qian W Y, Bartberger M D, Pastor S J, et al. C62, a non-classical fullerene incorporating a four-membered ring[J]. J Am Chem Soc, 2000, 122(34): 8333-8334.
    [26] Qian W Y, Chuang S C, Amador R B, et al. Synthesis of stable derivatives of C62: The first nonclassical fullerene incorporating a four-membered ring[J]. J Am Chem Soc, 2003, 125(8): 2066-2067.
    [27] Tian W Q, Feng J K, Wang Y A, et al. Search for suitable approximation methods for fullerene structure and relative stability studies: Case study with C50[J]. J Chem Phys, 2006, 125(9): 094105(1-10).
    [28] Gao X, Zhao Y. The way of stabilizing non-IPR fullerenes and structural elucidation of C54Cl8[J]. J Comput Chem, 2007, 28: 795-801.
    [29] Park S S, Liu D, Hagelberg F. Comparative investigation on non-IPR C68 and IPR C78 fullerenes encaging Sc3N molecules[J]. J Phys Chem A, 2005, 109(39): 8865-8873.
    [30] Shi Z Q, Wu X, Wang C R, et al. Isolation and characterization of Sc2C2@C68: A metal-carbide endofullerene with a non-IPR carbon cage[J]. Angew Chem Int Ed, 2006, 45(13): 2107-2111.
    [31] Yumura T, Sato Y, Suenaga K, et al. Which do endohedral Ti2C80 metallofullerenes prefer energetically: Ti2@C80 or Ti2C2@C78? A theoretical study[J]. J Phys Chem B, 2005, 109(43): 20251-20255.
    [32] Slanina Z, Uhlík F, Zhao X, et al. Enthalpy–entropy interplay for C36 cages: B3LYP/6-31G* calculations[J]. J Chem Phys, 2000, 113(12): 4933-4937.
    [33] Lu X, Chen Z F, Thiel W, et al. Properties of fullerene[50] and D5h decachlorofullerene[50]: A computational study[J]. J Am Chem Soc, 2004, 126(45): 14871-14878.
    [34] Chang Y F, Zhang J P, Hong B, et al. D5h C50X10: Saturn-like fullerene derivatives (X = F, Cl, Br)[J]. J Chem Phys, 2005, 123(9): 094305(1-4).
    [35] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 98, Revision A 09. Gaussian Inc, Pittsburgh, PA, 1998.
    [36] Gunda T E.“MOL2MOL. Version 5.3”. University of Debrecen, Debrecen, Hungary, 2004
    [37] Haddon R C. Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules[J]. Science, 1993, 261(5128):1545-1550.
    [38] Haddon R C. Comment on the relationship of the pyramidalization angle at a conjugated carbon atom to theσbond angles[J]. J Phys Chem A, 2001, 105(16): 4164-4165.
    [39] Roger K M, Fowler P W. A model for pathways of radical addition to fullerenes[J]. Chem Commun, 1999, 23: 2357-2358.
    [40] Vaissière B d L, Sandall J P B, Fowler P W, et al. Regioselectivity in radical reactions of C60 derivatives[J]. J Chem Soc Perkin Trans, 2001, 2: 821-823.
    [41] Sandall J P B, Fowler P W, Taylor R, Some cycloadditions of dienes with C60F18: Structures and relative stabilities derived from theoretical calculation[J]. J Chem Soc Perkin Trans, 2002, 2: 1718-1721.
    [42] Chen D L, Tian W Q, Feng J K, et al. Structures and electronic properties of C56Cl8 and C56Cl10 fullerene compounds[J]. ChemPhysChem, 2007, 8: 2386-2390.
    [43] Cioslowski J, Edgington L, Stefanov B B. Steric overcrowding in perhalogenated cyclohexanes, dodecahedranes, and [60] fulleranes[J]. J Am Chem Soc, 1995, 117 (41): 10381-10384.
    [44] Cioslowski J. Electronic structures of the icosahedral C60H60 and C60F60 molecules[J]. Chem Phys Lett, 1991, 181(1): 68-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700